Existence of Three Solutions for a Choquard Equation

Yue Li, Anran Hou

School of Mathematics, Yunnan Normal University, Kunming Yunnan
Email: liyue9412@163.com, 18724591409@163.com

Received: Apr. 15th, 2019; accepted: Apr. 26th, 2019; published: May 9th, 2019

Abstract
We study the following Choquard equation by the Theorem 1.1 in [1]

\[-\Delta u = \beta \left(\frac{1}{|x|^p} \ast F(u) \right) f(u) + \lambda u - |u|^{p-2} u + h(x), \quad x \in \Omega\]

\[u = 0, \quad x \in \partial \Omega\]

where, \(\Omega \subseteq \mathbb{R}^3 \) is an open, and bounded domain with a smooth boundary, \(h \in L^2(\Omega), \ 0 < \mu < 3, \ 4 < p < 6, \ \beta > 0, \ \lambda > 0 \). Under suitable assumption \(f \in C(\mathbb{R}, \mathbb{R}) \), we prove this problem at least three weak solutions.

Keywords
Choquard Equation, Three Critical Points

整数阶Choquard方程三解的存在性

李月，侯安然

云南师范大学数学学院，云南 昆明
Email: liyue9412@163.com, 18724591409@163.com

收稿日期: 2019年4月15日; 录用日期: 2019年4月26日; 发布日期: 2019年5月9日

摘要
应用[1]中的 Theorem 1.1 来研究下面的方程

DOI: 10.12677/pm.2019.93039
李月, 侯安然

\[
\begin{aligned}
-\Delta u &= \beta \frac{1}{|x|^p} \ast F(u) + \lambda u - |u|^{p-2} u + h(x), & x \in \Omega \\
\end{aligned}
\]

其中，\(\Omega \subset R^3 \)是具有光滑边界的有界开集，\(h \in L^1(\Omega) \)，\(0 < \mu < 3 \)，\(4 < p < 6 \)，\(\beta > 0 \)，\(\lambda > 0 \)。非线性函数\(f \in C(R, R) \)在满足一定条件下得出该方程至少有三个弱解。

关键词
Choquard方程, 三临界点

1. 引言

近年来，越来越多的人开始关注整数阶Choquard方程

\[
-\varepsilon^2 \Delta u + V(x) u = \varepsilon^{\mu-N} \frac{1}{|x|^p} \ast F(u) f(u) + h(u), & x \in \mathbb{R}^N
\]

此外，也有很多人研究(1.1)式中\(\varepsilon = 1 \)时的经典问题。当\(\varepsilon = 1 \)，\(V = 1 \)，\(F(u) = u^q \)且\(h = 0 \)时，(1.1)式就会是著名的Choquard-Pekar方程

\[
-\Delta u + u = \bigg(\int_{\mathbb{R}^N} \frac{1}{|y|^p} \ast |u|^q \ dy \bigg) |u|^{p-2} u, & x \in \mathbb{R}^N
\]

其中，$\Omega \subset R^3$是具有光滑边界的有界开集，$h \in L^2(\Omega)$，$0 < \mu < 3$，$4 < p < 6$，$\beta > 0$，$\lambda > 0$。非线性函数$f \in C(\mathbb{R}, \mathbb{R})$，$f \geq 0$，在$t \leq 0$时有$f(t) = 0$，且满足：

$$(f_1) \lim_{t \to 0} \frac{f(t)}{t} = 0.$$

$$(f_2) \exists q \in \left[\frac{6-\mu}{3}, \min\left\{6-\mu, \frac{p}{2}\right\}\right] \text{ s.t. } \lim_{t \to \infty} \frac{f(t)}{t^{q-1}} = 0.$$

得出如下结论：

定理1.1 设$\lambda < \lambda < \lambda_{k+1}$，存在$\alpha_0 > 0$，$\beta_0 > 0$使得$\|h\| < \alpha_0$，$\beta \in (0, \beta_0)$时，方程(1.3)至少有三个弱解。

2. 泛函设置

设$\Omega \subset \mathbb{R}^3$是具有光滑边界的有界开集，Sobolev空间$W^{1,2}_0(\Omega)$的范数为

$$\|u\|_{W^{1,2}_0(\Omega)} = \left(\int_\Omega |\nabla u|^2 \, dx \right)^{\frac{1}{2}}.$$

Lebesgue空间$L^p(\Omega) (p \geq 1)$的范数为

$$\|u\|_{L^p(\Omega)} = \left(\int_\Omega |u|^p \, dx \right)^{\frac{1}{p}}.$$

接下来介绍一些本文用到的结论。

引理2.1 (Hardy-Littlewood-Sobolev不等式) 令$t, r > 1$且$0 < \mu < N$使得$\frac{1}{r} + \frac{\mu}{N} + \frac{1}{t} = 2$。若$f \in L^r(\mathbb{R}^N)$且$h \in L^t(\mathbb{R}^N)$。则存在一个与$f, h$无关的常数$C(r, N, \mu, t) > 0$，使得

$$\int_{\mathbb{R}^{2N}} \frac{f(x)h(y)}{|x-y|^\mu} \, dx \, dy \leq C(r, N, \mu, t) \|f\|_r \|h\|_t.$$

引理2.2 ([1], Theorem1.1) 设X是实Banach空间，$X = Y \oplus Z$其中$Y \neq 0$维数有限。假设$J \in C^1(X, \mathbb{R})$有下界，并且满足

(R) $\exists R > 0 \ s.t. \ \max_{u \in \partial J(R)} J(u) < \inf_{u \in Z} J(u)$

(PS) 对任意的序列$\{u_n\} \subset X$使得$\{J(u_n)\} \subset \mathbb{R}$有界，并且$\|J'(u_n)\| \to 0$有收敛子列。则$J$至少有三个临界点。

经过计算可以推出方程(1.3)相应的能量泛函为

$$J(u) = \frac{1}{2} \int_\Omega |\nabla u|^2 \, dx - \frac{\beta}{2} \int_\Omega \left(\frac{1}{|x|^\mu} \ast F(u) \right) F(u) \, dx - \frac{\lambda}{2} \int_\Omega |u|^2 \, dx + \frac{1}{p} \int_\Omega |u|^p \, dx - \frac{1}{2} \int_\Omega h(x) \, dx.$$

引理2.3 设$h \in L^2(\Omega)$，则泛函J满足：

a) $J \in C^1(W^{1,2}_0(\Omega), \mathbb{R})$并且满足
\[\langle J'(u), \varphi \rangle = \int_{\Omega} \nabla u \nabla \varphi \, dx - \beta \int_{\Omega} \left(\frac{1}{|x|^\mu} \ast F(u) \right) f(u) \varphi \, dx - \lambda \int_{\Omega} u \varphi \, dx + \int_{\Omega} |\nabla u|^{p-2} u \varphi \, dx - \int_{\Omega} h(x) \varphi \, dx \]

其中 \(u, \varphi \in W^{1,2}_0(\Omega) \)。

b) \(u \in W^{1,2}_0(\Omega) \) 是(1.3)的弱解，当且仅当 \(u \in W^{1,2}_0(\Omega) \) 是 \(J \) 的临界点。

由上述引理可知，想要证明定理1.1只需证明 \(J \) 有至少三个临界点。

引理2.4 设 \(h \in L^1(\Omega) \) 则泛函 \(J \) 在 \(W^{1,2}_0(\Omega) \) 上弱强制，即当 \(\|u\|_{2,p} \to \infty \) 时，有 \(J(u) \to \infty \) 且 \(J \) 有下界。

证明：根据(2.1)以及引理2.1，可以推出下面不等式成立

\[f(t) \leq \xi |t| + C_\xi |t|^{-\mu-1}, \quad F(t) \leq \xi |t|^2 + C_\xi |t|^\mu \] (2.1)

根据(2.1)以及引理2.1，可以推出下面不等式成立

\[\frac{1}{2} \int_{\Omega} \left(\frac{1}{|x|^\mu} \ast F(u) \right) F(u) \, dx \leq C \|F(u)\|_{2,p} \|F(u)\|_{2,p} \]

\[\leq C \left(\int_{\Omega} (|u|^p + |u|^\mu) \, dx \right)^{\frac{2}{p}} \]

\[\leq C (\|u\|_{2,p}^p + \|u\|_{\mu}^\mu) \] (2.2)

其中 \(t = \frac{6}{6-\mu} \)。注意到 \(t < 2 \) 则有 \(2t < p \)， \(tq < 2q < p \)。故结合(2.1)和(2.2)式可以推出

\[J(u) = \frac{1}{2} \int_{\Omega} \nabla u \nabla u \, dx - \frac{\beta}{2} \int_{\Omega} \left(\frac{1}{|x|^\mu} \ast F(u) \right) f(u) \, dx - \frac{\lambda}{2} \int_{\Omega} u \, dx + \frac{1}{2} \int_{\Omega} |\nabla u|^{p-2} u \, dx \]

\[\geq \frac{1}{2} \|u\|_{2,p}^2 - C \left(\|u\|_{p}^p + \|u\|_{\mu}^\mu \right) - \frac{\lambda}{2} \|u\|_{2}^2 + \frac{1}{p} \|u\|_{p}^p - \frac{1}{2} \|u\|_{\mu}^\mu \]

(2.3)

当 \(\|u\|_{2,p} \to \infty \) 时，有以下两种情况:

i) 若 \(\|u\|_{\mu} \) 有界，则有 \(J(u) \to \infty \)。

ii) 若 \(\|u\|_{p} \to \infty \)，则由 \(p > 2q \) 以及 \(p > 4 \) 可知~\(J(u) \to \infty \)。

故 \(J \) 是弱强制的。此外，由(2.3)式可推出

\[J(u) \geq -C \left(\|u\|_{p}^p + \|u\|_{\mu}^\mu + \frac{\lambda}{2} \|u\|_{2}^2 \right) + \frac{1}{p} \|u\|_{p}^p - \frac{1}{2} \|u\|_{\mu}^\mu \]

不等式右边是与 \(\|u\|_{p} \) 有关的函数，又因为 \(p > 2q \) 且 \(p > 4 \)，所以不等式右边是有下界的，故出 \(J \) 有下界。

因为 \(J \) 是 \(C^1 \) 且下方有界，由文献[10]知 \(J \) 存在 \(PS \) 序列。又因为 \(J \) 是弱强制的，所以 \(PS \) 序列 \(\{u_n\} \) 有界，因此有下面引理成立。

引理2.5 如果序列 \(\{u_n\} \subset W^{1,2}_0(\Omega) \) 有界且 \(J'(u_n) \to 0 \)，则 \(\{u_n\} \) 有收敛子列。
证明：由 \(\{u_n\} \subset W_0^{1,2}(\Omega) \) 有界可知，在子列意义下有
\[
u_n \rightharpoonup^* u \quad \text{于} \quad W_0^{1,2}, \quad u_n \to u \quad \text{于} \quad L^t(\Omega) \quad \forall t \in [1,2^*)
\]
注意到
\[
o_n(1) = \langle J'(u_n), u_n \rangle
= \|u_n\|_{L^2}^2 - \beta \int_{\Omega} \frac{1}{|t|^{\mu}} * F(u_n) f(u_n) u_n dx
- \lambda \int_{\Omega} |u_n|^2 dx + \int_{\Omega} |u_n|^p dx
- \int_{\Omega} h(x) u_n dx + o_n(1)
\]
故
\[
\|u_n\|_{L^2}^2 = \beta \int_{\Omega} \frac{1}{|t|^{\mu}} * F(u_n) f(u_n) u_n dx + \lambda \|u_n\|_{L^p}^p - \|u_n\|_{L^2}^2 + \int_{\Omega} h(x) u_n dx + o_n(1) \quad (2.4)
\]
此外
\[
o_n(1) = \langle J'(u_n), u \rangle
= \int_{\Omega} \nabla u_n \nabla u dx - \beta \int_{\Omega} \frac{1}{|t|^{\mu}} * F(u_n) f(u_n) u dx
- \lambda \int_{\Omega} |u_n|^2 dx + \int_{\Omega} |u_n|^p dx
- \int_{\Omega} h(x) u dx
\]
故
\[
\|u\|_{L^2}^2 = \beta \int_{\Omega} \frac{1}{|t|^{\mu}} * F(u_n) f(u_n) u dx + \lambda \|u\|_{L^p}^p - \|u\|_{L^2}^2 + \int_{\Omega} h(x) u dx + o_n(1) \quad (2.5)
\]
因为 \(\{u_n\} \) 有界，由 (f1)-(f2)，引理 2.1 以及 Hölder 不等式可得出
\[
\left| \int_{\Omega} \left(\frac{1}{|t|^{\mu}} * F(u_n) \right) f(u_n) u_n dx - \int_{\Omega} \left(\frac{1}{|t|^{\mu}} * F(u_n) \right) f(u_n) u dx \right|
\leq \int_{\Omega} \left(\frac{1}{|t|^{\mu}} |F(u_n)| \right) |f(u_n)| |u_n - u| dx
\leq C \left(\int_{\Omega} |F(u_n)| dx \right)^{\frac{1}{q}} \left(\int_{\Omega} |f(u_n)| \right)^{\frac{1}{p}} |u_n - u| dx
\leq C \left(\int_{\Omega} |u_n| + C_1 |u_n|^{-1} \right)^{\frac{1}{q}} |u_n - u| dx
\leq C \left(\int_{\Omega} |u_n - u|^{p-2} dx + \int_{\Omega} |u_n|^{p-1} |u_n - u| dx \right)^{\frac{1}{q}}
\leq C \left(\int_{\Omega} |u_n - u|^{q-2} dx + \int_{\Omega} |u_n - u|^{q-1} dx \right)^{\frac{1}{q}}
= o_n(1)
\]
其中 \(t = \frac{6}{6-\mu} \)。结合 (2.4)，(2.5) 和 (2.6) 式可知 \(\|u_n\|_{L^2} \to \|u\|_{L^2} \)。又因为 \(u_n \rightharpoonup^* u \) 于 \(W_0^{1,2}(\Omega) \)，所以有 \(u_n \to u \)
3. 定理 1.1 的证明

由引理 2.4 和引理 2.5，我们有下面的引理成立。

引理 3.1 设 $h \in L^2(\Omega)$，则泛函 J 满足 PS 条件，即引理 2.2 的条件(PS)成立。

接下来证明 J 至少存在三个临界点，设 $\phi_i (i \in \mathbb{N})$ 为 $W^{1,2}_0(\Omega)$ 中对应的特征值 λ_i (算子的特征值)的特征函数且

$$B = \{ \phi_i : i \in \mathbb{N} \}$$

是 $W^{1,2}_0(\Omega)$ 的规范正交基(参见文献[11]的 Thm. 2.2.16)，并且 $\lambda_i < \lambda_{i+1}$。将 $W^{1,2}_0(\Omega)$ 分解为 $Y \oplus Z$，其中

$$Y = \left\{ \sum_{i=1}^k a_i \phi_i : a_i \in \mathbb{R}, \phi_i \in B \right\}, \quad Z = \left\{ \sum_{i=k+1}^\infty a_i \phi_i : a_i \in \mathbb{R}, \phi_i \in B \right\} = Y^\perp$$ (3.1)

引理 3.2 设 $\lambda_i < \lambda < \lambda_{i+1}$，则存在 $\alpha > 0$ 对任意的 $h \in L^2(\Omega)$ 且 $\|h\|_2 < \alpha$，都有泛函 J 满足引理 2.2 中的条件(R)，其中 Y,Z 满足(3.1)式。

证明： 设 $u \in Z$ 结合 Parseval 等式有下式成立

$$u = \sum_{i=1}^k a_i \phi_i, \quad \|u\|_{L^2}^2 = \sum_{i=1}^k a_i^2$$

注意到 ϕ_i 满足

$$\lambda_i \int_{\Omega} |\nabla \phi_i|^2 dx = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_i dx = 1$$ \quad $\forall i \in \mathbb{N}$ (3.2)

因为 $\lambda < \lambda_{i+1}$ 所以有

$$\int_{\Omega} |\nabla u|^2 dx - \lambda \int_{\Omega} |u|^2 dx = \sum_{i=1}^k a_i^2 \left(1 - \frac{\lambda}{\lambda_i} \right) \geq \left(1 - \frac{\lambda}{\lambda_{i+1}} \right) \|u\|_{L^2}^2$$ (3.3)

因此，对 $u \in Z$ 由(3.3)以及嵌入定理可以得到

$$J(u) \geq \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_{i+1}} \right) \|u\|_{L^2}^2 - \beta \int_{\Omega} \left(\frac{1}{|\phi|} \ast F(u) \right) F(u) dx + \frac{1}{p} \int_{\Omega} |u|^p dx - \frac{1}{2} \int_{\Omega} |h|^2 dx$$

$$\geq C_1 \left(1 - \frac{\lambda}{\lambda_{i+1}} \right) \|u\|^p_p - \beta C_2 \|u\|_p^p + \frac{1}{p} \|u\|_p^p - \frac{1}{2} \|H\|_{L^2}^2$$ (3.4)

上式中 $\alpha_\beta = \inf_{t \geq 0} g_\beta(t)$，其中

$$g_\beta(t) = C_1 \left(1 - \frac{\lambda}{\lambda_{i+1}} \right) t^2 + \frac{1}{p} t^p - \beta C_2 \left(t^q + t^{2q} \right), \quad t \geq 0$$

我们断言，存在 $\beta_0 > 0$，当 $\beta \in (0, \beta_0)$ 时，$\alpha_\beta \geq 0$。又因为 $2q < p$ 且 $p > 4$，因此存在 $t_0 > 0$，当 $t > t_0$，$\beta < 1$ 时，有

$$\alpha_\beta (t) \geq C_1 \left(1 - \frac{\lambda}{\lambda_{i+1}} \right) t^2 + \frac{1}{p} t^p - C_2 \left(t^q + t^{2q} \right) > 0$$

DOI: 10.12677/pm.2019.93039
则 \(g_\beta(t) \) 的最小值只能在区间 \([0, t_0]\) 上达到。因为 \(\lambda < \lambda_{k+1} \)，所以存在 \(\beta_0 > 0 \)，当 \(\beta \in (0, \beta_0) \) 时，对任意 \(t \in (0, t_0) \) 有

\[
g_\beta(t) = t^2 \left(C_1 \left(1 - \frac{\lambda}{\lambda_{k+1}} \right) + \frac{1}{p} \left(t^{p-2} - \beta C_2 \left(t^2 + t^{p-2} \right) \right) \right) \\
\geq t^2 \left(C_1 \left(1 - \frac{\lambda}{\lambda_{k+1}} \right) - \beta C_2 \left(t^2 + t^{p-2} \right) \right) \\
\geq 0
\]

（3.5）式

所以 \(\alpha_\beta \geq 0 \)。当取 \(u \in Y \) 时，有下式成立

\[
u = \sum_{i=1}^k a_i \varphi_i, \quad \|u\|_2^2 = \sum_{i=1}^k a_i^2
\]

由 \(\lambda_i < \lambda \)，以及（3.2）式可以推出

\[
\int_\Omega |\nabla u(x)|^2 \ dx - 2 \int_\Omega |u(x)|^2 \ dx = \sum_{i=1}^k a_i^2 \left(1 - \frac{\lambda}{\lambda_i} \right) \leq \left(1 - \frac{\lambda}{\lambda_i} \right) \|\nu\|_2^2
\]

（3.6）式

因此，对任意的 \(u \in Y \) 由 Sobolev 嵌入定理以及（3.6）有下式成立

\[
J(u) \leq \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_i} \right) \|u\|_{2}^2 - \frac{1}{2} \int_\Omega F(u) \ dx + \frac{1}{p} \|u\|_{p}^p - \frac{1}{2} \int_\Omega |h(x)|^2 \ dx
\]

\[
\leq \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_i} \right) \|u\|_{2}^2 + C \|u\|_{V}^2
\]

（3.7）式

因此，结合（3.5）和（3.7）式可知，如果要证明引理 2.3 中条件 (R) 成立，当且仅当存在 \(R > 0 \) 使得对 \(u \in Y \) ，

\[
\|u\|_{2} = R
\]

时要有下式成立

\[
\frac{1}{2} \left(1 - \frac{\lambda}{\lambda_i} \right) \|u\|_{2}^2 + C \|u\|_{V}^2 < -\frac{1}{2} \|\nu\|_{2}^2
\]

记 \(\|\nu\|_{2} = r \) 整理得出下式

\[
\frac{1}{2} \left(1 - \frac{\lambda}{\lambda_i} \right) r^2 + Cr^p < -\frac{1}{2} \|\nu\|_{2}^2
\]

记

\[
\Lambda(r) = \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_i} \right) r^2 + Cr^p
\]

因为 \(\Lambda(r) \) 与 \(\|\nu\|_{2} \) 无关，并且 \(\lambda_i < \lambda \)。故存在某个 \(R > 0 \) 使得 \(\Lambda(R) \) 为 \(\Lambda(r) \) 的严格负的极小值。因此存在一个充分小的 \(\alpha_0 > 0 \) 使得

\[
\Lambda(R) < -\frac{1}{2} \|\nu\|_{2}^2 \quad \forall \|\nu\|_{2} < \alpha_0
\]

因此，对任意的 \(h \in L^2(\Omega) \) 且 \(\|h\|_{2} < \alpha_0 \) 以及 \(u \in Y \) 且 \(\|u\|_{2} = R \) 有

\[
J(u) < -\frac{1}{2} \|\nu\|_{2}^2 \leq \inf_{u \in Z} J(u)
\]
因此满足引理 2.2 中的条件 (R)。综上所述，验证出引理 2.2 的所有条件都成立，所以泛函 J 至少存在三个临界点，即定理 1.1 成立。

参考文献

 https://doi.org/10.1016/j.na.2018.01.008

 https://doi.org/10.1002/sapm197757293

 https://doi.org/10.1016/0362-546X(80)90016-4

 https://doi.org/10.1007/s00205-008-0208-3

 https://doi.org/10.1016/j.jfa.2013.04.007

 https://doi.org/10.1090/S0002-9947-2014-06289-2

 https://doi.org/10.1016/B978-0-12-165550-1.50016-1

 https://doi.org/10.1007/978-3-0348-0388-8

知网检索的两种方式:

1. 打开知网页面 http://kns.cnki.net/kns/brief/result.aspx?dbPrefix=WWJD
 下拉列表框选择：[ISSN]，输入期刊 ISSN：2160-7583，即可查询

2. 打开知网首页 http://cnki.net/
 左侧“国际文献总库”进入，输入文章标题，即可查询

投稿请点击：http://www.hanspub.org/Submission.aspx
期刊邮箱：pm@hanspub.org