Qualitative Analysis of a Class of Cubic Polynomial Systems

Wenjing Ding*, Guirong Pan*, Wenya Jiang*

1School of Mathematics and Statistics, Linyi University, Linyi Shandong
2School of Information Science and Engineering, Linyi University, Linyi Shandong
Email: *panguirong@lyu.edu.cn, 237031930@qq.com

Received: Jul. 6th, 2019; accepted: Jul. 16th, 2019; published: Jul. 31st, 2019

Abstract
In this paper, the classical method of qualitative analysis is used to analyze the existence, type and local stability of a class of planar cubic polynomial differential system \(\frac{dx}{dt} = -y + a_1 x + a_2 x^2 + a_3 y + a_4 xy^2 \), \(\frac{dy}{dt} = x (1 + a_5 y) \). And the formal series method is used to determine the center-focus of the singular point. Finally, the conditions of the existence of limit cycles of the system are obtained by using the Hopf bifurcation method.

Keywords
Cubic Polynomial System, Singular Point, Limit Cycle, Hopf Bifurcation
1. 引言

$$
\frac{dy}{dx} = \frac{Q(x,y)}{P(x,y)} \quad (P_n, Q_n \text{是} x, y \text{的次数不超过} n \text{的实系数多项式})$$

最多有几个极限环？相对位置如何？

对于平面三次多项式系统，由于种类繁多，研究起来会比较麻烦不易得到系统的结论，因此只是对特定的三次系统进行研究，目前已经有许多学者[8][9][10][11][12]对不同系数的三次系统进行研究。本文研究形如：

$$\begin{align*}
\frac{dx}{dt} &= -y + a_1x + a_2x^2 + a_3y^3 + a_4xy^2 = P(x,y) \\
\frac{dy}{dt} &= x(1 + a_5y) = Q(x,y)
\end{align*}$$

(1)

的三次系统，其中 a_1, a_2, a_3, a_4, a_5 均为实常数。从线性近似入手，通过不同系数的添加讨论系统 (1) 的奇点的存在性、奇点的局部稳定性和极限环的存在性。

关键词
三次多项式系统, 奇点, 极限环, Hopf 分支

Copyright © 2019 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

1. 引言

$$
\frac{dy}{dx} = \frac{Q(x,y)}{P(x,y)} \quad (P_n, Q_n \text{是} x, y \text{的次数不超过} n \text{的实系数多项式})$$

最多有几个极限环？相对位置如何？

对于平面三次多项式系统，由于种类繁多，研究起来会比较麻烦不易得到系统的结论，因此只是对特定的三次系统进行研究，目前已经有许多学者[8][9][10][11][12]对不同系数的三次系统进行研究。本文研究形如：

$$\begin{align*}
\frac{dx}{dt} &= -y + a_1x + a_2x^2 + a_3y^3 + a_4xy^2 = P(x,y) \\
\frac{dy}{dt} &= x(1 + a_5y) = Q(x,y)
\end{align*}$$

(1)

的三次系统，其中 a_1, a_2, a_3, a_4, a_5 均为实常数。从线性近似入手，通过不同系数的添加讨论系统 (1) 的奇点的存在性、奇点的局部稳定性和极限环的存在性。

关键词
三次多项式系统, 奇点, 极限环, Hopf 分支

Copyright © 2019 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
2. 预备知识

2.1. 奇点定义[13] [14]

给定平面系统
\[
\begin{cases}
\frac{dx}{dt} = X(x, y) \\
\frac{dy}{dt} = Y(x, y)
\end{cases}
\]
，其中 \(X(x, y), \ Y(x, y)\) 在区域 \(D \subseteq \mathbb{R}^2\) 上连续。若 \(P_0(x_0, y_0) \in D\) 满足
\[X^2(x_0, y_0) + Y^2(x_0, y_0) = 0,\]
则称 \(P_0(x_0, y_0)\) 是系统的奇点。

2.2. 奇点的类型[13] [14]

对于平面线性系统
\[
\frac{dX}{dt} = AX, \quad \text{其中} \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \sigma = -(a_{11} + a_{22}),
\]
\[\Delta = \det A = a_{11}a_{22} - a_{12}a_{21},\]于是特征方程为：\(\lambda^2 + \sigma \lambda + \Delta = 0\)，特征根为：\(\lambda_{1,2} = \frac{-\sigma \pm \sqrt{\sigma^2 - 4\Delta}}{2}\)。当 \(\Delta \neq 0\)时，根据 \(A\) 的特征根的不同情况其初等奇点可能出现四种类型：结点型、鞍点型、焦点型、中心型。当 \(\sigma < 0\)时，结点和焦点是不稳定的；当 \(\sigma > 0\) 时，结点和焦点是稳定的。

2.3. Hopf 分支问题[15] [16]

定理：考虑系统
\[
\begin{cases}
\frac{dx}{dt} = P(x, y, \lambda) \\
\frac{dy}{dt} = Q(x, y, \lambda)
\end{cases}
\]
其中 \(P\) 与 \(Q\) 是 \((x, y, \lambda)\) 的解析函数。设参数 \(\lambda = 0\) 时，系统(2)以 \((0, 0)\)为中心型的稳定(不稳定)焦点。参数 \(\lambda > 0\) 时，系统(2)以 \((0, 0)\) 为不稳定(稳定)焦点，对对充分小的 \(\lambda > 0\)，系统(2)在点 \((0, 0)\) 附近至少有一个稳定(不稳定的)极限环。

3. 奇点分析

解方程组
\[
\begin{cases}
-y + a_1x + ax^2 + a_1y^2 + a_1xy^2 = 0 \\
x(1 + a_5y) = 0
\end{cases}
\]
得：1) 系统(1)有奇点 \(O(0, 0)\):

2) 若 \(a_5 > 0\)，则系统(1)有奇点 \(A_1(0, y_0), \ A_2(0, -y_0)\)，其中 \(y_0 = \frac{1}{\sqrt{a_5}}\):

3) 若 \(a_5 \neq 0\)，则系统(1)有奇点 \(A_1\left(x_1, -\frac{1}{a_5}\right), \ A_1\left(x_2, -\frac{1}{a_5}\right)\)，其中
\[
x_1 = \frac{-\left(a_1 + \frac{a_1}{a_5}\right) + \sqrt{\Delta}}{2a_5},
\]
\[
x_2 = \frac{-\left(a_1 + \frac{a_1}{a_5}\right) - \sqrt{\Delta}}{2a_5}, \quad \Delta = \left(a_1 + \frac{a_1}{a_5}\right)^2 - 4a_5\left(\frac{1}{a_5} - \frac{a_1}{a_5}\right).
3.1. 奇点 $O(0,0)$

对于奇点 $O(0,0)$，其线性近似系统的系数矩阵为

$$
\begin{pmatrix}
a_1 & -1
\end{pmatrix}
$$

特征方程为 $\lambda^2 - a_1 \lambda + 1 = 0$，特征根

$$
\lambda_{1,2} = \frac{a_1 \pm \sqrt{a_1^2 - 4}}{2}
$$

由此得如下定理：

定理 1：1) 当 $-2 < a_1 < 0$ 时 $O(0,0)$ 为系统(1)的稳定焦点，$0 < a_1 < 2$ 时为不稳定焦点。
2) 当 $a_1 \leq -2$ 时 $O(0,0)$ 为系统(1)的稳定性结点，$a_1 \geq 2$ 时为不稳定结点。
3) 当 $a_1 = 0$ 时 $O(0,0)$ 为系统(1)的中心型奇点(中心或者细焦点)。

3.2. 奇点 $A_1(0,y_0)$

对于奇点 $A_1(0,y_0)$，其线性近似系统的系数矩阵为

$$
\begin{pmatrix}
a_1 + \frac{a_4}{a_3} & 2
\end{pmatrix}
$$

$$
\begin{pmatrix}
1 + \frac{a_3}{\sqrt{a_3}} & 0
\end{pmatrix}
$$

特征方程为

$$
\lambda^2 - \left(a_1 + \frac{a_4}{a_3} \right) \lambda - 2 \left(1 + \frac{a_3}{\sqrt{a_3}} \right) = 0
$$

其特征根为：

$$
\lambda_{1,2} = \frac{a_1 + \frac{a_4}{a_3} \pm \sqrt{\left(a_1 + \frac{a_4}{a_3} \right)^2 + 8 \left(1 + \frac{a_3}{\sqrt{a_3}} \right)}}{2}
$$

由此得如下定理：

定理 2：1) 若 $a_4 = -\sqrt{a_3}$，则有零特征根，$A_1(0,y_0)$ 为系统(1)的高阶奇点。
2) 若 $a_3 > -\sqrt{a_3}$，则特征根为异号实根，$A_1(0,y_0)$ 为系统(1)的鞍点。
3) 若 $a_3 < -\sqrt{a_3}$，则

i) 当 $\left(a_1 + \frac{a_4}{a_3} \right)^2 + 8 \left(1 + \frac{a_3}{\sqrt{a_3}} \right) > 0$ 时特征根为同号实根，$A_1(0,y_0)$ 为系统(1)的结点，$a_1 + \frac{a_4}{a_3} > 0$ 时不稳定性，$a_1 + \frac{a_4}{a_3} < 0$ 时稳定。

ii) 当 $\left(a_1 + \frac{a_4}{a_3} \right)^2 + 8 \left(1 + \frac{a_3}{\sqrt{a_3}} \right) < 0$ 时特征根为共轭复根，$A_1(0,y_0)$ 为系统(1)的焦点，$a_1 + \frac{a_4}{a_3} > 0$ 时不稳定性，$a_1 + \frac{a_4}{a_3} < 0$ 时稳定。$a_1 + \frac{a_4}{a_3} = 0$ 时 $A_1(0,y_0)$ 为系统(1)的中心型奇点(中心或者细焦点)。

3.3. 奇点 $A_2(0,-y_0)$

对于奇点 $A_2(0,-y_0)$，其线性近似系统的系数矩阵为

$$
\begin{pmatrix}
a_1 + \frac{a_4}{a_3} & 2
\end{pmatrix}
$$

$$
\begin{pmatrix}
1 - \frac{a_3}{\sqrt{a_3}} & 0
\end{pmatrix}
$$

特征方程为

$$
\lambda^2 - \left(a_1 + \frac{a_4}{a_3} \right) \lambda - 2 \left(1 - \frac{a_3}{\sqrt{a_3}} \right) = 0
$$

其特征根为：

$$
\lambda_{1,2} = \frac{a_1 + \frac{a_4}{a_3} \pm \sqrt{\left(a_1 + \frac{a_4}{a_3} \right)^2 + 8 \left(1 - \frac{a_3}{\sqrt{a_3}} \right)}}{2}
$$

由此得如下定理：

定理 3：
定理 3：
1) 若 $a_3 = \sqrt{a_1}$，则有零特征根，$A_2(0, -y_0)$ 为系统(1)的高阶奇点。
2) 若 $a_3 < \sqrt{a_1}$，则特征根为异号实根，$A_2(0, -y_0)$ 为系统(1)的鞍点。
3) 若 $a_3 > \sqrt{a_1}$，则

 i) 当 $\left(a_1 + \frac{a_3}{a_5}\right)^2 + 8\left(1 + \frac{a_3}{a_5}\right) > 0$ 时特征根为同号实根，$A_2(0, -y_0)$ 为系统(1)的结点，$a_i + \frac{a_3}{a_5} > 0$ 不稳定，$a_i + \frac{a_3}{a_5} < 0$ 时稳定。

 ii) 当 $\left(a_1 + \frac{a_3}{a_5}\right)^2 + 8\left(1 + \frac{a_3}{a_5}\right) < 0$ 时特征根为共轭复根，$A_2(0, -y_0)$ 为系统(1)的焦点，$a_i + \frac{a_3}{a_5} > 0$ 不稳定，$a_i + \frac{a_3}{a_5} = 0$ 时 $A_2(0, -y_0)$ 为系统(1)的中心型奇点（中心或者细焦点）。

3.4. 奇点 $A_3 \left(x_1, -\frac{1}{a_5} \right)$

对于 $A_3 \left(x_1, -\frac{1}{a_5} \right)$，其线性近似系统的系数矩阵为 $\begin{pmatrix} a_i + 2a_2x_1 + \frac{a_3}{a_5} & -1 + \frac{3a_3}{a_5} & -\frac{a_4}{a_5}x_1 \\ -a_5x_1 & 0 & \end{pmatrix}$，对应的特征方程为 $\lambda^2 - d_1\lambda + d_2 = 0$，特征根为 $\lambda_{1,2} = \frac{d_1 \pm \sqrt{d_1^2 - 4d_2}}{2}$，其中 $d_1 = a_i + 2a_2x_1 + a_3x_1 + \frac{a_4}{a_5}$，

$$d_2 = a_5x_1 \left(a_i + 2a_2x_1 + \frac{a_3}{a_5} \right)$$

由此得如下定理：

定理 4：
1) 当 $d_2 = 0$ 时有零特征根，$A_3 \left(x_1, -\frac{1}{a_5} \right)$ 为系统(1)的高阶奇点。
2) 当 $d_2 < 0$ 时，A_3 为系统的鞍点。
3) 若 $d_2 > 0$，则

 i) 当 $d_1^2 - 4d_2 \geq 0$ 时特征根为同号实根，A_3 为系统(1)的结点，$d_1 > 0$ 时不稳定，$d_1 < 0$ 时稳定。

 ii) 当 $d_1^2 - 4d_2 < 0$ 时特征根为共轭复根，A_3 为系统(1)的焦点，$d_1 > 0$ 时不稳定，$d_1 < 0$ 时稳定。$d_1 = 0$ 时 A_3 为系统(1)的中心型奇点（中心或者细焦点）。

3.5. 奇点 $A_4 \left(x_2, -\frac{1}{a_5} \right)$

对于 $A_4 \left(x_2, -\frac{1}{a_5} \right)$，其线性近似系统的系数矩阵为 $\begin{pmatrix} a_i + 2a_2x_2 + \frac{a_3}{a_5} & -1 + \frac{3a_3}{a_5} & \frac{2a_4}{a_5}x_2 \\ 0 & a_5x_2 & \end{pmatrix}$，特征方程为 $\lambda^2 - d_3\lambda + d_4 = 0$，特征根 $\lambda_{1,2} = \frac{d_3 \pm \sqrt{d_3^2 - 4d_4}}{2}$，其中 $d_3 = a_i + 2a_2x_2 + a_3x_2 + \frac{a_4}{a_5}$，

$$d_4 = a_5x_2 \left(a_i + 2a_2x_2 + \frac{a_3}{a_5} \right)$$

由此得如下定理：
定理 5: 1) 当 $d_4 = 0$ 时有零特征根, $A_4 \left(x_2, -\frac{1}{a_3} \right)$ 为系统(1)的高阶奇点。

2) 当 $d_4 < 0$ 时, A_4 为系统的鞍点。

3) 当 $d_4 > 0$, 则
 i) 若 $d_4^2 - 4d_5 \geq 0$, 特征根为同号实根, A_4 为系统(1)的结点, $d_4 > 0$ 时不稳定, $d_4 < 0$ 时稳定。$d_4 = 0$ 时 A_4 为系统(1)的中心型奇点(中心或者细焦点)。
 ii) 若 $d_4^2 - 4d_5 < 0$, 特征根为共轭复根, A_4 为系统(1)的焦点, $d_4 > 0$ 时不稳定, $d_4 < 0$ 时稳定。

3.6. 细焦点

我们仅对 $(0,0)$ 点讨论。当 $a_1 = 0$ 时, 系统化为

$$
\begin{align*}
\frac{dy}{dr} &= -y + a_2 x^2 + a_3 y^3 + a_4 xy^2 \\
\frac{dy}{dr} &= x + a_2 xy
\end{align*}
$$

定理 6: 1) 当 $a_4 > 0$ 时, $(0,0)$ 是系统(4)的一阶不稳定细焦点。

2) 当 $a_4 < 0$ 时, $(0,0)$ 是系统(4)的一阶稳定细焦点。

3) 当 $a_4 = 0$ 时, $(0,0)$ 为中心。

证明：利用形式级数判别法[16] [17]对(4)进行中心焦点的判定。令 $F(x,y) = x^2 + y^2 + F_3(x,y) + F_4(x,y) + \cdots$, 其中 $F_k(x,y)$ 是 x 与 y 的 k 次齐次多项式, 且 $k = 3,4,\cdots$, 则:

$$
\frac{dF}{dr} \bigg|_{(0)} = \frac{\partial F}{\partial x} \frac{dx}{dr} + \frac{\partial F}{\partial y} \frac{dy}{dr}
$$

$$
= \left(2x + \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial x} + \cdots \right)(-y + a_2 x^2 + a_3 y^3 + a_4 xy^2) \\
+ \left(2y + \frac{\partial F_1}{\partial y} + \frac{\partial F_2}{\partial y} + \cdots \right)(x + a_2 xy)
$$

令右端三次项为零, 则有:

$$
2a_1 x^3 - y \frac{\partial F_1}{\partial x} + x \frac{\partial F_1}{\partial y} + 2a_2 xy^2 = 0,
$$

将上式取极坐标 $x = r \cos \theta$, $y = r \sin \theta$ 并消去 r^3 得:

$$
\frac{dF}{d\theta} = -2 \left(a_2 \cos^3 \theta + a_3 \cos \theta \sin^2 \theta \right)
$$

因 $\int_0^{2\pi} a_1 \cos^3 \theta + a_3 \cos \theta \sin^2 \theta = 0$, 故对(6)式两边进行积分得:

$$
F_1(\cos \theta, \sin \theta) = -\frac{4}{3} a_1 \sin^3 \theta - \frac{2}{3} a_2 \sin^2 \theta - 2a_3 \sin \theta \cos^2 \theta, \quad \text{即} \quad F_1(x,y) = -\frac{4}{3} a_1 y^3 - 2a_2 x^2 y - \frac{2}{3} a_3 y^3
$$

令(5)式右端四次项为零, 则有:

$$
2a_1 x^3 - y \frac{\partial F_1}{\partial x} + x \frac{\partial F_1}{\partial y} + a_2 xy^2 = 0
$$

即

$$
\left(2a_1 - 4a_2 a_4 - 2a_4^2\right)xy^3 - \left(4a_2 a_4 + 2a_4 a_4\right)x^3 y + 2a_4 x^2 y^3 + \frac{\partial F_4}{\partial x} + x \frac{\partial F_4}{\partial y} = 0,
$$

将上式取极坐标 $x = r \cos \theta$, $y = r \sin \theta$ 并消去 r^4 得:
\[
\frac{dF_i}{d\theta} = \left(4a_i a_3 + 2a_i^2 - 2a_i\right)\cos \theta \sin \theta + \left(2a_i a_3 + 4a_i^2\right)\cos \theta \sin \theta - 2a_i \cos^2 \theta \sin^2 \theta = -H_i(\cos \theta, \sin \theta)
\]

当 \(a_i \neq 0\) 时，
\[
C_i = \frac{1}{2\pi} \int_0^{2\pi} H_i(\cos \theta, \sin \theta) d\theta = \frac{a_i}{4} \neq 0，\quad \text{且} \quad C_i 与 a_i 同号。
\]

于是改取 \(F_i\) 满足方程
\[
\frac{dF_i}{d\theta} = -H_i + C_i，\quad \text{其中} \quad C_i = \frac{1}{2\pi} \int_0^{2\pi} H_i(\cos \theta, \sin \theta) d\theta。
\]

设 \(\phi(x, y) = x^2 + y^2 + F_1 + F_2\)，那么
\[
\frac{d\phi}{dt}\bigg|_{0} = r^4 C_i + o(r^4)，\quad \text{进而有结论}:
\]

1) 当 \(a_i > 0\) 时，\((0, 0)\) 是系统(1)的不稳定焦点。
2) 当 \(a_i < 0\) 时，\((0, 0)\) 是系统(1)的稳定焦点。
3) 当 \(a_i = 0\) 时，因 \(P(-x, y) = P(x, y)，Q(-x, y) = -Q(x, y)\)，由对称原理得 \((0, 0)\) 为中心。

定理得证。

4. 极限环的存在性

定理 7: 下列条件之一成立时，系统(1)在奇点外至少存在一个极限环，且当 \(a_i < 0\) 时所产生的极限环不稳定，当 \(a_i > 0\) 时所产生的极限环稳定。

1) \(a_i > 0\) 时，\(a_i < 0\) 且 \(|a_i| < 1\)；
2) \(a_i < 0\) 时，\(a_i < 2\)。

证明：当 \(a_i > 0\)，\(a_i = 0\) 时，\((0, 0)\) 为不稳定的焦点，而当 \(-2 < a_i < 0\) 时系统(1)以 \((0, 0)\) 为稳定焦点。由 Hopf 分支问题的 Liapunov 第二方法[17][18] 可知在条件(1)下，系统(1)在奇点 \((0, 0)\) 外至少产生一个不稳定极限环。

当 \(a_i < 0\)，\(a_i = 0\) 时 \((0, 0)\) 为稳定的焦点，而当 \(a_i < 2\) 时系统(1)以 \((0, 0)\) 为不稳定的焦点。由 Hopf 分支问题的 Liapunov 第二方法可知在条件(2)下，系统(1)在奇点外至少产生一个稳定极限环。

定理得证。

基金项目

山东省自然科学基金(ZR2018MA016, ZR2015AL005)，山东省软科学研究计划项目(2012RKA13021)。

参考文献

投稿请点击：http://www.hanspub.org/Submission.aspx
期刊邮箱：dsc@hanspub.org