余切群胚的辛约化

戴远莉

西南交通大学,四川 成都 Email: 1055179198@gg.com

收稿日期: 2021年2月11日; 录用日期: 2021年3月11日; 发布日期: 2021年3月18日

摘要

给定李群胚 $I:G \to M$ 以及I-空间N,本文考虑了余切群胚 $T^*G \to A^*G$ 在余切丛 T^*N 上的辛群胚作用,并给出了辛约化的具体表示。

关键词

李群胚,辛流形,辛群胚,余切群胚,辛约化

Symplectic Reduction for Cotangent Groupoids

Yuanli Dai

Southwest Jiaotong University, Chengdu Sichuan Email: 1055179198@gg.com

Received: Feb. 11th, 2021; accepted: Mar. 11th, 2021; published: Mar. 18th, 2021

Abstract

Given a Lie groupoid $I: G \rightrightarrows M$ and I-space N, this paper considers symplectic groupoid actions of the cotangent groupoid $T^*G \rightrightarrows A^*G$ on the cotangent bundle T^*N . Meanwhile, this reduction is investigated concretely.

Keywords

Lie Groupoid, Symplectic Manifold, Symplectic Groupoid, Cotangent Groupoid, Symplectic Reduction

文章引用: 戴远莉. 余切群胚的辛约化[J]. 理论数学, 2021, 11(3): 323-329.

DOI: 10.12677/pm.2021.113043

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

(c) (1)

Open Access

1. 引言

约化理论起源于力学发展的早期阶段,是一种古典但历久弥新的理论。由于辛几何与 Hamiltonian 力学的紧密联系,约化理论在辛几何中也得到了充分的发展,即辛约化理论。在经典辛约化理论中 G-等变的矩映射 $J:M \to (LieG)^*$ 生成 Lie 群 G 在辛流形 M 上的 Hamiltonian 作用,从而在必要的附加条件下可得到辛约化流形 $M_{red} := J^{-1}(u)/G_u$ 。辛约化理论起源于 Arnold [1],Smale [2],Meyer [3]以及 Marsden-Weinstein [4]等著名数学家的相关工作,经半个多世纪的发展,迄今仍是辛几何中的研究热点之一。

本文要考虑的余切群胚辛约化与经典辛约化理论中的两种重要情形,即余切丛辛约化和辛群胚约化,有着密切的联系。具体来说,给定李群胚 $I:G \to M$ 以及 I-空间 N,即给定 C^{∞} 流形 N 以及 $G \to M$ 在 N 上的作用。我们可以证明余切群胚 $T^*G \to A^*G$ 是李群胚。若李群胚 $G \to M$ 在 N 上的作用能被提升为余切群胚 $T^*G \to A^*G$ 在余切丛余切群胚 T^*N 上的辛作用,则由辛约化技巧[5]我们可得到新的辛流形,并将证明此约化辛流形辛同胚于某个商流形的余切丛。

2. 余切群胚

首先回顾辛群胚的定义。

定义 2.1 [6] 群胚包含两个集合 G 和 M (分别称为群胚和群胚的基),满射 $\alpha,\beta:G\to M$ (分别称为源映射和靶映射),映射 $1:x\mapsto 1_x,M\to G$,定义在 $G\times G$ 的子集 $G_2=\left\{(h,g)\in G\times G\,|\,\alpha(h)=\beta(g)\right\}$ 上的乘法 $(h,g)\mapsto hg$,满足:

- 1. 对任意 $(h,g) \in G_2$,有 $\alpha(hg) = \alpha(g)$ 且 $\beta(hg) = \beta(h)$;
- 2. 对任意 $g,h,k \in G$, 有 (gh)k = g(hk), 其中 $\alpha(g) = \beta(h)$ 且 $\alpha(h) = \beta(k)$;
- 3. 对任意 $x \in M$, $\alpha(1_x) = \beta(1_x) = x$;
- 4. 对任意 $g \in G$,有 $gl_{\alpha g} = g, l_{\beta g} g = g$;
- 5. 对任意 $g \in G$,G中存在逆元 g^{-1} ,满足 $\alpha(g^{-1}) = \beta(g)$, $\beta(g^{-1}) = \alpha(g)$, $g^{-1}g = 1_{\alpha g}$, $gg^{-1} = 1_{\beta g}$ 。

定义 2.2 [6] 一个群胚 $G \rightrightarrows M$ 称为李群胚,如果 G 和 M 都是微分流形, α, β 都是浸没,并且乘法运算均为流形间的光滑映射。

定义 2.3 [6] 令 $G \rightrightarrows M$ 是一个李群胚,若在 G 上有辛结构 Ω ,使得乘法图像 $u = \{(x,y,xy) \in G \times G \times G | (x,y) \in G_2\}$ 是乘积辛流形 $(G,\Omega) \times (G,\Omega) \times (G,-\Omega)$ 的拉格朗日子流形,则称 $G \rightrightarrows M$ 为辛群胚。

引理 2.1 [7] 设X为 C^{∞} 流形,S为X的子流形,则余法丛 N^*S 是余切丛 $\left(T^*X,w_{can}\right)$ 的拉格朗日子流形,其中 w_{can} 为余切丛 T^*X 的典范辛形式。

给定李群胚 $G \rightrightarrows M$,以 $T^{\alpha}G \to G$ 表示由切映射 $T(\alpha): TG \to TM$ 诱导的向量丛,以 $1: M \to G$, $m \mapsto 1_m$ 表示单位映射。定义向量丛 $AG \to M$ 为 $T^{\alpha}G \to G$ 在 C^{∞} 映射 $1: M \to G$ 下的拉回丛,从而对 $\forall x \in M$,纤维 $A_xG = \ker T_{1_x}(\alpha) = T_{1_x}\alpha^{-1}(x) \subset T_{1_x}G$ 。

定义结构映射 α, β , 乘积映射•, 单位映射 $\tilde{1}$, 以及逆映射如下:

① 定义 $\tilde{\alpha}$: $T^*G \to A^*G$, $\phi \mapsto \tilde{\alpha}(\phi)$, 使得对 $\forall X \in A_{\alpha g}G$, 有 $\langle \tilde{\alpha}(\phi), X \rangle = \langle \phi, T(L_g)(X - T(1)aX) \rangle$ 。其

中 $a=a_G:AG\to TM$ 为向量丛间的丛映射使得对 $\forall x\in M$, $a_x:A_xG\to T_xM$, $X\mapsto d\beta\big|_{\mathbb{I}_x}\big(X\big)$,这里 $X\in T_{\mathbb{I}_x}G$ 满足 $d\alpha\big|_{\mathbb{I}_x}\big(X\big)=0$ 。

- ② 定义 $\tilde{\beta}: T^*G \to A^*G, \phi \mapsto \tilde{\beta}(\phi)$, 使得对 $\forall Y \in A_{\beta g}G$, $\tilde{A}(\tilde{\beta}(\phi), Y) = \langle \phi, T(R_g)Y \rangle$.
- ③ 定义乘法运算•: $T^*G \times T^*G \to T^*G$, $(\phi,\psi) \mapsto \phi \bullet \psi$ 。 其中 $\phi \in T_g^*G, \psi \in T_h^*G$ 满足 $\tilde{\alpha}(\phi) = \tilde{\beta}(\psi)$ 。 这里 $X \in T_gG$ 和 $Y \in T_hG$ 满足 $T(\alpha) = T(\beta) = T(\beta)$ 使得 $T(\alpha) = T(\beta) = T(\beta) = T(\beta)$ 使得 $T(\alpha) = T(\beta) = T$
 - ④ 定义单位映射 $\tilde{1}: A^*G \to T^*G$,使得对 $\forall \varphi \in A_m^*G, \xi \in T_{1m}G$,有 $\langle \tilde{1}_{\varphi}, \xi \rangle = \langle \varphi, \xi T(1)T(\alpha)\xi \rangle$ 。
- ⑤ 定义逆运算: $T^*G \to T^*G, \phi \mapsto \phi^{-1}$ 。 使得对 $\forall X \in T_gG$ 有 $\left\langle \phi^{-1}, X^{-1} \right\rangle = -\left\langle \phi, X \right\rangle$ (其中 $\phi \in T_g^*G, X^{-1} \in T_{g^{-1}}G$ 为 X 在逆运算 $G \to G$ 的诱导切映射 $T_gG \to T_{g^{-1}}G$ 下的像)。
- **定理 2.1** 给定李群胚 $G \rightrightarrows M$,在上述定义的映射下, $T^*G \rightrightarrows A^*G$ 为辛群胚。称 $T^*G \rightrightarrows A^*G$ 为余切群胚。

证明: (1) 验证群胚结构:

① 任取 $\phi \in T_g^*G$, $\psi \in T_h^*G$, 使得 $\tilde{\alpha}(\phi) = \tilde{\beta}(\psi)$, 则 $\phi \cdot \psi \in T_{gh}^*G$ 。需说明 $\tilde{\alpha}(\phi \cdot \psi) = \tilde{\alpha}(\psi)$, $\tilde{\beta}(\phi \cdot \psi) = \tilde{\beta}(\phi)$ 。 事实上, $\forall X \in A_{\alpha(gh)}G = A_{\alpha(h)}G$,有

$$\langle \tilde{\alpha}(\phi \bullet \psi), X \rangle$$

$$= \langle \phi \bullet \psi, T(L_{gh})(X - T(1)aX) \rangle = \langle \phi \bullet \psi, 0 \bullet T(L_h)(X - T(1)aX) \rangle$$

$$= \langle \phi, 0 \rangle + \langle \psi, T(L_h)(X - T(1)aX) \rangle = \langle \tilde{\alpha}(\psi), X \rangle$$

从而 $\tilde{\alpha}(\phi \cdot \psi) = \tilde{\alpha}(\psi)$ 。

$$\forall Y \in A_{\beta(gh)}G = A_{\beta(g)}G$$
, \uparrow

$$\begin{split} \left\langle \tilde{\beta} \left(\phi \bullet \psi \right), Y \right\rangle &= \left\langle \phi \bullet \psi, T \left(R_{gh} \right) (Y) \right\rangle = \left\langle \phi \bullet \psi, T \left(R_{g} \right) (Y) \bullet 0 \right\rangle \\ &= \left\langle \phi, T \left(R_{g} \right) (Y) \right\rangle + \left\langle \psi, 0 \right\rangle = \left\langle \tilde{\beta} \left(\phi \right), Y \right\rangle \end{split}$$

从而 $\tilde{\beta}(\phi \cdot \psi) = \tilde{\beta}(\phi)$ 。

② 任取 $\phi_1 \in T_f^*G$, $\phi_2 \in T_g^*G$, $\phi_3 \in T_h^*G$,且满足 $\tilde{\alpha}(\phi_1) = \tilde{\beta}(\phi_2)$, $\tilde{\alpha}(\phi_2) = \tilde{\beta}(\phi_3)$ 。需说明 $\phi_1 \bullet (\phi_2 \bullet \phi_3) = (\phi_1 \bullet \phi_2) \bullet \phi_3$ 。

任取 $X_1 \in T_f G, X_2 \in T_g G, X_3 \in T_h G$,且满足 $T(\alpha)X_1 = T(\beta)X_2, T(\alpha)X_2 = T(\beta)X_3$ 。从而 $T(\alpha)X_1 = T(\beta)(X_2 \bullet X_3), T(\alpha)(X_1 \bullet X_2) = T(\beta)X_3$,从而 $X_1 \bullet (X_2 \bullet X_3) = (X_1 \bullet X_2) \bullet X_3$ 。从而 $\phi_1 \bullet (\phi_2 \bullet \phi_3) = (\phi_1 \bullet \phi_2) \bullet \phi_3$ 。

③ 任取 $\varphi \in A_m^*G$,需说明 $\tilde{\alpha}(1_{\varphi}) = \tilde{\beta}(1_{\varphi}) = \varphi$ 。

任取 $X \in A_m G \subseteq T_{1,m}G$, 则有

$$\begin{split} \left\langle \tilde{a} \left(\tilde{1}_{\varphi} \right), X \right\rangle &= \left\langle \tilde{1}_{\varphi}, T \left(L_{1m} \right) \left(X - T (1) a X \right) \right\rangle = \left\langle \tilde{1}_{\varphi}, \left(X - T (1) a X \right) \right\rangle \\ &= \left\langle \varphi, \left(X - T (1) a X \right) - T (1) T \left(\alpha \right) \left(X - T (1) a X \right) \right\rangle \\ &= \left\langle \varphi, X \right\rangle \end{split} .$$

另外,
$$\left\langle \tilde{\beta} \left(\tilde{\mathbf{I}}_{\varphi} \right), X \right\rangle = \left\langle \tilde{\mathbf{I}}_{\varphi}, T \left(R_{\mathbf{I}_{m}} \right) \left(X \right) \right\rangle = \left\langle \tilde{\mathbf{I}}_{\varphi}, X \right\rangle = \left\langle \varphi, X - T \left(\mathbf{I} \right) T \left(\alpha \right) X \right\rangle = \left\langle \varphi, X \right\rangle$$
 。

④ 任取 $\phi \in T_g^*G$,需说明 $\phi \bullet \tilde{1}_{\tilde{\alpha}(\phi)} = \phi$, $\tilde{1}_{\tilde{\beta}(\phi)} \bullet \phi = \phi$ 。

任取 $X \in T_{\sigma}G, Y \in T_{|\alpha\sigma}G$ 满足 $T(\alpha)X = T(\beta)Y$,

$$\begin{split} \left\langle \phi \bullet \tilde{\mathbf{1}}_{\tilde{\alpha}(\phi)}, X \bullet Y \right\rangle &= \left\langle \phi, X \right\rangle + \left\langle \tilde{\mathbf{1}}_{\tilde{\alpha}(\phi)}, Y \right\rangle = \left\langle \phi, X \right\rangle + \left\langle \tilde{\alpha}(\phi), Y - T(1)T(\alpha)Y \right\rangle \\ &= \left\langle \phi, X \right\rangle + \left\langle \phi, T\left(L_g\right) \left[\left(Y - T(1)T(\alpha)Y \right) - T(1)a\left(Y - T(1)T(\alpha)Y \right) \right] \right\rangle \\ &= \left\langle \phi, X \right\rangle + \left\langle \phi, T\left(L_g\right) \left[\left(Y - T(1)T(\alpha)Y \right) - T(1)T(\beta)\left(Y - T(1)T(\alpha)Y \right) \right] \right\rangle \\ &= \left\langle \phi, X \right\rangle + \left\langle \phi, T\left(L_g\right) \left(Y - T(1)T(\beta)Y \right) \right\rangle \\ &= \left\langle \phi, X + T\left(L_g\right) \left(Y - T(1)T(\beta)Y \right) \right\rangle = \left\langle \phi, X \bullet Y \right\rangle \end{split}$$

任取 $X \in T_g G, Z \in T_{1_{g_\alpha}} G$ 满足 $T(\alpha)Z = T(\beta)X$,

$$\begin{split} \left\langle \tilde{\mathbf{I}}_{\tilde{\beta}(\phi)} \bullet \phi, Z \bullet X \right\rangle &= \left\langle \tilde{\mathbf{I}}_{\tilde{\beta}(\phi)}, Z \right\rangle + \left\langle \phi, X \right\rangle = \left\langle \tilde{\beta}(\phi), Z - T(1) T(\alpha) Z \right\rangle + \left\langle \phi, X \right\rangle \\ &= \left\langle \phi, T(R_g) (Z - T(1) T(\alpha) Z) \right\rangle + \left\langle \phi, X \right\rangle \\ &= \left\langle \phi, T(R_g) (Z - T(1) T(\alpha) Z) + X \right\rangle = \left\langle \phi, Z \bullet X \right\rangle \end{split}$$

⑤ 任取 $\phi \in T_g^*G$,需说明 $\tilde{\alpha}\left(\phi^{-1}\right) = \tilde{\beta}\left(\phi\right)$, $\tilde{\beta}\left(\phi^{-1}\right) = \tilde{\alpha}\left(\phi\right)$, $\phi \bullet \phi^{-1} = \tilde{1}_{\tilde{\beta}\left(\phi\right)}$, $\phi^{-1} \bullet \phi = \tilde{1}_{\tilde{\alpha}\left(\phi\right)}$ 。 任取 $X \in A_{\alpha\sigma^{-1}}G = A_{\beta g}G$, 则

$$\left\langle \tilde{\alpha} \left(\phi^{-1} \right), X \right\rangle = \left\langle \phi^{-1}, T \left(L_{g^{-1}} \right) \left(X - T \left(1 \right) a X \right) \right\rangle = \left\langle \phi^{-1}, T \left(L_{g^{-1}} \right) \left(-T \left(i \right) X \right) \right\rangle$$

$$= \left\langle \phi^{-1}, -T \left(i \right) T \left(R_{g} \right) X \right\rangle = \left\langle \phi, T \left(R_{g} \right) X \right\rangle = \left\langle \tilde{\beta} \left(\phi \right), X \right\rangle$$

同理可证 $\tilde{\beta}(\phi^{-1}) = \tilde{\alpha}(\phi)$ 。

任取 $X \in T_g G, Y \in T_{g^{-1}} G$ 满足 $T(\alpha)X = T(\beta)Y$, $X \cdot Y \in T_{1_{\beta g}} G$ 。 注意到 $T_{1\beta g} G$ 中的元素均可唯一表示

为T(1)(w)+W, 其中 $w \in T_{\beta \sigma}M, W \in A_{\beta \sigma}G$

由于
$$w = T(\alpha)X = T(\beta)Y$$
,从而 $T(1)w = T(1)T(\beta)Y = Y \cdot Y^{-1}$ 。从而
$$\langle \phi \cdot \phi^{-1}, T(1)w \rangle = \langle \phi \cdot \phi^{-1}, Y \cdot Y^{-1} \rangle = \langle \phi, Y \rangle + \langle \phi^{-1}, Y^{-1} \rangle = \langle \phi, Y \rangle - \langle \phi, Y \rangle = 0$$
。
$$\langle \tilde{1}_{\tilde{\beta}(\phi)}, T(1)w \rangle = \langle \tilde{1}_{\tilde{\beta}(\phi)}, T(1)T(\alpha)X \rangle = 0$$
,故 $\langle \phi \cdot \phi^{-1}, T(1)w \rangle = \langle \tilde{1}_{\tilde{\beta}(\phi)}, T(1)w \rangle$ 。

以
$$\tilde{0}_{g^{-1}} \in T_{g^{-1}}G$$
为切空间 $T_{g^{-1}}G$ 中的零向量,则

$$W = \left(T\left(R_g\right)W\right) \cdot \tilde{0}_{g^{-1}}, \quad (*)$$

若上式成立,则

$$\left\langle \phi \bullet \phi^{-1}, W \right\rangle = \left\langle \phi \bullet \phi^{-1}, \left(T \left(R_g \right) \right) W \bullet \tilde{0}_{g^{-1}} \right\rangle = \left\langle \phi, \left(T \left(R_g \right) \right) W \right\rangle + \left\langle \phi^{-1}, \tilde{0}_{g^{-1}} \right\rangle = \left\langle \phi, T \left(R_g \right) W \right\rangle = \left\langle \tilde{\beta} \left(\phi \right), W \right\rangle = \left\langle 1_{\tilde{\beta}(\phi)}, W \right\rangle \circ \mathcal{M}$$
 从而 $\phi \bullet \phi^{-1} = \tilde{1}_{\tilde{\beta}(\phi)} \circ \mathbb{H}$ 可证 $\phi^{-1} \bullet \phi = \tilde{1}_{\tilde{\alpha}(\phi)} \circ \mathbb{H}$

注:由于 $W \in A_yG$,从而可取 C^∞ 曲线 $\gamma: (-\varepsilon, \varepsilon) \to G, \varepsilon > 0$ 充分小使得 $\forall t \in (-\varepsilon, \varepsilon)$ 有

$$\gamma(0) = 1_{y}, \alpha(\gamma(t)) = y \stackrel{d}{\coprod} \frac{d}{dt}\Big|_{t=0} \gamma(t) = W \quad \text{with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt}\Big|_{t=0} \gamma(t)g \text{ with } T(R_{g})W = \frac{d}{dt}\Big|_{t=0} R_{g}(\gamma(t)) = \frac{d}{dt$$

$$T(R_g)W\bullet\tilde{0}_{g^{-1}} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} k(\gamma(t)g,g^{-1}) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \gamma(t) = W .$$

(2) 证明 $G = \{(g,\phi),(h,\psi),(gh,\phi\bullet\psi) \in T^*G \times T^*G \times T^*G \mid \tilde{\alpha}(\phi) = \tilde{\beta}(\psi)\}$ 是辛流形 $(T^*G,w_0) \times (T^*G,w_0) \times (T^*G,-w_0)$ 的拉格朗日子流形,则 $T^*G \rightrightarrows A^*G$ 为辛群胚。

由于 $G \rightrightarrows M$ 为李群胚,从而 $S = \{(g,h,gh) \in G \times G \times G \mid \alpha(g) = \beta(h)\}$ 是 $G \times G \times G$ 的光滑子流形,由引理 1 可知,余法丛 N^*S 是 $(T^*G,w_{can}) \times (T^*G,w_{can}) \times (T^*G,w_{can})$ 的拉格朗日子流形。任取 $(g,h,gh) \in S$,

则余法从 N^*S 的纤维为

$$\left\{ \left(\phi,\psi,-\phi\bullet\psi\right)\in T_g^*G\times T_h^*G\times T_{gh}^*G\left|\tilde{\alpha}\left(\phi\right)=\tilde{\beta}\left(\psi\right)\right\}\right.,$$

此纤维同构于 $\{(\phi,\psi,\phi\bullet\psi)\in T_g^*G\times T_h^*G\times T_{gh}^*G\big|\tilde{\alpha}(\phi)=\tilde{\beta}(\psi)\}$ 。得证。

3. 主要结果及证明

令 $G \rightrightarrows M$ 是一个李群胚, N 是一个 C^{∞} 流形, 并且 $J: N \to M$ 是 C^{∞} 映射。

定义 3.1 [8] 李群胚 G 在流形 N 上的带有矩映射 J 的作用是一个 C^{∞} 映射 $\sigma: G\times_J N \to N$, $(g,n)\mapsto gn$,其中 $\alpha(g)=J(n)$,满足以下条件:

- (1) $J(gn) = \beta(g)$;
- (2) (gh)n = g(hn);
- (3) 1(J(n))n = n.

定义 3.2 [8] 设 $\sigma: G\times_J N \to N$ 是李群胚 G 在辛流形 N 上的作用,如果 $G \to M$ 是辛群胚,并且作用的图像 $u = \{(g, m, gm) \in G \times N \times N | \alpha(g) = J(m)\}$ 是乘积辛流形 $G \times N \times \overline{N}$ 的拉格朗日子流形,则称 σ 为辛群胚作用。其中 \overline{N} 表示辛流形 $(N, -\Omega)$ 。

定理 3.1 [8] 令 (M,J) 为辛 Γ -空间,如果 u 是 J 的 clean 值, $J^{-1}(u)/\Gamma_u$ 为光滑流形使得投射 $h_u:J^{-1}(u)\to J^{-1}(u)/\Gamma_u$ 为浸没映射。那么在 $J^{-1}(u)/\Gamma_u$ 上存在一个辛结构 Ω_u 使得 $h_u^*\Omega_u=l_u^*w_M$,其中 l_u 是 $J^{-1}(u)$ 到 M 的包含映射。这里称 u 为 J 的 clean 值,是指 $J^{-1}(u)$ 为 u 的 C^{∞} 子流形,并且对 $\forall m \in J^{-1}(u)$ 有 $T_mJ^{-1}(u)=\ker T_mJ$ 。

下面开始考虑余切群胚在余切丛上的辛作用,并具体描述辛约化过程。具体来说,假设李群胚 $G \Rightarrow M$ 光滑作用在流形 N 上,且有矩映射 $J: N \to M$ 。 定义映射 $J^*: T^*N \to A^*G$ 如下: 任取 $(q, \phi_q) \in T^*N$, 定义 $J_q^*\phi_q \in (A^*G)_{J(q)}$ 使得对 $\forall X \in (AG)_{J(q)} = T_{J_{J(q)}}\alpha^{-1}(J(q))$ 有 $\left\langle J_q^*\phi_q, X \right\rangle = \left\langle \phi_q, X^\#(q) \right\rangle$ (其中 $X^\#(q) \in T_{J(q)}N$ 为由 X 诱导的切向量: 任取 $\alpha^{-1}(J(q)) \subset G$ 中通过 $I_{J(q)}$ 的 C^∞ 曲线 $\gamma: (-\varepsilon, \varepsilon) \to \alpha^{-1}(J(q))$, $\gamma(0) = I_{J(q)}$ 使

得
$$\frac{\mathrm{d}\gamma(t)}{\mathrm{d}t}\Big|_{t=0} = X$$
,则 $X^{\#}(q) := \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \gamma(t)q \in T_qN$)。定义 $J^*: T^*N \to A^*G$, $\left(q,\phi_q\right) \mapsto \left(J(q),J_q^*\phi_q\right)$,显然 J^*

$$T^*N \to A^*G$$

是光滑的丛映射且使得图表 $_{\pi_{N}}$ \downarrow $_{\pi_{M}}$ 可交换, 其中 π_{N} ,如为丛投影映射。

$$N \rightarrow M$$

定理 3.2 假设余切群胚 $T^*G \Rightarrow A^*G$ 辛作用在余切丛上 T^*N 上,且以 $J^*: T^*N \to A^*G$ 为矩映射。假设 $0_m \in A^*G$ 为 clean 值使得 $(J^*)^{-1}(0_m)/G_m$ 为 C^∞ 流形,且 $\pi_0: (J^*)^{-1}(0_m) \to (J^*)^{-1}(0_m)/G_m$ 为浸没映射,假设 m 为 clean 值使得 $(J)^{-1}(m)/G_m$ 为 C^∞ 流形,且 $\pi_J: J^{-1}(m) \to J^{-1}(m)/G_m$ 为浸没映射,则约化辛流形 $(J^*)^{-1}(0_m)/G_m$ 辛微分同胚于余切丛 $T^*(J^{-1}(m)/G_m)$ 。

证明: 定义光滑映射 $\overline{\varphi}_0: \left(J^*\right)^{-1}(0_m) \to T^*\left(J^{-1}(m)/G_m\right)$ 使得对 $\forall v_q \in T_q J^{-1}(m) \in T_q N$ 有 $\left\langle \overline{\varphi}_0\left(\phi_q\right), T_q \pi_J\left(v_q\right) \right\rangle := \left\langle \phi_q, v_q \right\rangle$ 。下面说明与 v_q 的选取无关,如果 $v_q, v_q' \in T_q J^{-1}(m)$ 使得 $T_q \pi_J\left(v_q\right) = T_q \pi_J\left(v_q'\right)$,则 $v_q' - v_q = \ker T \pi_J\left(q\right) = T_q \pi_J^{-1}\left([q]\right)$,因此 $v_q' - v_q = \xi_{G_m}^{\#}\left(q\right)$,其中 $\xi_{G_m} \in Lie(G_m)$ 。从而 $\left\langle \phi_q, v_q' - v_q \right\rangle = \left\langle \phi_q, \xi_{G_m}^{\#}\left(q\right) \right\rangle = 0$,即 $\left\langle \phi_q, v_q' \right\rangle = \left\langle \phi_q, v_q' \right\rangle$ 。

下面说明 $\overline{\varphi}_0$ 是 G_m -不变的。对于任意 $g \in G_m$, $v_q \in T_q N$ 有 $T_{g,q}\pi_J (g \cdot v_q) = T_q\pi_J (v_q)$,从而 $\langle \overline{\varphi}_0 (g \cdot \phi_q), T_q\pi_J (v_q) \rangle = \langle \overline{\varphi}_0 (g \cdot \phi_q), T_{g,q}\pi_J (g \cdot v_q) \rangle = \langle g \cdot \phi_q, g \cdot v_q \rangle = \langle \phi_q, v_q \rangle = \langle \overline{\varphi}_0 (\phi_q), T_q\pi_J (v_q) \rangle$,所以对于

任意 $g \in G_m$ 及任意 $\phi_a \in (J^*)^{-1}(\xi^*)$,有 $\overline{\varphi}_0(g \cdot \phi_a) = \overline{\varphi}_0(\phi_a)$ 。

下面说明 $\overline{\varphi}_0$ 是满射。如果 $\Gamma_{[q]} \in T_{[q]}^* \left(J^{-1}(m) / G_m \right)$,其中 $[q] := \pi_J(q)$ 。我们定义 $\phi_q \in \left(J^* \right)^{-1} (0_m)$ 使得 $\left\langle \phi_q, v_q \right\rangle := \left\langle \Gamma_{[q]}, T_q \pi_J (v_q) \right\rangle$,那么 $\overline{\varphi}_0 \left(\phi_q \right) = \Gamma_{[q]} \circ$ 从而 $\overline{\varphi}_0$ 诱导 C^∞ 满射 $\varphi_0 : \left(J^* \right)^{-1} (0_m) / G_m \to J^{-1}(m) / G_m$,满足 $\varphi_0 \circ \pi_0 = \overline{\varphi}_0$ (其中 $\pi_0 : \left(J^* \right)^{-1} (0_m) \to \left(J^* \right)^{-1} (0_m) / G_m$)。

下面说明 φ_0 是单射。 取 $\phi_q, \phi_q' \in (J^*)^{-1}(\xi^*)$ 满足 $\overline{\varphi}_0(\phi_q) = \varphi_0(\pi_0(\phi_q)) = \varphi_0(\pi_0(\phi_q')) = \overline{\varphi}_0(\phi_q')$ 。 从而有 $g \in G_m$ 使得 $q' = g \cdot q$ 。 因为 $J^*(g \cdot \phi_q) = Ad_{g^{-1}}^*J^*(\phi_q) = 0$ 可知 $g \cdot \alpha_q, \alpha_{q'} \in (J^*)^{-1}(0_m) \cap T_{q'}^*N$ 。 由于 φ_0 是 G_m 不变的,则 $\overline{\varphi}_0(g \cdot \phi_q) = \overline{\varphi}_0(\phi_{q'})$,即对于任意 $v_{q'} \in T_{q'}N$ 有 $\langle g \cdot \phi_q, v_{q'} \rangle = \langle \phi_{q'}, v_{q'} \rangle$ 。 因此 $\phi_{q'} = g \cdot \phi_q$,从而 $\pi_0(\phi_{q'}) = \pi_0(\phi_q)$ 。

下面说明 φ_0 是辛映射。令 θ_{can} 为 $T^* \left(J^{-1}(m) / G_m \right)$ 的典范 1-形式, Θ_{can} 为 $T^* J^{-1}(m)$ 的典范 1-形式, $i_0: \left(J^* \right)^{-1} \left(0_m \right) \to T^* J^{-1}(m)$ 为包含映射, $\pi_0: \left(J^* \right)^{-1} \left(0_m \right) \to \left(J^* \right)^{-1} \left(0_m \right) / G_m$ 为商投影。 $\pi_{J^{-1}(m) / G_m}: T^* \left(J^{-1}(m) / G_m \right) \to J^{-1}(m) / G_m$ 为余切丛投影,显然有 $\pi_{J^{-1}(m) / G_m} \circ \overline{\varphi}_0 = \pi_J \circ \pi_{J^{-1}(m)} \circ i_0$ 。 取 $\phi_a \in \left(J^* \right)^{-1} \left(0_m \right), v \in T_\delta \left(J^* \right)^{-1} \left(0_m \right)$,则

$$\begin{split} \left\langle \left(\pi_{0}^{*}\varphi_{0}^{*}\theta_{can}\right)\!\left(\phi_{q}\right),v\right\rangle &= \left\langle \left(\overline{\varphi_{0}}^{*}\theta_{can}\right)\phi_{q},v\right\rangle = \left\langle \theta_{can}\left(\overline{\varphi_{0}}\left(\phi_{q}\right)\right),T_{\phi_{q}}\overline{\varphi_{0}}\left(v\right)\right\rangle \\ &= \left\langle \overline{\varphi_{0}}\left(\phi_{q}\right),T_{\overline{\varphi_{0}}\left(\phi_{q}\right)}\pi_{\left(J^{*}\right)^{-1}\left(0_{m}\right)}\left(T_{\phi_{q}}\overline{\varphi_{0}}\left(v\right)\right)\right\rangle \\ &= \left\langle \overline{\varphi_{0}}\left(\phi_{q}\right),T_{\phi_{q}}\left(\pi_{\left(J^{*}\right)^{-1}\left(0_{m}\right)}\circ\overline{\varphi_{0}}\right)\!\left(v\right)\right\rangle \\ &= \left\langle \overline{\varphi_{0}}\left(\phi_{q}\right),T_{\phi_{q}}\left(\pi_{J}\circ\pi_{J^{-1}\left(m\right)}\circ i_{0}\right)\!\left(v\right)\right\rangle \\ &= \left\langle \overline{\varphi_{0}}\left(\phi_{q}\right),T_{q}\pi_{J}\left(T_{\phi_{q}}\pi_{J^{-1}\left(m\right)}\left(v\right)\right)\right\rangle \\ &= \left\langle \phi_{q},T_{\phi_{q}}\pi_{J^{-1}\left(m\right)}\left(v\right)\right\rangle = \left\langle i_{0}^{*}\Theta\left(\phi_{q}\right),v\right\rangle \end{split}$$

故 $\pi_0^* \varphi_0^* \theta_{can} = i_0^* \Theta_{can}$ 。 因此 $\pi_0^* \varphi_0^* w_{can} = i_0^* \Omega_{can}$, 其中 w_{can} , Ω_{can} 分别为 $T^* \left(J^{-1}(m) / G_m \right)$, $T^* \left(J^{-1}(m) \right)$ 的典范辛形式。由辛约化定理可知, $\varphi_0^* w_{can} = \Omega_0$, 其中 Ω_0 为 $\left(J^* \right)^{-1} \left(0_m \right) / G_m$ 的约化辛形式。

因此 $\varphi_0: (J^*)^{-1}(0_m)/G_m \to T^*(J^{-1}(m)/G_m)$ 为光滑辛双射。因为辛映射为浸入映射,故 φ_0 为浸入映射。由维数比较有

$$\dim(J^*)^{-1}(0_m)/G_m = 2\dim J^{-1}(m) - 2\dim G_m = \dim T^*(J^{-1}(m)/G_m),$$

故 φ_0 为局部微分同胚映射。又由于 φ_0 为双射,从而 φ_0 为微分同胚映射。

参考文献

- [1] Arnold, V. (1966) Sur la gèométrie diffèrentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. *Annales de l'Institut Fourier*, **16**, 319-361. https://doi.org/10.5802/aif.233
- [2] Smale, S. (1970) Topology and Mechanics. I. *Inventiones Mathematicae*, 10, 305-331. https://doi.org/10.1007/BF01418778
- [3] Meyer, K.R. (1973) Symmetries and Integrals in Mathematics. Dynamical Systems, Academic Press, New York, 259-272. https://doi.org/10.1016/B978-0-12-550350-1.50025-4
- [4] Marsden, J. and Weinstein, A. (1974) Reduction of Symplectic Manifolds with Symmetry. Reports on Mathematical

- Physics, 5, 121-130. https://doi.org/10.1016/0034-4877(74)90021-4
- [5] Marsden, J.E., Misiolek, G., Ortega, J.P., et al. (2007) Hamiltonian Reduction by Stages. Springer, New York, 1-64.
- [6] Mackenzie, K.C.H. (2005) General Theory of Lie Groupoids and Lie Algebroids. Cambridge University Press, New York. https://doi.org/10.1017/CBO9781107325883
- [7] da Silva, A.C. (2008) Lectures on Symplectic Geometry. Springer, New York, 7-22. https://doi.org/10.1007/978-3-540-45330-7
- [8] Mikami, K. and Weinstein, A. (1988) Moments and Reduction for Symplectic Groupoids. *Publications of the Research Institute for Mathematical Sciences*, **24**, 121-140. https://doi.org/10.2977/prims/1195175328