一类拟线性椭圆方程边值问题多解的存在性

田意梅*, 陈 林#
伊犁师范大学数学与统计学院，新疆 伊宁

摘 要
拟线性椭圆方程问题是数学学科中重要的研究内容之一。椭圆型微分方程解的存在性问题近年来得到人们的广泛关注，基于文献研究，本文研究一类拟线性椭圆方程边值问题多解的存在性，并验证了一系列引理和定理，运用Nehari流形和纤维映射方法证明了该问题至少有两个正解。

关键词
Nehari流形，纤维映射，椭圆方程

Existence of Multiple Solutions for Boundary Value Problems of a Class of Quasilinear Elliptic Equations

Yimei Tian*, Lin Chen#
School of Mathematics and Statistic, Yili Normal University, Yining Xingjiang

Abstract
The problem of quasilinear elliptic equation is one of the important research contents in mathematics. The existence of solutions for elliptic differential equations has attracted extensive attention in recent years. Based on literature research, this paper studies the existence of multiple solutions for a class of quasilinear elliptic equation boundary value problems, verifies a series of lemmas and theorems, and proves that the problem has at least two positive solutions by using Nehari manifold and fiber mapping method.

*第一作者。
#通讯作者。
1. 引言

\[
\begin{cases}
-p\Delta u(x) = \lambda h(x)|u|^{m-2}u + H(x)|u|^{n-2}u, & x \in \Omega, \\
u(x) = 0, & x \in \partial \Omega, \\
\end{cases}
\]

多解的存在性,其中 \(\Omega \subset R^N (N \geq 3) \) 是具有光滑边界的有界区域, \(\lambda > 0, \ 0 \in \Omega, \ 1 < p < N, \ 0 \leq a < \frac{N-p}{p} \), 1 < m < p < n < \frac{pN}{N-1+a} p \), \(h(x) \) 和 \(g(x) \) 是在 \(\Omega \) 上符号会发生改变的 Lebesgue 可测函数。Brown 和 Wu 在文献[5]中运用 Nehari 流形和纤维映射方法证明了一类半线性椭圆边值问题

\[
\begin{cases}
-\Delta u(x) = \lambda h(x)u^q + H(x)u^p, & x \in \Omega, \\
u(x) = 0, & x \in \partial \Omega, \\
\end{cases}
\]

至少有两个正解, 其中 \(\Omega \subset R^N \) 是一个具有光滑边界的有界区域, 0 < q < p < \frac{N+2}{N-2} , \(\lambda > 0 \), 函数 \(h(x) \) 和 \(H(x) \) 在 \(\Omega \) 中可以改变符号。

\[
\begin{cases}
-\Delta u(x) = h(x)|u|^{m-2}u + \lambda g(x)|u|^{n-2}u, & x \in \Omega, \\
u(x) = 0, & x \in \partial \Omega, \\
\end{cases}
\]

正解的存在性,其中 \(\lambda > 0 \), 参数 \(p,m,r \) 满足 \(1 < r < p < m < p^* \), 且 \(p^* = \frac{pN}{N-p} \), 这里 \(p^* \) 是 Sobolev 临界指数[6]。本文运用 Nehari 流形和变分方法研究问题(1)多解的存在性。

为研究问题的方便,假设函数 \(h(x) \) 和 \(g(x) \) 满足以下条件:

\((A_1)\) \(h(x) \in L^a (\Omega) \cap L^\infty (\Omega) \) 且 \(\alpha = \frac{p^*}{p^* - m} \).

\((A_2)\) \(g(x) \in L^\beta (\Omega) \cap L^\infty (\Omega) \) 且 \(\beta = \frac{p^*}{p^* - r} \).

设 \(X = W_0^{r,p} (\Omega) \) 是空间 \(C_0^\infty (\Omega) \) 关于范数

\[\|u\| = \left(\int_\Omega |\nabla u|^p \, dx \right)^{\frac{1}{p}}\]

的完备化空间。
2. 基本定理

定义 1 设 \(u \in X \)，若对任意 \(\varphi \in C_0^\infty (\Omega) \)，有
\[
\int_\Omega |\nabla u|^p \nabla u \varphi dx - \int_\Omega h(x)|u|^m u \varphi dx - \lambda \int_\Omega g(x)|u|^{-2} u \varphi dx = 0.
\]
成立，则称 \(u \) 是问题(1)的弱解。

问题(1)所对应的能量泛函为
\[
J_\lambda (u) = \frac{1}{p} \int_\Omega |\nabla u|^p dx - \frac{1}{m} \int_\Omega h(x)|u|^m dx - \frac{1}{p} \int_\Omega \lambda g(x)|u|^{-2} u dx.
\]
显然，问题(1)的解对应能量泛函 \(J_\lambda (u) \) 的临界点。

由于泛函 \(J_\lambda (u) \) 在空间 \(X \) 上有界，从而引入 Nehari 流形
\[M_\lambda = \{ u \in X \setminus \{0\} : \langle J_\lambda'(u), u \rangle = 0 \} . \]
其中 \(\langle \cdot, \cdot \rangle \) 代表普通内积，则 \(u \in M_\lambda \) 当且仅当
\[
\int_\Omega |\nabla u|^p dx = \int_\Omega h(x)|u|^m dx + \lambda \int_\Omega g(x)|u|^{-2} u dx
\]
成立。从而，当 \(u \in M_\lambda \) 时，有
\[
J_\lambda (u) = \left(\frac{1}{p} - \frac{1}{r} \right) \int_\Omega |\nabla u|^p dx - \left(\frac{1}{m} - \frac{1}{r} \right) \int_\Omega h(x)|u|^m dx
\]
\[
= \left(\frac{1}{p} - \frac{1}{m} \right) \int_\Omega |\nabla u|^p dx - \left(\frac{1}{r} - \frac{1}{m} \right) \int_\Omega \lambda g(x)|u|^{-2} u dx. \tag{2}
\]

构造纤维映射 \(\mathcal{O}_u : t \in \Omega \rightarrow J_\lambda (tu) \)， \(\forall u \in X \)，易见 \(u \in M_\lambda \) 当且仅当 \(\mathcal{O}_u (1) = 0 \)。将集合 \(M_\lambda \) 分为三部分，分别定义为
\[
M_\lambda^+ = \{ u \in M_\lambda \mid \mathcal{O}_u^+ (1) > 0 \} ;
M_\lambda^- = \{ u \in M_\lambda \mid \mathcal{O}_u^- (1) < 0 \} ;
M_\lambda^0 = \{ u \in M_\lambda \mid \mathcal{O}_u^0 (1) = 0 \} .
\]

引理 1 假定 \((A_1)-(A_2)\) 成立，函数 \(J_\lambda (u) \) 在集合 \(M_\lambda \) 上强制且有界。

证明：由于 \(g(x) \in L^p (\Omega) \cap L^\infty (\Omega) \)，\(\beta = \frac{p}{p-r} \)，由 Hölder 不等式可得到
\[
\int_\Omega g(x)|u|^\beta dx \leq \left(\int_\Omega |g(x)|^p dx \right)^{\frac{1}{p}} \left(\int_\Omega |u|^\beta dx \right)^{\frac{\beta}{p}} \leq c_\beta \|u\|^\beta,
\]
\[
\int_\Omega h(x)|u|^\gamma dx \leq c_\alpha \|u\|^\gamma, \tag{4}
\]
其中 \(c_\beta = \left(\int_\Omega |g(x)|^p dx \right)^{\frac{1}{p}} \)。

类似地，有
\[
\int_\Omega h(x)|u|^\gamma dx \leq c_\alpha \|u\|^\gamma, \tag{5}
\]
其中 \(c_a = \left(\int_\Omega |g(x)|^\alpha \, dx \right)^{\frac{1}{\alpha}} \), \(\alpha = \frac{p^*}{p - m} \)。则由(2)~(5)可得

\[
J_\lambda(u) = \left(\frac{1}{p} - \frac{1}{m} \right) \int_\Omega |\nabla u|^p \, dx - \left(\frac{1}{m} - \frac{1}{r} \right) \int_\Omega h(x)|u|^m \, dx
\geq J_\lambda(u) = \left(\frac{1}{p} - \frac{1}{m} \right) \int_\Omega |\nabla u|^p \, dx - \left(\frac{1}{m} - \frac{1}{r} \right) c_a \|u\|^m.
\]

当\(\|u\| \to \infty \)时，有\(J_\lambda(u) \to \infty \)。则函数\(J_\lambda(u) \)在集合\(M_\lambda \)上强制且有界。

引理 2 假定\((A_1)\)~\((A_2)\)成立。存在\(\lambda_0 > 0 \)使得对任意\(\lambda \in (0, \lambda_0) \)有\(M_\lambda^0 = \emptyset \)。

证明：令 \(\lambda_0 = \left(\frac{r - p}{(r - m)c_p} \right)^{\frac{p^*}{m}} \frac{p - m}{(r - m)c_p} \)，假设结论不成立，则存在\(\lambda \in (0, \lambda_0) \)使得\(M_\lambda^0 \neq \emptyset \)，从而\(\exists u \in M_\lambda^0 \)有

\[
0 = \emptyset^\ast(1) = (p - r) \int_\Omega |\nabla u|^p \, dx - (r - m) \int_\Omega h(x)|u|^m \, dx
= (p - m) \int_\Omega |\nabla u|^p \, dx - (r - m) \int_\Omega \lambda g(x)|u|^{\alpha} \, dx.
\]

将(5)代入(6)中可得,

\[
(r - p) \int_\Omega |\nabla u|^p \, dx = (r - m) \int_\Omega h(x)|u|^m \, dx \leq (r - m)c_u \|u\|^m,
\]

\[
(p - m) \int_\Omega |\nabla u|^p \, dx = (r - m) \int_\Omega \lambda g(x)|u|^{\alpha} \, dx \leq (r - m)c_p \|u\|^m.
\]

经计算可得

\[
\left(\frac{r - p}{(r - m)c_p} \right)^{\frac{p^*}{m}} \leq \|u\| \leq \left(\frac{\lambda (r - m)}{p - m c_p} \right)^{\frac{1}{p^*}}.
\]

从而\(\lambda \geq \lambda_0 \)，矛盾！因此，存在\(\lambda_0 > 0 \)使得对任意\(\lambda \in (0, \lambda_0) \)有\(M_\lambda^0 = \emptyset \)。证毕。

引理 3 假定\((A_1)\)~\((A_2)\)成立。若\(u_0 \)是\(J_\lambda(u) \)在\(M_\lambda(\Omega) \)上的局部极小值或局部极大值且\(u_0 \not\in M_\lambda^0 \)，则\(u_0 \)是泛函\(J_\lambda(u) \)上的一个临界点。

证明：令

\[
S(u) = \int_\Omega |\nabla u|^p \, dx - \int_\Omega h(x)|u|^m \, dx - \int_\Omega \lambda g(x)|u|^{\alpha} \, dx, \quad u \in X.
\]

考虑最优化问题

\[
\min \{ J_\lambda(u) \mid u \in M_\lambda(\Omega), S(u) = 0 \}.
\]

由 Lagrange 乘子理论，存在 \(\mu \in \mathbb{R} \)使得\(J_\lambda'(u_0) = \mu S'(u_0) \)，从而

\[
\langle J_\lambda'(u_0), u_0 \rangle = \mu \langle S'(u_0), u_0 \rangle.
\]

由于\(u_0 \in M_\lambda \)，则

\[
\langle J_\lambda'(u_0), u_0 \rangle = 0.
\]

此外
\[\mathcal{S}'(u_0),u_0 = p\|u_0\|^p - m\int_{\Omega} h(x)|u_0|^r dx - r\int_{\Omega} \lambda g(x)|u_0|^s dx \]
\[= (p-r)\|u_0\|^p - (m-r)\int_{\Omega} h(x)|u_0|^r dx \]
\[= (p-m)\|u_0\|^p + (m+r)\int_{\Omega} h(x)|u_0|^r dx \]

因此，\(u_0 \notin M^0_\lambda \)，\(\mathcal{S}'(u_0),u_0 \neq 0 \)。由(7)可得到\(\mu = 0 \)，\(J'_\lambda(u_0) = 0 \)。从而，\(u_0 \)是\(J_\lambda(u) \)的一个临界点。证毕。

接下来探究纤维映射\(\mathcal{U}_\lambda(t) \)的性质。考虑函数

\[F_u(t) = t^{\rho-1}\int_{\Omega} \|
abla u\|^\rho dx - t^{\mu-1}\int_{\Omega} h(x)|u|^\mu dx. \]

显然，对\(t > 0 \)，\(tu \in M_\lambda(\Omega) \)当且仅当\(t \)是下面方程的解

\[F_u(t) = \int_{\Omega} \lambda g(x)|u|\frac{1}{\rho} dx. \] \hspace{1cm} (8)

此外，若\(\int_{\Omega} h(x)|u|^\mu dx \leq 0 \)，则有

\[F'_u(t) = (p-r)t^{\rho-2}\int_{\Omega} \|
abla u\|^\rho dx - (m-r)t^{\mu-2}\int_{\Omega} h(x)|u|^\mu dx \geq 0. \] \hspace{1cm} (9)

其中\(1 < r < p < m \)。因此，当\(t \geq 0 \)时\(F'_u(t) \)是严格递增的。

若\(\int_{\Omega} h(x)|u|^\mu dx > 0 \)，由(9)可得到唯一临界点

\[t_0 = \left(\frac{(p-r)\int_{\Omega} \|
abla u\|^\rho dx}{(m-r)\int_{\Omega} h(x)|u|^\mu dx} \right)^\frac{1}{\mu-\rho}. \]

由于\(1 < r < p < m \)，当\(t \to 0^+ \)时，有\(M_\lambda(t) \to 0 \)，当\(t \to +\infty \)时，有\(M_\lambda(t) \to -\infty \)。经计算可得

\[F'_u(t) = (p-r)(p-r-1)t^{\rho-2}\int_{\Omega} \|
abla u\|^\rho dx - (m-r)(m-r-1)t^{\mu-2}\int_{\Omega} h(x)|u|^\mu dx, \]
\[F'_u(t_0) = (m-r)(p-m)t^{\mu-2}\int_{\Omega} h(x)|u|^\mu dx < 0. \]

这表明函数\(M_\lambda(t) \)在\((0, t_0)\)上单调递增，在\((t_0, +\infty)\)上单调递减。若\(\int_{\Omega} h(x)|u|^\mu dx > 0 \)，则\(t_0 \)是唯一的极大值点。

若\(\int_{\Omega} h(x)|u|^\mu dx < 0 \)，则\(M_\lambda(t) \)在\((0, t_0)\)上单调递减，在\((t_0, +\infty)\)上单调递增。若\(\int_{\Omega} h(x)|u|^\mu dx > 0 \)，则\(M_\lambda(t) \)是关于\(t \)的递增函数。

若\(\int_{\Omega} h(x)|u|^\mu dx \leq 0 \)，则存在\(t = t(u) \)使得\(\mathcal{U}_\lambda(t) \)在\(t(u) \)处有唯一临界点且为局部极小值点。

若\(\int_{\Omega} h(x)|u|^\mu dx > 0 \)，则函数\(F'_u(t) \)先递增再递减，有一个极大值点。则方程(8)有一个正解，从而有唯一的\(t(u) > 0 \)使得\(t(u)u \in M_{\lambda_+}(\Omega) \)且\(M'_\lambda(t(u)) < 0 \)。因此\(t(u)u \in S_\lambda\). 由于\(\lim_{t \to +\infty} \mathcal{U}_\lambda(t) = -\infty \)，则\(\mathcal{U}_\lambda(t) \)先递增后递减，由此可得纤维映射\(\mathcal{U}_\lambda(t) \)在唯一的一个临界点且为局部极大值点。

最后考虑情形\(\int_{\Omega} h(x)|u|^\mu dx > 0 \)，\(\int_{\Omega} g(x)|u|^s dx > 0 \)。若\(\lambda > 0 \)足够大，则(8)无解，因此\(\mathcal{U}_\lambda(t) \)无临界
点，在此情形 $\phi_a(t)$ 是一个递减函数。若 $\lambda > 0$ 充分小，则在(8)有两个解 $t_1(u) < t_2(u)$ 且 $M_{\lambda}'(t_1) > 0, M_{\lambda}'(t_2) > 0$。因此 $t_1(u) \in M_{\lambda}'(t_1), t_2(u) \in M_{\lambda}'(t_2)$。从而 $\phi_a(t)$ 在 $(0, t_0)$ 上单调递减，在 (t_1, t_2) 上单调递增，在 $(t_2, +\infty)$ 上单调递减。

引理 4 假设(A1)~(A2)成立。存在 $\delta > 0, t_0 > 0$，使得对任意 $u \in X \setminus \{0\}$ 和 $0 < \lambda < \lambda_0$ 有 $\phi_a(t_0) > 0$。

证明：若 $\int_\Omega h(x)|u|^m dx \leq 0$，则当 δ 充分大时 $\phi_a(t_0) > 0$。若 $\int_\Omega h(x)|u|^m dx > 0$，记

$$
\phi_a(t) = \frac{\rho}{p} \int_\Omega |\nabla u|^p dx - \frac{m}{m+\rho} \int_\Omega h(x)|u|^m dx,
$$

则 $\phi_a(0) = 0$。当 $t \to +\infty$ 时，$\phi_a(t) = -\infty$。此外

$$
\phi_a'(t) = t^{p-1} \int_\Omega |\nabla u|^p dx - \frac{m-1}{m} \int_\Omega h(x)|u|^m dx.
$$

经计算可得，$\phi_a(t)$ 在 t_1 处有最大值 $\phi_a(t_1) = \left(\frac{1}{p} - \frac{1}{m} \right) t_1^{m-p}$，其中 $t_1 = \frac{\int_\Omega |\nabla u|^p dx}{\int_\Omega h(x)|u|^m dx}$。

由引理 1 可知

$$
\int_\Omega h(x)|u|^m dx = \int_\Omega h(x)|x|^{\frac{m}{p}} |x|^\gamma |u|^m dx
$$
$$
\leq h_x \int_\Omega |x|^\gamma |u|^m dx
$$
$$
\leq h_x c_{r,\gamma} \left(\int_\Omega |\nabla u|^p dx \right)^{\frac{\gamma}{p}},
$$

其中 $r \leq m + N \left(1 - \frac{m}{p} \right)$，$h_x = \|h(x)\|_\infty$ 且 $c_{r,\gamma}$ 代表嵌入 $X \to L^\gamma(\Omega)$ 的 Sobolve 常数。则

$$
\phi_a(t_1) \geq \left(\frac{1}{p} - \frac{1}{m} \right) \left(h_x c_{r,\gamma} \right)^{\gamma} = \delta > 0,
$$

其中 δ 独立于 u。同理有

$$
\frac{\int_\Omega g(x)|u|^\gamma dx}{r} \leq h_x \left(\int_\Omega |\nabla u|^p dx \right)^{\frac{\gamma}{p}} c_{a,r}
$$
$$
= \frac{g_a}{r} \left(\int_\Omega |\nabla u|^p dx \right)^{\frac{\gamma}{p}} \left(\int_\Omega |\nabla u|^p dx \right)^{\frac{\gamma}{p}} c_{a,r}
$$
$$
\leq s_0 g_a \left(\phi_a(t_0) \right)^{\frac{\gamma}{p}}
$$

其中 $s_0 > 0$ 独立于 $u, g_a = \|g\|_\infty$。经计算可得

$$
\phi_a(t_0) \geq \phi_a(t_0) - \lambda \phi_a(t_0)^{\frac{\rho}{p}} \geq \phi_a(t_0)^{\frac{\rho}{p}} \left(\phi_a(t_0)^{\frac{\rho}{p}} - \lambda s_0 \right).
$$

则对任意 $u \in X \setminus \{0\}$，由于 $\phi_a(t_0) \geq \delta$，对任意非零 u 有 $\lambda < c_0 \delta^{\frac{\rho}{p}} = \lambda_0$，进而可以得到函数 $\phi_a(t_0) > 0$。证毕。

引理 5 假设(A1)~(A2)成立。如果 $0 < \lambda < \lambda_0$，则存在 $\delta > 0$ 使得对任意 $u \in M_{\lambda}'(\Omega)$ 有 $J_{\lambda}'(u_0) \geq \delta$。

证明：若 $u \in M_{\lambda}'(\Omega)$，则 $\phi_a'(1) < 0$。函数 ϕ_a 在 $t = 1$ 有一个局部极大值且 $\int_\Omega h(x)|u|^m dx > 0$，由(10)可得
引理 6 假设(A1)～(A2)且$0 < \lambda < \lambda_2$成立，则对任意$u \in M_\lambda^0(\Omega)$, $u \neq 0$有
$$
\int_\Omega |\nabla u|^p \, dx - \int_\Omega h(x)|u|^m \, dx - \lambda \int_\Omega g(x)|u|^n \, dx \neq 0,
$$
即$M_\lambda^0(\Omega) = \emptyset$。

证明： 假设结果不成立，则存在$u \in M_\lambda^0(\Omega) \subset M_\lambda(\Omega)$有
$$
\int_\Omega |\nabla u|^p \, dx - \int_\Omega h(x)|u|^m \, dx = \lambda \int_\Omega g(x)|u|^n \, dx.
$$
若$\int_\Omega h(x)|u|^m \, dx \leq 0$，则有
$$
\mathcal{D}_u^*(1) = (p-r)\int_\Omega |\nabla u|^p \, dx + (r-m)\int_\Omega h(x)|u|^m \, dx > 0,
$$
从而$u \in M_\lambda^{+}$。

若$\int_\Omega h(x)|u|^m \, dx > 0$，由(11)可得
$$
\mathcal{D}_u^*(1) = (p-m)\int_\Omega h(x)|u|^m \, dx + (p-r)\int_\Omega \lambda g(x)|u|^n \, dx = 0.
$$
进而有
$$
-\int_\Omega \lambda g(x)|u|^n \, dx = \frac{p-m}{p-r} \int_\Omega h(x)|u|^m \, dx.
$$
此外
$$
\mathcal{D}_u^*(1) = (p-r)\int_\Omega |\nabla u|^p \, dx + (r-m)\int_\Omega h(x)|u|^m \, dx = 0.
$$
从而
$$
\int_\Omega |\nabla u|^p \, dx = \frac{m-r}{p-r} \int_\Omega h(x)|u|^m \, dx > 0.
$$
由(12)和(13)可得
$$
\mathcal{D}_u(t) = \frac{1}{p} t^p \int_\Omega |\nabla u|^p \, dx - \frac{1}{m} t^m \int_\Omega h(x)|u|^m \, dx - \frac{1}{r} t^r \int_\Omega \lambda g(x)|u|^n \, dx
$$
$$
= \frac{1}{p} t^p \frac{m-r}{p-r} \int_\Omega h(x)|u|^m \, dx - \frac{1}{m} t^m \int_\Omega h(x)|u|^m \, dx - \frac{1}{r} t^r \frac{p-m}{p-r} \int_\Omega h(x)|u|^n \, dx
$$
$$
= \left(\frac{m-r}{p(p-r)} t^r + \frac{p-m}{r(p-r)} t^r - \frac{1}{m} t^m \right) \int_\Omega h(x)|u|^m \, dx.
$$
特别地，由假设条件可得到
$$
\mathcal{D}_u(t_0) = \frac{(m-p)t_0^p}{p-r} \left(\frac{m-r}{pm} \frac{p-m}{p-r} \right)^{\frac{p-r}{m-p}} \int_\Omega h(x)|u|^m \, dx \leq 0.
$$
由引理 4 可知这是一个矛盾。从而有$M_\lambda^0(\Omega) = \emptyset$。证毕。

3. 正解的存在性

由引理 6 可知当$0 < \lambda < \lambda_2$时$M_\lambda(\Omega) = M_\lambda^{+}(\Omega) \cup M_\lambda^{-}(\Omega)$。
引理 7 假定(A1)-(A2)成立。如果 $0 < \lambda < \lambda_1$，则函数 J_λ 在 $M_\lambda^+ (\Omega)$ 上有一个极小值。

证明：由引理 1 可得泛函 $J_\lambda (u)$ 在集合 $M_\lambda^+ (\Omega)$ 上有下界，则泛函 $J_\lambda (u)$ 在集合 $M_\lambda^+ (\Omega)$ 上也有下界。

因此存在一个极小值序列 $\{ u_k \} \subset M_\lambda^+ (\Omega)$，有

$$\lim_{k \to \infty} J_\lambda (u_k) = \inf_{u \in M_\lambda^+ (\Omega)} J_\lambda (u).$$

由于泛函 $J_\lambda (u)$ 是强制的，序列 $\{ u_k \}$ 在空间 X 上有界。在不失一般性的条件下在空间 X 中有 u_k 弱收敛于 u。对 $1 < q < \frac{Np}{N-p}$，在 $L^q (\Omega)$ 中有 $u_k \to u_0$。

选取 $u \in X$ 使得 $\int_\Omega g(x) |u_0|^q \, dx > 0$，存在 $t_1 (u)$ 使得 $t_1 (u) \in M_\lambda^+ (\Omega)$ 和 $J_\lambda (t_1 (u) u) < 0$。则有 $\inf_{u \in M_\lambda^+ (\Omega)} J_\lambda (u) < 0$ 和 $J_\lambda (u_0) < 0$。

由(3)可得

$$J_\lambda (u_k) = \left(\frac{1}{p} - \frac{1}{m} \right) \int_\Omega |\nabla u_k|^p \, dx - \left(\frac{1}{p} - \frac{1}{m} \right) t_1^m \int_\Omega (g(x) |u_0|^q + \frac{1}{m} |u_k|^m) \, dx.$$

进而可得到

$$\lim_{k \to \infty} \int_\Omega |\nabla u_k|^p \, dx < \liminf_{k \to \infty} \int_\Omega |\nabla u_k|^p \, dx > 0.$$

假设在空间 X 中 u_k 不收敛于 u_0，而由纤维映射 $\mathcal{Q}_{u_0} (t)$ 则得到矛盾。由于 $\int_\Omega g(x) |u_0|^q \, dx > 0$，则存在 $t_0 > 0$ 使得 $t_0 u_0 \in M_\lambda^+ (\Omega)$ 且 $\mathcal{Q}_{u_0} (t_0)$ 在 $(0, t_0)$ 上单调递减，$\mathcal{Q}_{u_0} (t_0) = 0$。由于在空间 X 中 u_k 不收敛于 u_0，从而可以得到

$$\int_\Omega |\nabla u_k|^p \, dx < \liminf_{k \to \infty} \int_\Omega |\nabla u_k|^p \, dx.$$

由于序列 $\{ u_k \} \subset M_\lambda^+ (\Omega)$，从而

$$\mathcal{Q}_{u_0} (t) = t^{m-1} \int_\Omega |\nabla u_k|^p \, dx - t^{m-1} \int_\Omega h(x) |u_k|^m \, dx - \int_\Omega t^{m-1} \int_\Omega \lambda g(x) |u_k|^q \, dx.$$

则由 $\mathcal{Q}_{u_0} (t_0) = 0$ 可得

$$\mathcal{Q}_{u_0} (t_0) = t_0^{m-1} \int_\Omega |\nabla u_k|^p \, dx - t_0^{m-1} \int_\Omega h(x) |u_0|^m \, dx - \int_\Omega t_0^{m-1} \int_\Omega \lambda g(x) |u_0|^q \, dx.$$

由于在 $L^m (\Omega)$ 中 $u_k \to u_0$，从而

$$\lim_{k \to \infty} \mathcal{Q}_{u_0} (t_0) \geq t_0^{m-1} \int_\Omega |\nabla u_k|^p \, dx - \int_\Omega t_0^{m-1} \int_\Omega \lambda g(x) |u_0|^q \, dx > 0.$$

这表明当 k 充分大时有 $\mathcal{Q}_{u_0} (t_0) > 0$。由于 $\{ u_k \} \subset M_\lambda^+ (\Omega)$，即 $\mathcal{Q}_{u_0} (1) > 0$，易看出对 $0 < t < 1$ 有 $\mathcal{Q}_{u_0} (t) < 0$ 且对任意 k 有 $\mathcal{Q}_{u_0} (t_0) = 0$。从而可以得到 $t_0 > 1$。由于 $t_0 u_0 \in M_\lambda^+ (\Omega)$ 和 $\mathcal{Q}_{u_0} (t_0) = 0$，则 $\mathcal{Q}_{u_0} (t_0)$ 是一个局部极小值且 $\mathcal{Q}_{u_0} (t_0) < \mathcal{Q}_{u_0} (1)$。因此有

$$J_\lambda (t_0 u_0) < J_\lambda (u_0) < \lim_{k \to \infty} J_\lambda (u_k) = \inf_{u \in M_\lambda^+ (\Omega)} J_\lambda (u).$$
矛盾!则在空间 X 中有 $u_k \to u_0$，从而
\[J_\lambda(u_0) = \lim_{k \to \infty} J_\lambda(u_k) = \inf_{u \in M_\lambda^+} J_\lambda(u). \]
因此 u_0 是泛函 $J_\lambda(u)$ 在集合 $M_\lambda^+ (\Omega)$ 中的一个极小值点。

引理 8 假设 (A_1)--(A_2) 且 $0 < \lambda < \lambda_1$，则函数 $J_\lambda(u)$ 在集合 $M_\lambda^+ (\Omega)$ 上有一个极小值。

证明：由引理 5 可得存在 $\delta_1 > 0$，对任意 $u \in M_\lambda^+ (\Omega)$ 有 $J_\lambda(u) \geq \delta_1 > 0$，则有 $\inf_{u \in M_\lambda^+ (\Omega)} J_\lambda(u) \geq \delta_1$。因此存在一个极小值序列 $\{u_k\} \subset M_\lambda^+ (\Omega)$ 使得
\[\lim_{k \to \infty} J_\lambda(u_k) = \inf_{u \in M_\lambda^+ (\Omega)} J_\lambda(u) > 0. \]

由引理 1 可知泛函 $J_\lambda(u)$ 是强制的且序列 $\{u_k\}$ 在空间 X 上有界。则假设在空间 X 中有 u_k 弱收敛于 u_1，对 $1 < q < \frac{Np}{N-p}$，在 $L^q (\Omega)$ 中有 $u_k \to u_1$。由(2)可得
\[J_\lambda(u_1) = \left(\frac{1}{p-1} \right) \int_\Omega |\nabla u_1|^p dx - \left(\frac{1}{m-1} \right) \int_\Omega h(x)|u_1|^m dx. \]
由于
\[\lim_{k \to \infty} J_\lambda(u_k) > 0, \quad \lim_{k \to \infty} \int_\Omega h(x)|u_k|^m dx = \int_\Omega h(x)|u_1|^m dx \]
则有 $\int_\Omega h(x)|u_1|^m dx > 0$。从而存在 $t_1(u_1)$ 使得 $t_1(u_1)u_1 \in M_\lambda^+ (\Omega)$. 若在 X 中 u_k 不弱收敛于 u_1，则有
\[\int_\Omega |\nabla u_k|^p dx < \liminf_{k \to \infty} \int_\Omega |\nabla u_k|^p dx. \]
由于 $u_k \in M_\lambda^+ (\Omega)$ 且当 $t \to +\infty$ 时，有 $\varnothing_{\Omega_k} (t) \to -\infty$。从而 $J_\lambda(u_k)$ 有唯一的临界点且是一个极大值点。则对任意 $t \geq 0$ 有 $J_\lambda(tu_k) \geq J_\lambda(u_k)$ 且
\[J_\lambda(tu_k) = \frac{1}{p} t_k^p \int_\Omega |\nabla u_k|^p dx - \frac{1}{m} t_k^m \int_\Omega h(x)|u_k|^m dx - \lambda t_k^p \int_\Omega g(x)|u_k|^p dx < \lim_{k \to \infty} \left[\frac{1}{p} t_k^p \int_\Omega |\nabla u_k|^p dx - \frac{1}{m} t_k^m \int_\Omega h(x)|u_k|^m dx - \lambda t_k^p \int_\Omega g(x)|u_k|^p dx \right] \]
\[= \lim_{k \to \infty} J_\lambda(tu_k) \leq \lim_{k \to \infty} J_\lambda(u_k) = \inf_{u \in M_\lambda^+ (\Omega)} J_\lambda(u) \]
矛盾!则在空间 X 中 $u_k \to u_1$，由引理 7 可得 u_1 是泛函 $J_\lambda(u)$ 在集合 $M_\lambda^+ (\Omega)$ 中的极小值。证毕。

4. 主要结论及其证明

本文主要结论如下。

定理 1 假设 (A_1)--(A_2) 成立，存在 $\lambda_1 > 0$ 使得对任意的 $\lambda \in (0, \lambda_1)$ 问题(1)至少有两个正解。

证明：由引理 7 和 8 可知，存在 $u_2 \in M_\lambda^+ (\Omega)$ 和 $u_3 \in M_\lambda^+ (\Omega)$ 使得 $J_\lambda(u_2) = \inf_{u \in M_\lambda^+ (\Omega)} J_\lambda(u)$ 和
\[J_\lambda(u_3) = \inf_{u \in M_\lambda^+ (\Omega)} J_\lambda(u). \] 此外 $J_\lambda(u_2) = J_\lambda([u_2])$，$J_\lambda(u_3) = J_\lambda([u_3])$ 且 $[u_2] \in M_\lambda^+ (\Omega), [u_3] \in M_\lambda^+ (\Omega)$. 从而，假设 $u_2, u_3 > 0$，由引理 3 可得 u_2 和 u_3 是泛函 $J_\lambda(u)$ 在空间 X 中的临界点，则它们是方程(1)的弱解。证毕。

致 谢

首先感谢伊犁师范大学对我的辛苦培育，让我在学校期间学到了很多东西，特别感谢数学与统计学院为我提供了良好的学习环境、感谢领导、老师们对我无微不至的关怀和指导，让我学到了很多有用的
知识，其次我还要感谢在班里的同学和朋友，感谢你们在我遇到困难的时候帮助我，给我支持和鼓励，感谢你们。同时也要向我的导师陈林老师对我的悉心指导以谢意！我还要向审稿人提出的宝贵意见和建议表示诚挚的感谢！最后感谢贵出版社录用我的论文，这是对我的成果最大的肯定！

基金项目
新疆高校科研计划重点项目(XJEDU2016I043)。

参考文献