Research on Chain Regression Point Set on Tent-Like Mapping

Zhanfu Huo, Ziqing Fu

School of Mathematics and Information Science, Guangxi University, Nanning Guangxi
Email: 361066758@qq.com

Received: Apr. 29th, 2019; accepted: May 9th, 2019; published: May 24th, 2019

Abstract
The study of chain regression points of continuous self-mapping on metric space has always been an important part of topological dynamical system. This paper mainly studies the dynamic properties of continuous mapping on compact metric, focusing on the characteristics of chain regression points of tent-like mapping.

Keywords
Compact Metric, Continuous Mapping, Tent-Like Mapping, Chain Regression Point

类帐篷映射上的链回归点集研究

霍展福, 符子晴

广西大学数学与信息科学学院, 广西 南宁
Email: 361066758@qq.com

收稿日期: 2019年4月29日; 录用日期: 2019年5月9日; 发布日期: 2019年5月24日

摘 要
一直以来, 对度量空间上连续自映射的链回归点研究是拓扑动力系统的一个比较重要的内容。本文主要研究紧致度量上连续映射的动力性质，重点研究了类帐篷映射的链回归点的特征。

关键词
紧致度量, 连续映射, 类帐篷映射, 链回归点

1. 引言与预备知识

定义 1.1 [1] 我们把正整数集记为 \mathbb{Z}_+，$N = \{0\} \cup \mathbb{Z}_+$ 称为自然数集。

定义 1.2 [2] 设 X 是一个集合，记刻画 X 中所含元素数量的概念为基数，记为 $\#(A)$。如果 X 是空集或者存在正整数 $n \in \mathbb{Z}_+$，使得集合 $n \in \mathbb{Z}_+$ 和集合 $\{1, 2, \cdots, n\}$ 之间有一个一一映射，则称集合 X 是一个有限集。

定义 1.3 [3] 在度量空间 (X, ρ) 中，定义公式 $(x, y)_{\rho} = \rho(x, y) < \varepsilon$ 为 x 的一个 ε-邻域。

定义 1.4 [4] 设 X, Y 是两个度量空间，$f : X \to Y$。若对于 $f(x_0)$ 的任何一个球形邻域 $B(\varepsilon, f(x_0))$，存在 x_0 某一个球形邻域 $B(\varepsilon, x_0)$，使得 $f(B(\varepsilon, x_0)) \subseteq B(\varepsilon, f(x_0))$，则称 f 在点 x_0 处连续。若 f 在 X 的每一点处都连续，则称 f 是一个连续映射。

定义 1.5 [5] 设 (X, f) 为动力系统，$x \in X$，称集合 $(f^n(x), f^{n+1}(x), \cdots)_{n \in \mathbb{Z}_+}$ 为 x 在 f 之下的轨道，记为 $\text{Orb}(x)$。

定义 1.6 [6] 设 (X, f) 为动力系统。对 $x \in X$，如果对任意 $\varepsilon > 0$，存在自然数 m 和有限点列 $x_0, x_1, \cdots, x_m \in X$，使得 $x_0 = x$ 且 $\rho(f(x_i), x_{i+1}) < \varepsilon, i = 0, 1, \cdots, m-1$，则称此点列是 x_0 到 x_m 的一个 ε-链，称点 $x \in X$ 为 f 的一个链回归点，f 所有的链回归点构成的集合称为链回归点集，记为 $\text{CR}(f)$。

定义 1.7 [7] 设 $f : X \to X$ 是集合 X 到自身的映射，记 $f^{n} = \cdots \circ f \circ f \circ f = \text{id}$，“$f^{n}$ 为 f 的 n 次迭代。

定义 1.8 [8] 我们把类帐篷映射定义为：

$$g_{\alpha, t}(x) = \begin{cases} \frac{1-\lambda}{t} x + \lambda & 0 \leq x \leq t \\ x & t < x \leq 1 \end{cases}$$

当 $t = 0$ 时，$g_{\alpha, t}(x) = -x + 1$，当 $t = 1$ 时，$g_{\alpha, t}(x) = (1-\lambda)x + \lambda$。记 a_i 为 $g_{\alpha, t}(x)$ 的不动点，记 k_1 为 $g_{\alpha, t}(x)$ 在 $[0, t]$ 上的斜率，$k_2 = \frac{1}{1-t}$ 为 $g_{\alpha, t}(x)$ 在 $[t, 1]$ 上的斜率。$U_{\delta} = [0, \delta]$。本节主要讨论 $0 < t \leq \frac{1}{2}$ 时的情形，当 $0 \leq \lambda \leq t$ 时，记 $a_i = \frac{1}{2-t} \cdot a_{i-1}$

2. 相关引理

引理 2.1：对任意的 $0 \leq \lambda \leq 1, 0 < t < 1$，及 $U = (a_i - \delta, a_i + \delta)$，若 $t \in U$，则 $g_{\alpha, t}^2(U) = [0, 1]$。

证明：因为 $t \in U$，所以 $1 = g_{\alpha, t}^2(1) \in g_{\alpha, t}^2(U)$，$0 = g_{\alpha, t}^2(0) \in g_{\alpha, t}^2(U)$，而 $g_{\alpha, t}(a_i) = a_{i-1}$，所以 $g_{\alpha, t}^2(U) \supseteq [0, a_i]$ (*)。另一方面，因为 $t \in U = (a_i - \delta, a_i + \delta)$，令 $t' = 2a_i - t$，所以 $t' \in U$ 且 $t' - a_i = a_i - t$。

因为 $(t, 1, a_i, a_t, t', g_{\alpha, t}'(t'))$ 在同一条直线上 $\frac{1-a_i}{t-a_i} = \frac{g_{\alpha, t}'(t') - a_i}{t' - a_i}$，所以，我们可得

$$g_{\alpha, t}'(t') = 2a_i - 1 = 2 \cdot \frac{1}{2-t} - 1 = \frac{t}{2-t} < t$$，由 $g_{\alpha, t}'(a_i) = a_i$ 得 $t \in g_{\alpha, t}^2(U)$ 从而 $1 \in g_{\alpha, t}^2(U)$。同样由 $g_{\alpha, t}'(a_i) = a_i$。
得 \(g_{t,a}(U) \supseteq [a, 1] \) (**). 所以由(*)、(**)得，\(g_{t,a}(U) \supseteq [0, 1] \).

引理 2.2：对任意的 \(0 \leq \lambda \leq 1, 0 < t < 1 \)，及 \(U = (a_i - \delta, a_i + \delta) \)，存在 \(n \in N \)，使 \(g_{n,a}(U) = [0, 1] \)。

证明：若 \(t \in U \)，则引理 2.1 知 \(g_{1/2,a}(U) = [0, 1] \)，若对某一个 \(n \geq 0 \)，当 \(0 \leq i \leq n \) 时，\(t \not\in g_{i,a}(U) \)，当 \(0 \leq i \leq n \) 时，\(g_{i,a}(U) \subseteq (t_i, 1] \) 且 \(\exists \delta \in (0, 1) \) 使得 \(g_{i,a}(U) = (a_i - x_i, a_i + x_i) \) 且

\[
|g_{i,a}(U)| = |g_{i,a}(U)| = \left| \frac{1}{1-t} \right| |g_{i,a}(U)| = \left| \frac{1}{1-t} \right|^n |V| = \left| \frac{1}{1-t} \right|^n 2 \delta
\]

因为

\[
\lim_{n \to \infty} \left| \frac{1}{1-t} \right|^n \cdot 2 \delta = +\infty, \quad \text{所以若不存在 } n，\text{ 使得 } t \not\in g_{n,a}(U) \text{，则 } \lim_{n \to \infty} |g_{n,a}(U)| = +\infty，\text{ 这与 } g_{n,a}(U) = [0, 1] \text{ 矛盾。}
\]

所以存在 \(n_0 \in N \)，使得 \(t \not\in g_{n_0,a}(U) \) 且当 \(i < n_0 \) 时，\(t \not\in g_{i,a}(U) \)。记 \(g_{n_0,a}(U) = U_1 = (a_i - x_{n_0-1}, a_i + x_{n_0-1}) \)。

所以 \(t \in g_{n_0,a}(U_1) \)。因为 \(a_i > t \)，所以存在 \(t_1 \in U_1 \)，且 \(t_1 > a_i \)，使得 \(g_{i,a}(t_1) = t \)。所以 \(g_{n_0,a}(U_1) = [0, 1] \) 且 \(g_{n_0,a}(U_1) = [0, 1] \)。所以 \(g_{i,a}(t_1) = t \)。由于 \(U_1 \) 是 \(a_i \) 的 \(x_{n_0-1} \) 邻域，所以存在 \(t_2 \in (a_i - x_{n_0-1}, a_i) \)。使得 \(t_1 + t_2 = 2a_i \)，即 \(a_i - t_2 = t_1 - a_i \)。

所以

\[
g_{i,a}(t_2) - a_i = g_{i,a}(t_1) - a_i = 0.
\]

因为 \(g_{i,a}(t_2) - a_i = g_{i,a}(t_1) - a_i = 0 \) 且 \(t_1 > a_i \)，所以 \(g_{i,a}(t_2) = 2a_i - t > a_i \)，

所以

\[
g_{i,a}(t_2) = a_i - t = a_i - a_i = 0.
\]

因为 \(g_{i,a}(t_1) = t \)，所以存在 \(t_1 = (t_2, a_i) \)，使得 \(g_{i,a}(t_1) = t \)。

所以 \(g_{n_0,a}(U) = g_{n_0,a}(U_1) \supseteq [0, 1] \)，证明完毕。

命题 2.1：对任意的 \(0 \leq \lambda \leq 1, 0 < t < 1 \)，及 \(x \in [0, 1] \)，存在从 \(a \) 到 \(x \) 关于 \(g_{t,a} \) 的 \(\epsilon \) 链。

证明：设 \(U = (a_1 - \epsilon, a_1 + \epsilon) \)，由引理 2.2，存在 \(n \)，使得 \(g_{n,a}(U) = [0, 1] \) 存在 \(x \in U \)，使得 \(g_{n,a}(x) = x \)。记 \(x_0 = a, x_1 = g_{n_1,a}(x_0), \ldots, x_{n+1} = x \) 是一条从 \(a \) 到 \(x \) 关于 \(g_{t,a} \) 的 \(\epsilon \) 链。

引理 2.3：对任意区间 \(U \)，若 \(t \in U \)，则 \(|g_{t,a}(U)| \geq k|U| \)，其中 \(k = \frac{k_1|k_1|}{k_1 + k_2} \)。

证明：不妨设 \(U = [a, b] \)，则 \(g_{t,a}([a, b]) = g_{t,a}(a), g_{t,a}(b) = [g_{t,a}(a), 1] \)。

又

\[
g_{t,a}([a, b]) = g_{t,a}(a), g_{t,a}(b) = [g_{t,a}(a), 1], \text{ 所以 } |g_{t,a}(U)| = \max(1 - g_{t,a}(a), 1 - g_{t,a}(b)) \text{，又}
\]

\[
\max(1 - g_{t,a}(a), 1 - g_{t,a}(b)) = \max(k_1(t - a), k_1(b - t)) \text{，若 } k_1(t - a) \leq k_1(b - t) \text{ 则 } t \leq \frac{k_1(b - a)}{k_1 + k_2}.
\]

所以

\[
|g_{t,a}(U)| \geq \frac{k_1|k_1|}{k_1 + k_2} |U| = k|U|.
\]

命题 2.2：设 \(0 < t < \frac{1}{2}, 0 \leq \lambda \leq t \)，若 \(U \) 为一个区间满足 \(U \subseteq [0, t] \) 且当 \(i = 1, 2, 3 \) 时，\(a_i, a'_i \not\in g_{t,a}(U) \)。

则 \(|g_{t,a}(U)| \geq m|U| \)，其中 \(m = \min \left\{ \frac{4}{3}, \left(\frac{1-t}{t} \right)^3 \right\} \).
证明：不妨设 \(\mathcal{U} = [a, b] \)，则 \(g_{t, \lambda}(\mathcal{U}) = [g_{t, \lambda}(a), g_{t, \lambda}(b)] \) 且 \(|g_{t, \lambda}(\mathcal{U})| = k_1|\mathcal{U}| \)

情形 1：\(t \in g_{t, \lambda}(\mathcal{U}) \)。此时由引理 2.3，\(|g_{t, \lambda}^2(\mathcal{U})| \geq k_2|g_{t, \lambda}(\mathcal{U})| = k_2|\mathcal{U}| \)，此时 \(g_{t, \lambda}^2(\mathcal{U}) = [c, 1] \)，其中

\[c = \min\left(g_{t, \lambda}^2(a), g_{t, \lambda}^2(b)\right) > a \]。

所以 \(|g_{t, \lambda}^2(\mathcal{U})| = k_2|g_{t, \lambda}^2(\mathcal{U})| \geq k_2|\mathcal{U}| \)

\[\frac{k_2|k_2|}{k_1} = \frac{(k_1|k_2|)^2}{k_1+k_2} = \frac{\left(1-\frac{\lambda}{t}\right)^2}{1-\frac{1}{1-t}} \]，所以

\[\frac{1}{kk_1|k_2|} = \frac{(1-\lambda)(t(1-t)^2+t^2(1-t))}{(1-\lambda)^2} = \frac{1}{1-\lambda}t(1-t)^2 + \frac{1}{(1-\lambda)^2}t^2(1-t) \]

显然上式关于 \(\lambda \) 单调增加，\(0 \leq \lambda \leq t \leq \frac{1}{2} \)。

所以

\[\frac{1}{1-\lambda}t(1-t)^2 + \frac{1}{(1-\lambda)^2}t^2(1-t) = t(1-t) + \frac{t^2}{1-t} \]

因为 \(0 < t \leq \frac{1}{2} \)，所以 \(t(1-t) \leq \frac{1}{4} \)，另一方面，当 \(0 < t \leq \frac{1}{2} \) 时，\(\frac{t^2}{1-t} \) 关于 \(t \) 单调增加，所以

\[\frac{t^2}{1-t} \leq \frac{\left(\frac{1}{2}\right)^2}{1-\frac{1}{2}} = \frac{1}{2} \]，因为 \(\frac{1}{kk_1|k_2|} \leq \frac{1}{4} + \frac{3}{4} = 1 \)，所以 \(kk_1|k_2| \geq \frac{4}{3} |\mathcal{U}| \)。

情形 2，若 \(g_{t, \lambda}(\mathcal{U}) \subset (t, 1] \)，则 \(|g_{t, \lambda}^2(\mathcal{U})| = k_2|g_{t, \lambda}(\mathcal{U})| = k_2|\mathcal{U}| \)，进一步

\[g_{t, \lambda}(\mathcal{U}) \subset (x, 1] \] 且 \(|g_{t, \lambda}^2(\mathcal{U})| = k_2|g_{t, \lambda}^2(\mathcal{U})| = k_2k_2|\mathcal{U}| \)，若 \(g_{t, \lambda}(\mathcal{U}) \subset (a, 1] \)，则 \(g_{t, \lambda}^2(\mathcal{U}) \subset [\lambda, a'] \) 且

\[|g_{t, \lambda}^2(\mathcal{U})| = k_1|g_{t, \lambda}^2(\mathcal{U})| = k_1k_2|\mathcal{U}| \]。

因为 \(k_1|k_2| = \frac{1}{t} \geq 1 \)，所以 \(k_1k_2 \geq \frac{1}{t} \geq 4 \)，所以

\[|g_{t, \lambda}^2(\mathcal{U})| \geq 2|\mathcal{U}| \]

情形 3，若 \(g_{t, \lambda}(\mathcal{U}) \subset \left[\lambda, \frac{1}{2}\right] \)。则

\[|g_{t, \lambda}^2(\mathcal{U})| = k_1|g_{t, \lambda}(\mathcal{U})| = k_2|\mathcal{U}| \]

进一步，若 \(g_{t, \lambda}^2(\mathcal{U}) \subset \left[\lambda, \frac{1}{2}\right] \)，则

\[|g_{t, \lambda}^2(\mathcal{U})| = k_1^2|\mathcal{U}| \geq \frac{1(1-t)^3}{t^3}|\mathcal{U}| \]

若 \(g_{t, \lambda}(\mathcal{U}) \subset (t, 1] \)，则

\[|g_{t, \lambda}^2(\mathcal{U})| = k_2^2|\mathcal{U}| \geq 2|\mathcal{U}| \]

若 \(t \in g_{t, \lambda}^2 \)，则由引理 2.3，\(|g_{t, \lambda}^2(\mathcal{U})| \geq \frac{k_1|k_1|}{k_1+k_2}|\mathcal{U}| \)

此时存在 \(x_1 \in [0, t), x_2 \in (0, t) \)，使得

\[x_2 = \frac{1-\lambda}{t} x_1 + \lambda, t = \frac{1-\lambda}{t} x_2 + \lambda, \] 即

\[\frac{1-\lambda}{t} \left(\frac{1-\lambda}{t} x_1 + \lambda\right) + \lambda = t \]，所以

\[\left(\frac{1-\lambda}{t}\right)^2 x_1 + \frac{1-\lambda}{t} \lambda + \lambda = t \]

因为

\[\frac{1-\lambda}{t} \cdot \lambda + \lambda \leq 0 \]，即

\[\lambda^2 - \lambda t + t - \lambda \geq 0 \]

所以

\[\lambda < \frac{1+t+\sqrt{(t+1)^2-4t^2}}{2} \] 且

\[\lambda > \frac{1+t+\sqrt{(t+1)^2-4t^2}}{2} \]

因为此时 \(\lambda > t \)，所以

\[\lambda > \frac{1+t+\sqrt{(t+1)^2-4t^2}}{2} \] (舍去)。
所以 \(k_i = \frac{1 - \lambda}{t} > \frac{1 + t - \sqrt{(t+1)^2 - 4t^2}}{2} = \frac{1 - t + \sqrt{(t+1)^2 - 4t^2}}{2t} \)。

考虑当 \(0 < t \leq \frac{1}{2} \) 时，\(\gamma(t) = (t+1)^2 - 4t^2 = -3t^2 + 2t + 1 = -3t - \frac{1}{3} + \frac{4}{3} \)。

当 \(0 < t \leq \frac{1}{2} \) 时，\(\gamma(t) > \gamma(0) = 1 \)，所以 \(k_i > \frac{2 - t}{2t} = \frac{1}{2} - \frac{1}{2} \leq \frac{3}{2} \)。从而 \(k_i^2 > \frac{9}{4} \)。

又当 \(k_i \geq |k_2| \) 时，\(\frac{k_i |k_2|}{k_i + |k_2|} \geq \frac{k_i |k_2|}{2k_i} \geq 1 \)，当 \(k_i < |k_2| \) 时，\(k_i |k_2| \geq k_i |k_2| \geq k_i |k_2| = k_i \geq \frac{3}{4} \)。

因为 \(\frac{k_i^3 |k_2|}{k_i + |k_2|} = k_i^2 \cdot \frac{k_i |k_2|}{k_i + |k_2|} > \frac{9}{4} \times \frac{3}{4} = \frac{27}{16} \)，所以 \(|g_{i,\ell}^3(U)| \geq \frac{27}{16} |U| \)。

取 \(m = \min \left(\frac{4}{3}, 2\left(\frac{1 - t^2}{t}\right)^2 \right) \)，则 \(m > 1 \)，且由情形 1-3 知 \(|g_{i,\ell}^3(U)| \geq m |U| \)。

命题 2.3: 设 \(0 < t < \frac{1}{2}, 0 \leq \lambda < t \)，若 \(U \) 为一个区间满足 \(\overline{U} \subset (a, 1] \)，且 \(a, a' \notin g_{i,\ell}^i(U), i = 1, 2, 3 \) 则

\[|g_{i,\ell}^i(U)| \geq \frac{4}{3} |U| . \]

证明：因为 \(\overline{U} \subset (a, 1] \)，所以 \(g_{i,\ell}^i(U) \subset [0, a') \) 且 \(|g_{i,\ell}^i(U)| = k_i |U| \)，从而

\[|g_{i,\ell}^i(U)| = k_i |g_{i,\ell}^i(U)| = k_i |k_2| |U| . \]

情形 1 \(g_{i,\ell}^i(U) \subset [a, t] \)，则 \(|g_{i,\ell}^i(U)| = k_i |g_{i,\ell}^i(U)| = k_i^2 |k_2| |U| \)。因为

\[k_i^2 |k_2| = \left(\frac{1 - \lambda}{t}\right)^2 \cdot \frac{1}{1 - t} \geq \left(\frac{1 - t}{t}\right)^2 \cdot \frac{1}{1 - t} = \frac{1}{t^2} - \frac{1}{t} = \left(\frac{1}{t} - \frac{1}{2}\right)^2 - \frac{1}{4} \geq \frac{2 - \frac{1}{2}}{2} - \frac{1}{4} = 2 \]

所以 \(|g_{i,\ell}^i(U)| \geq 2 |U| \)。

情形 2 \(g_{i,\ell}^i(U) \subset (t, 1] \)，则 \(|g_{i,\ell}^i(U)| = |k_2| |g_{i,\ell}^i(U)| = k_i k_2 |U| \)。

因为 \(k_i k_2 = \left(\frac{1 - \lambda}{t}\right) \left(\frac{1}{1 - t}\right) \geq \frac{1 - t}{t} \left(\frac{1}{1 - t}\right) = \frac{1}{t} - 4 \)。所以 \(|g_{i,\ell}^i(U)| \geq 4 |U| \)。

情形 3 \(t \in g_{i,\ell}^i(U) \)。此时由引理 2.3 知，\(|g_{i,\ell}^i(U)| \geq k_i |k_2| |g_{i,\ell}^i(U)| = \frac{k_i^2 k_2^2}{k_i + |k_2|} |U| \geq \frac{4}{3} |U| \)

由情形 1-3 知 \(|g_{i,\ell}^i(U)| \geq \frac{4}{3} |U| \)。

命题 2.4: 设 \(0 < t < \frac{1}{2}, 0 \leq \lambda < t \)，\(U \) 为一个区间满足 \(\overline{U} \subset (a', a) \) 且 \(\frac{1}{2} \notin U \)。\(\forall i = 1, 2, 3 \) \(a_i, a_i' \notin g_{i,\ell}^i(U) \)，则

\[|g_{i,\ell}^i(U)| \geq \frac{4}{3} |U| . \]

证明：由引理 2.3，\(|g_{i,\ell}^i(U)| \geq \frac{k_i |k_2|}{k_i + |k_2|} |U| \) 且存在 \(c > a_i \) 使得 \(g_{i,\ell}^i(U) = [c, 1] \)，所以

\[|g_{i,\ell}^i(U)| = k_i |g_{i,\ell}^i(U)| = k_i |k_2| |g_{i,\ell}^i(U)| \geq \frac{k_i^2 k_2^2}{k_i + |k_2|} |U| \geq \frac{4}{3} |U| . \]
命题 2.5: 设 $0 < t < \frac{1}{2}$, $0 \leq \lambda < t$, U 为一个区间满足: $U \subset (t, a_i)$ 且 $\forall i = 1, 2, 3$, $a_i, a'_i \not\in g_{\lambda, t}(U)$, 则 $|g'_{\lambda, t}(U)| \geq 4|U|$。

证明: 在命题条件下, 我们有 $|g_{\lambda, t}(U)| = |k_1| |U|$ 且 $g_{\lambda, t}(U) \subset (a, 1]$, 因为 $|g'_{\lambda, t}(U)| = k_2^2 |U|$ 且 $g_{\lambda, t}(U) \subset (0, a')$. 所以 $|g'_{\lambda, t}(U)| \geq 4|U|$. 由命题 2.3 的证明过程知 $|g'_{\lambda, t}(U)| \geq 4|U|$.

命题 2.6: 设 $0 < t < \frac{1}{2}$, $0 < \lambda < t$, $0 < \delta < 1$. 则存在 $n \in N$. 使得 $a_n \in g_{\lambda, t}(U)$.

证明: 若结论不成立。则对于任意的 $n \in N$. $a_n \not\in g_{\lambda, t}(U)$, $a'_n \not\in g_{\lambda, t}(U)$. 对每一个 $n \in N$, $g_{\lambda, t}(U)$ 有下列五种情况:

① $g_{\lambda, t}(U) = \in (a'_n, t)$; ② $g_{\lambda, t}(U) \subset (a', t)$; ③ $g_{\lambda, t}(U) \subset ([a], t)$; ④ $g_{\lambda, t}(U) \subset (a, 1]$; ⑤ $g_{\lambda, t}(U) \subset (a', a)$. 且 $t \in g_{\lambda, t}(U)$.

针对情形①②, 我们由命题 2.2 得 $|g_{\lambda, t}(U)| \geq 4|g_{\lambda, t}(U)|$.

针对情形③, 我们由命题 2.5 得 $|g_{\lambda, t}(U)| \geq 4|g_{\lambda, t}(U)|$.

针对情形④, 我们由命题 2.3 得 $|g_{\lambda, t}(U)| \geq 4|g_{\lambda, t}(U)|$.

针对情形⑤, 我们由命题 2.4 得 $|g_{\lambda, t}(U)| \geq 4|g_{\lambda, t}(U)|$.

因此，任意的 n, $|g_{\lambda, t}(U)| \geq 4|g_{\lambda, t}(U)|$, $m = \min\left(\frac{4}{3}, \frac{1-t}{t}\right)$ 且 $m > 1$. 所以 $\lim_{n \to \infty} g_{\lambda, t}(U) = +\infty$, 这与 $g_{\lambda, t}(U) \subset [0, 1]$ 矛盾。所以结论成立，即存在 $n \in N$. 使得 $a_n \in g_{\lambda, t}(U)$.

命题 2.7: 对任意的非退化闭区间 U, 当 $0 < \lambda < t$ 时，存在无穷多个 $n \in N$ 使得 $t \in g_{\lambda, t}(U)$.

证明: 若结论不成立，则存在 N_0, 对任意的 $n \geq N_0$, 我们有 $g_{\lambda, t}(U) \subset [0, t]$ 或 $g_{\lambda, t}(U) \subset (t, 1]$ 若 $g_{\lambda, t}(U) \subset [0, t]$ 则 $|g_{\lambda, t}(U)| = k_1 |g_{\lambda, t}(U)|$, 若 $g_{\lambda, t}(U) \subset (t, 1]$ 则 $|g_{\lambda, t}(U)| = k_2 |g_{\lambda, t}(U)|$, 令 $k_1 = \min(k_1, k_2)$ 且 $k_2 = \min(k_1, k_2)$ 于是对于任意的 $n \geq N_0$, 我们有 $|g_{\lambda, t}(U)| \geq k_1 |g_{\lambda, t}(U)|$, 从而 $\lim_{n \to \infty} g_{\lambda, t}(U) = +\infty$, 矛盾。

命题 2.8: 设 $0 < t < \frac{1}{2}, \lambda = t, 0 < \delta < 1$. 则存在 $n \in N$. 使得 $a_n \in g_{\lambda, t}(U)$.

证明: 若结论不成立，则对于任意的 $n \in N$, $a_n \not\in g_{\lambda, t}(U)$; $a'_n \not\in g_{\lambda, t}(U)$, 有前面引理知, 存在 $n_0 \in N$, 使得 $t \in g_{\lambda, t}(U)$, 所以 $g_{\lambda, t}(U) \subset (a, 1]$. 若 $g_{\lambda, t}(U) \subset (a', t)$, 则 $|g_{\lambda, t}(U)| = k_1 |g_{\lambda, t}(U)|$, 若 $g_{\lambda, t}(U) \subset (a, 1]$ 则 $|g_{\lambda, t}(U)| = k_2 |g_{\lambda, t}(U)|$, 令 $k_1 = \min(k_1, k_2)$; $k_2 = \min(k_1, k_2)$ 于是对于任意的 $n \geq n_0$, 我们有 $|g_{\lambda, t}(U)| \geq k_1 |g_{\lambda, t}(U)|$, 从而 $\lim_{n \to \infty} g_{\lambda, t}(U) = +\infty$, 矛盾。

命题 2.9: 设 $0 < t < \frac{1}{2}, 0 < \lambda < t, \forall \varepsilon > 0, \exists x \in [0, 1]$, 存在从 x 到 a_n 的关于 $g_{\lambda, t}$ 的链。

证明: 由 $g_{\lambda, t}$ 的连续性知，对任意的 $\varepsilon > 0$, 存在 $\delta(0 < \delta < \varepsilon)$, 当 $d(x, y) < \delta$ 时，$d(g_{\lambda, t}(x), g_{\lambda, t}(y)) < \varepsilon$.

DOI: 10.12677/pm.2019.93059

446
由引理命题 2.6 和命题 2.7 知：任意满足 \([a_1-a_0, a_1+a_0] \subseteq [0,1]\) 的正数 \(\delta\)，存在 \(n_1 \in N\)，使得
\[g^{n_1}_{a_1}\left([a_1-a_0, a_1+a_0]+\delta\right)=[0,1].\]
所以，对任意的 \(x \in [0,1]\)，总存在 \(x^* \in [a_1-a_0, a_1+a_0]\) 使得 \(g^{n_1}_{a_1}(x^*)=x\) 则对于链 \(c_0=x, c_1=g_{a_1}(x^*), c_2=g_{a_2}^2(x^*), \ldots, c_{n_1-1}=g_{a_1}^{n_1-1}(x^*), c_{n_1}=a_1\)，有
\[
\sum_{j=0}^{n_1-1} d\left(g_{a_1}(c_j), c_{j+1}\right)=d\left(g_{a_1}(a_0), g_{a_1}(x^*)\right)<\varepsilon,
\]
则 \(c_0, c_1, c_2, \ldots, c_{n_1}\) 是一条从 \(x\) 到 \(a_1\) 的 \(\varepsilon\) 链。命题得证。

3. 主要定理的证明

定理 3.1：\(0 < t < \frac{1}{2}, 0 < \lambda \leq t\)，\(CR(g_{t,\lambda})=[0,1]\)。

证明：当 \(0 < t < \frac{1}{2}, 0 < \lambda \leq t\) 时，任意的 \(x \in [0,1]\)，由命题 2.9 知，存在从 \(x\) 到 \(a_1\) 的关于 \(g_{t,\lambda}\) 的 \(\varepsilon\) 链，又由命题 2.1 知对任意的 \(0 \leq \lambda \leq 1, 0 < t < 1\)，及 \(x \in [0,1]\)，存在从 \(a_1\) 到 \(x\) 的关于 \(g_{t,\lambda}\) 的 \(\varepsilon\) 链，所以
\(CR(g_{t,\lambda})=[0,1]\)。

参考文献