激光打标中图案保形映射方法研究

张子龙¹,方 跃²,颜昌亚^{1*}

¹武汉工程大学,湖北 武汉 ²武汉瀚迈科技有限公司,湖北 武汉 Email: zilongzhang@163.com

收稿日期: 2021年2月16日; 录用日期: 2021年3月12日; 发布日期: 2021年3月19日

摘要

目前激光打标中存在的一个问题是将图案映射到物体表面上往往会发生不同程度的变形,对此本文提出 了一种图案映射方法。本文针对三维网格模型与平面图案,首先建立网格曲面与平面之间的映射关系, 将曲面展平为二维平面,然后将平面图案与展平的平面对齐,进而建立平面图案与打标曲面之间的映射 关系。通过计算机仿真验证该映射算法能有效减小激光打标中图案的变形。

关键词

激光打标,图像处理,映射算法

A Shape Preserving Pattern Mapping Method for Sculpture Surface Laser Marking Process

Zilong Zhang¹, Yue Fang², Changya Yan^{1*}

¹Wuhan Institute of Technology, Wuhan Hubei ²Wuhan Han MIRC Technology Co., Ltd., Wuhan Hubei Email: ^{*}zilongzhang@163.com

Received: Feb. 16th, 2021; accepted: Mar. 12th, 2021; published: Mar. 19th, 2021

Abstract

A challenging topic of laser marking is to mark any 2D-complex pattern onto sculpture surfaces

*通讯作者。

with shape preserving property, so this paper aims to provide a solution which realizes marking 2D patterns onto sculpture surfaces. A general idea of the solution is as follows: based on the data description of the 2D pattern and the sculpture surfaces presented in facet model, first flattening the facet sculpture surfaces into an abstract 2D region, then mapping the 2D pattern onto the 2D region. From the corresponding 3D line patterns on the sculpture surface, we can build tool paths to accomplish the marking of the target line patterns on the sculpture surfaces. In addition, it is verified by computer simulation that the mapping method can reduce the pattern deformation in the laser marking effectively.

Keywords

Laser Marking, Graphic Procession, Mapping Algorithm

Copyright © 2021 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

CC O Open Access

1. 引言

激光技术目前在医疗、航天、军事等方面均得到广泛应用,有激光切割、激光快速成型、激光焊接、 激光手术、激光武器等,其中激光打标是指利用激光在物体表面留下文字、图案等标记的方法。早期的激 光打标系统只能在垂直于激光束的平面上进行加工[1],随着激光技术和运动控制技术的发展,目前激光打 标系统可以处理斜面、自由曲面等问题[2] [3] [4] [5],其中较常见的系统由多轴机床等运动机构和 3D 扫描 振镜组成[6]。

激光打标目前存在的一个问题是,将文字等图案映射到曲面上会发生变形。影响图案变形的因素主要有两个方面,一是来源于平面图案到曲面的映射计算,二是源自振镜系统的失真。许多学者已就激光打标机和扫描振镜系统的失真校正做了大量工作,Xie 等[7]研究了扫描振镜系统的图像畸变矫正算法,并利用矫正算法减小扫描图像的失真误差;Chen 等[8]提出了一种激光打孔系统中场畸变的补偿算法,利用补偿函数减小系统的畸变误差和位置误差;Wang 等[9]提出一种线性补偿算法,在数模转换器将数据转换成电信号之前,先对数据进行补偿以提高打标质量;Tu 等[5]提出一种神经网络算法,建立起物体表面激光点坐标和扫描器控制电压之间的映射关系。上述方法都能一定程度的减小图案的变形,但是由于模型和图案固有的几何特性、映射算法的缺陷等因素,都不能完全解决映射后图案变形的问题。

关于上述算法存在问题,本文提出一种激光打标中的映射算法,该算法将待打标曲面展平为二维平 面,建立了曲面与二维平面之间的映射关系,然后在平面内对齐打标图案与展平平面,进而确立平面图 案与曲面之间的映射关系,最后通过仿真实验验证了算法的可行性。

2. 激光打标映射算法

将图案映射到模型表面的关键在于建立一种曲面展平的方法,以建立曲面与二维平面之间的映射关 系,然后得到平面图案和曲面之间的映射关系。本文提出一种激光打标解决方案,以在曲面的某一区域 标记出平面图案,同时尽可能减小图案的变形。

2.1. 待打标曲面展平算法

本文主要针对三角网格模型,平面图案由离散点序列近似表示。三角网格模型T由其顶点集{p;}和

三角面片集 $\{F_i\} = \{(p_i, p_m, p_n)\}$ 组成,其中 p_i, p_m, p_n 为一个三角网格的三个顶点,其中点集 $\{p_i\}$ 进一步可以分为内部顶点 $\{x_k\}$ 和外缘顶点 $\{y_j\}$ 。已知平面图案由一组曲线 $\{C_i\}$ 组成,每一条曲线 C_i 可以由离散点集 $\{m_k\}$ 近似表示;平面图案的边界点集为 $\{b_i\}$,其中 $t \ge 3$;网格模型上打标曲面的边界点集为 $\{d_i\}$; $\{b_i\}$ 中的每个点在 $\{d_i\}$ 中都能通过相同的索引找到对应点。

建立打标曲面与展平平面映射关系算法主要分为3步,首先映射网格曲面的边界点,然后映射除边 界点以外的内部点,最后映射网格的三角面,即可构建网格曲面与二维平面之间的映射关系。

2.1.1. 弧长法映射外缘顶点 $\{y_i\}$

采用弧长法映射外缘顶点,如图 1 所示,假设外缘顶点 y_j 介于顶点 $d_t = d_{t+1}$ 之间, $b = b_{t+1}$ 分别表示 其位置向量,其映射在曲面上的顶点 y'_i 由位置向量表示如式(1)所示。

Figure 1. Map exterior vertices using arc length proposition method 图 1. 映射外缘顶点示意图

$$\mathbf{y}_{j}' = \mathbf{b}_{t} + \frac{\widehat{\mathbf{y}_{j}d_{t}}}{d_{t}d_{t+1}} \frac{\mathbf{b}_{t+1} - \mathbf{b}_{t}}{|\mathbf{b}_{t+1} - \mathbf{b}_{t}|}$$
(1)

其中, $\widehat{y_i d_i}$ 表示三角网格上顶点 y_i 和 d_i 之间的弧长, $|b_{i+1} - b_i|$ 表示映射平面上两个顶点之间的距离。

2.1.2. 凸映射算法映射内部顶点 $\{x_i\}$

利用凸映射算法将内部点映射到二维平面,记对应的映射点集为 $\{x'_i\}$,如图 2。映射后要求三角网格各边之间没有交叉,交叉点仅存在公共顶点处;另外要求映射面中的小平面尽可能保持原始形状[10]。基于凸映射算法映射内部顶点[10] [11] [12],其基本思想是将映射后的内部点 $\{x'_i\}$ 看做其邻域的凸组合,如式(2)。

Figure 2. Map interior vertices using convex mapping 图 2. 映射内部顶点示意图

$$x'_{i} = \sum_{j} \lambda_{ij} x_{j} + \sum_{k} \lambda_{ik} y_{k}$$
⁽²⁾

其中系数满足: $\lambda_{ii} > 0$

$$\sum_{j} \lambda_{ij} + \sum_{k} \lambda_{ik} = 1 \tag{3}$$

上述方程式表示映射的内部点 x'_i 同其邻域中的点都可以组成凸组合,即位于同一个凸包内,如果与 邻域点组成的是凸多边形,则多边形内部各条边没有交叉。内部点 $\{x'_i\}$ 关于方程式(2)可以组成一个线性 方程组,如果外环多边形 $\{y_i\}$ 是凸多边形,根据论文[11] [12] [13] [14]证明可知其解 x'_i 是唯一存在的。

内部顶点 $\{x_j\}$ 和其映射点 $\{x'_j\}$ 具有相同的三角网格结构,因此求解凸映射算法简化为计算凸缘系数 λ_{ij} 和求解线性方程组。基于三角网格结构 $T': \{p_i\} = \{x_k\} \cup \{y_j\}, \{F_j\} = \{(p_i, p_m, p_n)\}, 采用论文[10] [11] [12]类似的方法计算 <math>\lambda_{ij}$,以满足保持形状不发生严重变形的要求。伪代码如表 1 所示。

Table 1. Pseudo-code mapping interior vertices 表 1. 映射内部顶点算法

Algorithm: CalculateInternalNodeCoordinate(Surf, Pln) Description: Calculating the coordinates of internal vertexes in a planar pattern region Input: Surf//collection of surface facets Pln//collection of planar facets Output: Pln
1 Create matrix A and B which are used for sparse matrix equation $AX = B$
2 FOR each Pnt3d_i which is vertex in Surf DO
3 get index_i which is index of Pnt3d_i in Surf
4 IF Pnt3d_i is on the boundary THEN
5 add (index_i, 1.0) to A
6 get Pnt2d_Bnd_i which is vertex in Pln by index_i
7 add Pnt2d_Bnd_i to B
8 ELSE
get Vec_Pnt3d_1 which stores adjacent vertexes of Pnt3d_1 and Vec_index_1 which stores related indexes of
Vec_Pht3d_1
FOR each internet in the internet internet in the internet internet in the internet internet in the internet i
For each j DO coloridate Angle i which is angle of three vertexes which are Vec. Pnt3d i(i) Pnt3d i and Vec. Pnt3d i(i+1)
add and a it to Vec Angle i
14 Total Angle $i + -$ Angle i
15 calculate Length i which is length between Vec. Pnt3d i(i) and Pnt3d i
16 add Length ito Vec Length
ENDFOR
17 FOR each j DO
18 Vec_Angle_i(j) = Vec_Angle_i(j) / Total_Angle_i * 2 * Pi
19 calculate Vec_Pnt2d_i which stores coordinates of flattened adjacent vertexes by Vec_Length_i and Vec_Angle_i
20 calculate f_i which is linear combination relationship between Pnt2d_i which is related to Pnt3d_i and
Vec_Pnt2d_i by Pnt2d_i, index_i, Vec_Pnt2d_i and Vec_Pnt3d_i
21 add f_i to A and B
22 calculate Vec_Pnt2d which stores coordinates of nodes in a planar pattern region by solving the sparse matrix equation
AX = B
ENDFOR
23 FOR each 1 DO
24 IF Vec_Prt2d(1) is not on the boundary THEN add (1, Vec_Prt2d(1)) to Pin
END

2.1.3. 采用线性插值映射三角面片

原始三角网格模型与展平后的三角网格之间的对应关系,可以利用三角网格的重心坐标创建,如图 3 所示, $x(x_x, x_y, x_z)$ 为原始模型上某三角面片 $\Delta x_i x_j x_k$ 中的任意一点, $x'(x'_x, x'_y, x'_z)$ 与三角面片 $\Delta x'_i x'_j x'_k$ 为 其映射对应部分, 两者具有相同的重心坐标 $(\lambda_i, \lambda_j, \lambda_k)\Delta x'_i x'_j x'_k$ 。

Figure 3. Map whole facet surface using linear interpolation 图 3. 映射三角面片示意图

基于
$$\Delta x_i x_j x_k$$
, $x(x_x, x_y, x_z)$, $(\lambda_i, \lambda_j, \lambda_k)$, 可以得到:

$$\begin{cases}
\lambda_i = \frac{(x_{jy} - x_{ky})(x_x - x_{kx}) + (x_{kx} - x_{jx})(x_y - x_{ky})}{(x_{jy} - x_{ky})(x_{ix} - x_{kx}) + (x_{kx} - x_{jx})(x_{iy} - x_{ky})} \\
\lambda_j = \frac{(x_{ky} - x_{iy})(x_x - x_{kx}) + (x_{ix} - x_{kx})(x_y - x_{ky})}{(x_{jy} - x_{ky})(x_{ix} - x_{kx}) + (x_{kx} - x_{jx})(x_{iy} - x_{ky})} \\
\lambda_k = 1 - \lambda_i - \lambda_i
\end{cases}$$
(4)

三角网格 $\Delta x'_i x'_i x'_k$ 中映射点 x' 坐标计算公式为:

$$\begin{cases} x'_{x} = \lambda_{i} x'_{ix} + \lambda_{j} x'_{jx} + \lambda_{k} x'_{kx} \\ x'_{y} = \lambda_{i} x'_{iy} + \lambda_{j} x'_{jy} + \lambda_{k} x'_{ky} \\ x'_{z} = \lambda_{i} x'_{iz} + \lambda_{j} x'_{jz} + \lambda_{k} x'_{kz} \end{cases}$$
(5)

如图 4 所示,上图为待打标模型的三角网格示意图,下图为利用上述算法得到展平后的平面网格, 上图中的每一个三角网格在下图中都能找到相对应的网格。

Figure 4. Example of shape preserving facet surface flattening 图 4. 三角网格展平示意图

2.2. 映射图案到模型表面

在模型曲面被展平以后,可以通过两步将平面图案包裹到物体模型表面:1)将待打标图案与通过展 平曲面得到的二维平面对齐,使得图案中的每个离散点在平面中都有确定的坐标;2)利用上节构造的三 角网格与展开平面之间的映射关系,将图案映射到三维网格模型上。

如图 5 中(a)所示为待打标平面图案局部示意图,将平面图案与网格曲面展平得到的平面对齐,这样 图案就与三角网格模型建立了映射关系,如上图(b)所示。例如图案中 G 的一个顶点 *f*₁根据映射关系进一 步得到 *f*₁在原始网格中的坐标,记为 *f*₁',如图(c)所示,即可将平面图案映射到三角网格模型的曲面上。

Figure 5. Mapping pattern to sculpture surfaces 图 5. 图案映射流程示意图

为了验证上述算法的有效性,基于 Microsoft Visual Studio 2015 平台,使用 C++作为开发语言,开展 以下仿真实验。如图 6 所示为汽车面板的三角网格模型,首先利用展平算法将其映射到二维平面上,映 射后效果如图 4 所示。然后将待打标六边形图案和展平后的平面对齐,以建立图案和三角网格模型之间 的映射关系,同时还能保证打标到模型孔隙上的图案被去除掉。

Figure 6. Triangular surface of the car's frontal 图 6. 汽车面板三角网格模型

根据图 7 可以看到,映射到曲面上的图案整体没有发生严重的变形,如图中 A1 倾斜区域效果亦较好;但由于局部曲率变化较大,如图中 B1 区域,图案打标后发生轻微的扭曲变形。

Figure 7. Laser marking simulation result of the car's frontal 图 7. 汽车面板激光打标仿真结果

3. 结束语

针对激光打标中图案变形问题,本文提出一种映射算法,该算法首先将三维网格曲面展平到二维平 面内,然后在二维参数域内建立图案与网格的对应关系,进而建立二维平面图案与三角网格曲面之间的 映射关系。由于物体模型自身结构的限制,保持打标前后图案形状完全不变较为困难,目前各种算法的 目的只能尽可能减小变形。通过上述仿真实验看出本算法实际效果较好,变形量控制在合理范围内。

基金项目

国家自然科学基金资助项目(51575386)。

参考文献

- [1] Bereczki, A., Cirino, G. and Penha Morato, S. (2006) Tridimensional Laser Engraving of Industrial Injection Moulds for Fresnel Surface Generation.
- [2] Martinov, G.M., Obuhov, A.I., Martinova. L.I. and Grigoriev. A.S. (2016) An Approach to Building a Specialized CNC System for Laser Engraving Machining. *Proceedia CIRP*, **41**, 998-1003. https://doi.org/10.1016/j.procir.2015.08.103
- [3] Diaci, J., Bračun, D., Gorkič, A. and Možina, J. (2011) Rapid and Flexible Laser Marking and Engraving of Tilted and Curved Surfaces. *Optics and Lasers in Engineering*, **49**, 195-199. <u>https://doi.org/10.1016/j.optlaseng.2010.09.003</u>
- [4] Devigili, F., Lotto, D. and de Amicis, R. (2016) Mapping and Pocketing Techniques for Laser Marking of 2D Shapes on 3D Curved Surfaces. *Intelligent Interactive Multimedia Systems and Services* 2016, 55, 451-458. <u>https://doi.org/10.1007/978-3-319-39345-2_39</u>
- [5] Tu, J.C., Wang, M.G. and Zhang, L.Y. (2019) A Shortcut to Marking 3D Target Curves on Curved Surface via a Galvanometric Laser Scanner. *Chinese Journal of Aeronautics*, **32**, 1555-1563. <u>https://doi.org/10.1016/j.cja.2018.10.005</u>
- [6] Wang, X., Duan, J., Jiang, M., Ke, S., Wu, B. and Zeng, X. (2017) Study of Laser Precision Ablating Texture Patterns on Large-Scale Freeform Surface. *The International Journal of Advanced Manufacturing Technology*, 92, 4571-4581. <u>https://doi.org/10.1007/s00170-017-0413-z</u>
- [7] Xie, J., Huang, S.H., Duan, Z.C., Shi, Y.S. and Wen, S.F. (2005) Correction of the Image Distortion for Laser Galvanometric Scanning System. *Optics and Laser Technology*, 37, 305-311. <u>https://doi.org/10.1016/j.optlastec.2004.04.012</u>
- [8] Chen, M.F. and Chen, Y.P. (2007) Compensating Technique of Field-Distorting Error for the CO₂ Laser Galvanometric Scanning Drilling Machines. *International Journal of Machine Tools & Manufacture*, **47**, 1114-1124. https://doi.org/10.1016/j.ijmachtools.2006.09.015
- [9] Wang, D.Y., Yu, Q.W. and Ye, X.P. (2014) Correction of the Field Distortion in Embedded Laser Marking System. *Optics & Laser Technology*, **57**, 52-56. <u>https://doi.org/10.1016/j.optlastec.2013.09.033</u>
- [10] Lee, C.-H., Lu, L., Dym, J. and Yin, G. (2004) Shape Preserving Global Parameterization for CAD/CAM/CAE. Proceeding of the ASME 2004 International Mechanical Engineering Congress and Exposition. California, 13-19 November 2004, 237-249. <u>https://doi.org/10.1115/IMECE2004-60274</u>

- [11] Floater, M.S. (1997) Parametrization and Smooth Approximation of Surface Triangulations. Computer Aided Geometric Design, 14, 231-250. <u>https://doi.org/10.1016/S0167-8396(96)00031-3</u>
- [12] Welch, W. and Witkin, A.P. (1994) Free-Form Shape Design Using Triangulated Surfaces. Proceeding of the 21st Annual Conference on Computer Graphics and Interactive Techniques, July 1994, 247-256. https://doi.org/10.1145/192161.192216
- [13] Gu, X.D. and Yau, S.-T. (2016) Computational Conformal Geometry. International Press of Boston, Boston.
- [14] Sheffer, A., Praun, E. and Rose, K. (2006) Mesh Parameterization Methods and Their Applications. *Foundations and Trends in Computer Graphics and Vision*, **2**, 105-171. <u>https://doi.org/10.1561/0600000011</u>