导函数的极限与函数渐近线的关系

成凯歌

浙江旅游职业学院公共教学部，浙江 杭州

收稿日期: 2023年11月9日；录用日期: 2023年12月11日；发布日期: 2023年12月20日

摘要

导函数作为一类非常重要的函数，其自身具有一些独特的性质，在研究函数过程中起到了重要的作用。函数的渐近线同样也是函数性质的一个重要表现。导函数是否具有水平渐近线刻划的就是导函数在在自变量趋向无穷大时是否有极限的问题。通过对函数及导函数极限的讨论，获得函数具有水平渐近线和导函数具有水平渐近线的关系，以及函数，导函数，二阶导数和三阶导数具有水平渐近线的条件，此外，对已有的一些研究结果进行了改进。

关键词

函数，导函数，极限，渐近线

Relationships between the Limits of Derivative Functions and the Asymptotes of Functions

Kaige Cheng

Department of Public Teaching, Tourism College of Zhejiang, Hangzhou Zhejiang

Received: Nov. 9th, 2023; accepted: Dec. 11th, 2023; published: Dec. 20th, 2023

Abstract

The derivative function is one of very important function, it not only has some unique properties, but also plays a very important role in studying functions. The asymptote of the function is also an important expression of the functional properties. Whether the derivative function has a horizontal asymptote is equivalent to the question that whether the derivative function has a limit when the independent variable tends to infinity. Through discussing the limits of the function and the derivative function, we obtain the relationship between the function has horizontal asymptote and
the derivative function has horizontal asymptote, moreover, we obtain the conditions of the function, the derivative, the second derivative and the third derivative having the horizontal asymptote. In addition, one of the existing research results is improved.

Keywords
Function, Derivative Function, Limit, Asymptote
导数，记作 f',y' 或 $\frac{dy}{dx}$ [1]，即

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}, \quad x \in I.$$

函数 $y = f(x)$ 的导函数 $f'(x)$ 由原函数 $f(x)$ 产生，如果函数 $f(x)$ 有导函数 $f'(x)$，那么通过讨论 $f'(x)$，可以揭示函数 $f(x)$ 的性质。此外，导函数 $f'(x)$ 本身的性质也很值得讨论和研究，结合极限的重要意义，许多学者对讨论导函数的极限都给出研究成果[2]-[9]。

许智勇和赵曾云[11]讨论了导函数在一点的极限和单侧极限问题，假设函数 $y = f(x)$ 在 $U(x_0, \delta)$ 内连续，在 $U^+(x_0, \delta)$ 内可导，那么，(1) 如果 $\lim_{x \to x_0^+} f'(x)$ 存在且有限，则 $y = f(x)$ 在 $x = x_0$ 处可导，且 $f'(x_0) = \lim_{x \to x_0^+} f'(x)$；(2) 如果 $\lim_{x \to x_0^-} f'(x)$ 存在且有限，则 $y = f(x)$

在 $x = x_0$ 处右(左)可导，且 $f'(x_0) = \lim_{x \to x_0^+} f'(x)\left(= \lim_{x \to x_0^-} f'(x)\right)$。

许智勇和赵曾云[11]还讨论了导函数在极限和函数水平渐近线的关系问题，指出在 $(-\infty, +\infty)$ 上的可导函数 $f(x)$ 的导函数 $f'(x)$ 的极限不总是 $\lim_{x \to \pm\infty} f'(x) = 0$，其中 $x \to \infty$ 还包括 $x \to +\infty$ 或 $x \to -\infty$ 的情形；在 $(-\infty, +\infty)$ 上的可导函数 $f(x)$ 的导函数 $f'(x)$ 的极限不总是 $\lim_{x \to \pm\infty} f'(x) = k$，其中 $x \to \infty$ 还包括 $x \to +\infty$ 或 $x \to -\infty$ 的情形。

陆毅[12]和王小强[14]讨论了导函数的间断点问题，设函数 $f(x)$ 在 (a, b) 在上连续，$c \in (a, b)$，$f(x)$ 在 $(a, c) \cup (c, b)$ 上可导，若 $x = c$ 是 $f'(x)$ 的跳跃间断点，则 $f(x)$ 在 $x = x_0$ 处不可导。

2. 主要结果及讨论

许智勇和赵曾云在文[11]中给出在 $(-\infty, +\infty)$ 上的可导函数 $f(x)$ 具有水平渐近线的充分条件是 $\lim_{x \to \pm\infty} f'(x) = 0$，这是在 $(-\infty, +\infty)$ 上的可导函数 $f(x)$ 具有水平渐近线的充分条件是 $\lim_{x \to \pm\infty} f'(x) = 0$。事实上，这个充分条件值得商榷。$\lim_{x \to \pm\infty} f'(x) = k$ 既不是在 $(-\infty, +\infty)$ 上的可导函数 $f(x)$ 具有斜率为 k 的渐近线的充分条件，也不是必要条件；特别地，$\lim_{x \to \pm\infty} f'(x) = 0$ 既不是在 $(-\infty, +\infty)$ 上的可导函数 $f(x)$ 具有水平渐近线的充分条件，也不是必要条件。

例 1 设 k 为常数，令

$$f(x) = \begin{cases} 0, & x \in [1, +\infty), \\ kx + x^3 - \frac{2}{3}, & x \in (-1, 1), \\ kx + x + \frac{2}{3}, & x \in (-\infty, -1]. \end{cases}$$

则容易验证 $f(x)$ 在 $(-\infty, +\infty)$ 上的可导，且

$$f'(x) = \begin{cases} k + \frac{1}{3} x^2, & x \in (-\infty, -1] \cup [1, +\infty), \\ k + \frac{1}{3}, & x \in (-1, 1]. \end{cases}$$
虽然有 \(\lim_{x \to \infty} f'(x) = k \)，但由 \(\lim_{x \to \infty} \frac{f(x)}{x} = k \)，及 \(\lim_{x \to \infty} [f(x) - kx] = \infty \)，可得 \(f(x) \) 没有斜率为 \(k \) 的渐近线。

特别地，当 \(k = 0 \) 时，就有函数

\[
 f(x) = \begin{cases}
 x^3 - \frac{2}{3}, & x \in [1, +\infty), \\
 \frac{1}{3}x, & x \in (-1, 1), \\
 \frac{x^3}{2}, & x \in (-\infty, -1]
\end{cases}
\]

满足 \(\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} f''(x) = 0 \)，但 \(f(x) \) 没有水平渐近线。

例 2 设 \(k \) 为常数，令

\[
 f(x) = \begin{cases}
 kx + \frac{\sin x^2}{x}, & x \neq 0, \\
 0, & x = 0.
\end{cases}
\]

当 \(x \neq 0 \) 时，\(f(x) \) 可导是明显的，当 \(x = 0 \) 时，由于

\[
 \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \left(k + \frac{\sin x^2}{x^2} \right) = k + 1,
\]

从而，\(f(x) \) 是 \((-\infty, +\infty) \) 上的可导函数，并且由 \(\lim_{x \to 0} \frac{f(x)}{x} = k \)，以及 \(\lim_{x \to \infty} [f(x) - kx] = \lim_{x \to \infty} \frac{\sin x^2}{x} = 0 \)，得 \(f(x) \) 具有斜率为 \(k \) 的渐近线 \(y = kx \)，但由

\[
 f'(x) = \begin{cases}
 k + \frac{2x^2 \cos x^2 - \sin x^2}{x^2}, & x \neq 0, \\
 k + 1, & x = 0,
\end{cases}
\]

可得 \(\lim_{x \to \infty} f'(x) \) 不存在。特别地，函数

\[
 f(x) = \begin{cases}
 \sin x^2, & x \neq 0, \\
 0, & x = 0.
\end{cases}
\]

有水平渐近线，但 \(\lim_{x \to \infty} f'(x) \) 不存在。

定理 1 如果 \(f(x) \) 是区间 \([a, +\infty) \) 上的有界可导函数，则在 \([a, +\infty) \) 上存在数列 \(x_n \to +\infty (n \to +\infty) \)，使得 \(\lim_{n \to +\infty} f'(x_n) = 0 \)。

证明 对任意正整数 \(n (>a) \)，根据已知条件，有 \(f(x) \) 在区间 \([n, 2n] \) 上满足拉格朗日中值定理的条件，因此，存在 \(\xi_n \in [n, 2n] \)，使得

\[
 f(2n) - f(n) = f'\left(\xi_n \right) (2n - n) = f'(\xi_n) n,
\]

一方面，由于 \(n \leq \xi_n \leq 2n \)，可得 \(x_n weak \to +\infty \) \((n \to +\infty)\)，另一方面，由 \(f(x) \) 是区间 \([a, +\infty) \) 上的有界函数，因此，存在常数 \(M > 0 \)，使得 \(|f(x)| < M \) 对一切 \(x \in [a, +\infty) \) 成立，进而，有

\[
 |f'(\xi_n)| = \left| \frac{f(2n) - f(n)}{n} \right| < \frac{2M}{n} \to 0 (n \to +\infty),
\]

所以，\(\lim_{n \to +\infty} f'(x_n) = 0 \) 成立。
定理 2 设 \(f(x) \) 是区间 \((-\infty, +\infty) \) 上的可微函数。如果 \(\lim_{x \to +\infty} f'(x) \) 存在且有限， 则 \(\lim_{x \to +\infty} f(x) \) 存在且有限的必要条件是 \(\lim_{x \to +\infty} f'(x) = 0 \)。

证明 假设 \(\lim_{x \to +\infty} f'(x) = k \)。如果 \(\lim_{x \to +\infty} f(x) = a \) 存在，令 \(n \) 为任意正整数，则有 \(\lim_{n \to +\infty} f(n) = a \)。根据拉格朗日中值定理，存在 \(\xi_n \in (n, n + 1) \)，使得
\[
f(n+1) - f(n) = f'(\xi_n)(n+1-n) = f'(\xi_n),
\]
因此，
\[
\lim_{n \to +\infty} f'(\xi_n) = \lim_{n \to +\infty} [f(n+1) - f(n)] = \lim_{n \to +\infty} f(n+1) - \lim_{n \to +\infty} f(n) = 0,
\]
根函数极限和数列极限的关系，有 \(k = \lim_{x \to +\infty} f'(x) = 0 \)。

定理 2 表明，在区间 \((-\infty, +\infty) \) 上的可微函数 \(f(x) \)，如果其导数 \(f'(x) \) 有水平渐近线，那么函数 \(f(x) \) 有水平渐近线的必要条件是导数 \(f'(x) \) 以 \(x \) 轴为水平渐近线。

定理 3 设 \(f(x) \) 在区间 \((-\infty, +\infty) \) 上可微，如果存在正常数 \(p > 0 \)，使得
\[
\lim_{x \to +\infty} \frac{1}{p} e^p f(x) = A,
\]
则\(\lim_{x \to +\infty} f(x) = A \)，\(\lim_{x \to +\infty} f'(x) = 0 \)。

证明 利用洛必达法则，则
\[
\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{e^{\frac{x}{p}} f(x)}{e^{\frac{x}{p}}} = \lim_{x \to +\infty} \frac{\left(\frac{x}{p} \right)^{\frac{x}{p}} f(x)}{\left(\frac{x}{p} \right)^{\frac{x}{p}}} = \lim_{x \to +\infty} \frac{1}{p} e^p f(x) + \frac{1}{p} e^p f'(x)
\]
\[
= \lim_{x \to +\infty} \left[f(x) + pf'(x) \right] = A.
\]
由此，\(\lim_{x \to +\infty} pf'(x) = 0 \)，进而，有 \(\lim_{x \to +\infty} f'(x) = 0 \)。

类似地，可得如下定理 4 及推论 1 和推论 2。

定理 4 设 \(f(x) \) 在区间 \((-\infty, +\infty) \) 上可微，如果存在负常数 \(p < 0 \)，使得
\[
\lim_{x \to +\infty} \left[f(x) - pf'(x) \right] = A,
\]
则\(\lim_{x \to +\infty} f(x) = A \)，\(\lim_{x \to +\infty} f'(x) = 0 \)。

推论 1 假设 \(f(x) \) 在区间 \((-\infty, +\infty) \) 上可微，如果 \(\lim_{x \to +\infty} \left[f(x) + f'(x) \right] = A \)，则
\[
\lim_{x \to +\infty} f(x) = A \)，\(\lim_{x \to +\infty} f'(x) = 0 \)。

推论 2 假设 \(f(x) \) 在区间 \((-\infty, +\infty) \) 上可微，如果 \(\lim_{x \to +\infty} \left[f(x) - f'(x) \right] = A \)，则
\[
\lim_{x \to +\infty} f(x) = A \)，\(\lim_{x \to +\infty} f'(x) = 0 \)。

上述定理 3 和定理 4 表明：假设 \(f(x) \) 在区间 \((-\infty, +\infty) \) 上可微，如果存在正常数 \(p > 0 \)，使得
\[
\lim_{x \to +\infty} \left[f(x) + pf'(x) \right] = A \)，或者如果存在负常数 \(p < 0 \)，使得
\[
\lim_{x \to +\infty} \left[f(x) - pf'(x) \right] = A \)，那么 \(f(x) \) 和 \(f'(x) \) 都有水平渐近线，而且 \(f'(x) \) 的水平渐近线是 \(x \) 轴。

定理 5 设 \(f(x) \) 在区间 \((a, +\infty) \) 上有三阶导数，如果 \(\lim_{x \to +\infty} f(x) \) 和 \(\lim_{x \to +\infty} f''(x) \) 都存在且有限，则
\[
\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} f''(x) = \lim_{x \to +\infty} f'''(x) = 0.
\]

证明 由已知条件及洛必达法则，有

DOI: 10.12677/pm.2023.1312357 3451 理论数学
\[
\lim_{x \to +\infty} \left[f(x) - f'(x) + f''(x) \right] \\
= \lim_{x \to +\infty} \frac{e^x \left(f(x) - f'(x) + f''(x) \right)}{e^x} = \lim_{x \to +\infty} \frac{e^x \left(f(x) - f'(x) + f''(x) \right)}{e^x} \\
= \lim_{x \to +\infty} \frac{e^x \left(f(x) - f'(x) + f''(x) \right) + e^x \left(f''(x) - f''(x) + f'''(x) \right)}{e^x} \\
= \lim_{x \to +\infty} \left[f(x) - f'(x) + f''(x) + f''(x) + f'''(x) \right] \\
= \lim_{x \to +\infty} \left[f(x) + f'''(x) \right]
\]

存在，于是，结合 \(\lim f'(x) \) 存在且有限，有

\[
\lim_{x \to +\infty} \left[-f'(x) + f''(x) \right] = \lim_{x \to +\infty} f'''(x) \quad (2)
\]

成立。由洛必达法则，结合 \(\lim_{x \to +\infty} \frac{-f(x)}{x} = 0 \) 和(2)式，有

\[
\lim_{x \to +\infty} \frac{f'(x)}{x} = \lim_{x \to +\infty} \frac{-f(x) + f'(x)}{x} = \lim_{x \to +\infty} \frac{-f(x) + f'(x)}{x'} = \lim_{x \to +\infty} \left[-f'(x) + f''(x) \right] = \lim_{x \to +\infty} f'''(x)
\]

存在，假如

\[
\lim_{x \to +\infty} \frac{f'(x)}{x} = \lim_{x \to +\infty} f'''(x) = b \neq 0,
\]

不妨设 \(b > 0 \)，那么，存在 \(x_0 > b > 0 \)，当 \(x > x_0 \) 时，都有 \(\frac{f'(x)}{x} > b > 0 \)，即有 \(f'(x) > b \) 时，于是，当 \(x > x_0 \) 时，有

\[
f(x) - f(x_0) - \frac{b}{4}(x^2 - x_0^2) = \int_{x_0}^{x} f'(t) \, dt - \frac{b}{2} \int_{x_0}^{x} t \, dt = \left[f'(t) - \frac{b}{2} t \right] \, dt \geq 0.
\]

那么，有

\[
f(x) \geq f(x_0) + \frac{b}{4}(x^2 - x_0^2),
\]

这必然导致 \(\lim f(x) = +\infty \)，与已知 \(\lim f(x) \) 存在且有限矛盾。因此，必有

\[
\lim_{x \to +\infty} \frac{f'(x)}{x} = \lim_{x \to +\infty} f'''(x) = 0 \quad (3)
\]

成立。再利用洛必达法则，结合(2)和(3)式，有

\[
\lim_{x \to +\infty} \left[f''(x) - 2f''(x)\right] = \lim_{x \to +\infty} \frac{e^x \left[f''(x) - 2f''(x)\right]}{e^x} = \lim_{x \to +\infty} \frac{e^x \left[f''(x) - 2f''(x)\right] + e^x \left[f'''(x) - 2f''(x)\right]}{e^x} = \lim_{x \to +\infty} \left[f''(x) - f''(x) - 2f''(x)\right] - 3 \lim_{x \to +\infty} f'''(x) = 0
\]
再结合（2）和（3）式，得
\[
\lim_{x \to +\infty} \left[-f'(x) + f''(x) + f''(x) - 2f''(x) \right] = \lim_{x \to +\infty} f''(x) - 3 \lim_{x \to +\infty} f''(x) = -2 \lim_{x \to +\infty} f''(x) = 0 ,
\]
即有 \(\lim_{x \to +\infty} f''(x) = 0 \)，于是，有 \(\lim_{x \to +\infty} f'(x) = 0 \)。由（2）和（3）式，又得 \(\lim_{x \to +\infty} f'(x) = 0 \)，从而，（1）式得证。

定理 6 设 \(f(x) \) 在区间 \((-\infty, a)\) 上有三阶导数，如果 \(\lim_{x \to -\infty} f'(x) \) 和 \(\lim_{x \to -\infty} f''(x) \) 都存在且有限，则
\[
\lim_{x \to -\infty} f'(x) = \lim_{x \to -\infty} f''(x) = \lim_{x \to -\infty} f'''(x) = 0 .
\]

证明 将 \(f(x) \) 看作是 \(f_1(u) = f(-u) \) 以及 \(u = -x \) 得复合，则
\[
f'(x) = -f'_1(u) , \quad f''(x) = f''_1(u) , \quad f'''(x) = -f'''_1(u) .
\]
对 \(f_1(u) \) 应用定理 5，即可得（4）式成立。

定理 5 和定理 6 表明，对于定义在区间 \((-\infty, +\infty)\) 上的函数 \(f(x) \)，如果 \(f'(x) \) 和 \(f''(x) \) 都有水平渐近线，那么函数 \(f''(x) \) 、\(f'''(x) \) 和 \(f''''(x) \) 都以 \(x \) 轴为水平渐近线。

定理 7 设 \(f(x) \) 在区间 \((-\infty, +\infty)\) 上有 \(n+1 \) 阶导数，证明：如果 \(\lim_{x \to +\infty} f(x) \) 和 \(\lim_{x \to +\infty} f^{(n+1)}(x) \) 都存在且有限，则
\[
\lim_{x \to +\infty} \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) = 0 .
\]

证明 考虑函数 \(F(x) = \sum_{k=0}^{n} (-1)^k f^{(k)}(x) \)，因为
\[
\lim_{x \to +\infty} \left(\frac{e^x F(x)}{e^x} \right)' = \lim_{x \to +\infty} \left[F(x) + F'(x) \right] = \lim_{x \to +\infty} \left[\sum_{k=0}^{n} (-1)^k f^{(k)}(x) + \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) \right]
\]
\[
= \lim_{x \to +\infty} \left[f(x) + \sum_{k=0}^{n} (-1)^k f^{(k)}(x) + \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) \right]
\]
\[
= \lim_{x \to +\infty} \left[f(x) + \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) + \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) \right]
\]
\[
= \lim_{x \to +\infty} \left[f(x) + (\sum_{k=0}^{n} (-1)^k f^{(k+1)}(x)) \right]
\]
存在，由洛必达法则，
\[
\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \frac{e^x F(x)}{e^x} = \lim_{x \to +\infty} \left(\frac{e^x F(x)}{e^x} \right)' = \lim_{x \to +\infty} \left[F(x) + F'(x) \right] = \lim_{x \to +\infty} \left[f(x) + (\sum_{k=0}^{n} (-1)^k f^{(k+1)}(x)) \right]
\]
存在，于是，
\[
\lim_{x \to +\infty} F'(x) = \lim_{x \to +\infty} \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) = \lim_{x \to +\infty} \left[F(x) + F'(x) \right] - \lim_{x \to +\infty} F(x) = 0 .
\]

推论 如果定理 7 的条件成立，则 \(\lim_{x \to +\infty} \sum_{k=0}^{n} (-1)^k f^{(k)}(x) \) 存在，且有
\[
\lim_{x \to +\infty} \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) = \lim_{x \to +\infty} (\sum_{k=0}^{n} (-1)^k f^{(k+1)}(x)) = \lim_{x \to +\infty} (-1)^n f^{(n+1)}(x) .
\]
事实上，由 \(\lim_{x \to +\infty} \sum_{k=0}^{n} (-1)^k f^{(k+1)}(x) = 0 \)，得 \(\lim_{x \to +\infty} \left[\sum_{k=0}^{n-1} (-1)^k f^{(k+1)}(x) + (\sum_{k=0}^{n} (-1)^k f^{(k+1)}(x)) \right] = 0 \)，那么，
$$\lim_{x \to +\infty} \left[\sum_{k=0}^{n} (-1)^{k+1} f^{(k+1)}(x) - (-1)^{n} f^{(n+1)}(x) \right] = (-1)^{n} \lim_{x \to +\infty} \left[\sum_{k=0}^{n} (-1)^{k} f^{(k+1)}(x) + (-1)^{n} f^{(n+1)}(x) \right] = 0,$$

则有

$$\lim_{x \to +\infty} \sum_{k=0}^{n} (-1)^{k} f^{(k)}(x) = \lim_{x \to +\infty} \sum_{k=0}^{n} (-1)^{k+1} f^{(k+1)}(x) = \lim_{x \to +\infty} (-1)^{n} f^{(n+1)}(x).$$

3. 总结

函数在自变量趋向于无穷大时是否存在极限的问题其实是函数是否存在水平渐近线的问题。本文首先举例说明对函数具有渐近线和其导函数具有水平渐近线的一个已有充要条件提出值得进一步讨论的理由。然后通过研究函数存在水平渐近线和导函数存在水平渐近线，获得函数具有水平渐近线和导函数具有水平渐近线的一个条件，并且进一步讨论了二阶导数和三阶导数具有水平渐近线的一个条件，此外，还研究了在高阶导数具有水平渐近线的条件下，函数和各阶导数一个线性组和的极限问题。所有获得的结果填补了以往对函数渐近线和导函数渐近线研究的一个空白。但本文研究的导函数、二阶导数和三阶导数具有的水平渐近线都仅仅是 x 轴，对于是否还有其它条件使得导函数、二阶导数和三阶导数具有 x 轴这个水平渐近线，对于在什么条件下导函数、高阶导数具有更一般的水平渐近线，以及在什么条件下导函数、高阶导数具有斜渐近线将成为进一步研究的重要方向。此外，高阶导数更一般的线性组和的极限问题应该还有更多值得思考的内容，同样将进一步开展研究。

基金项目

浙江旅游职业学院优质课程资助项目(2017ZLY012)。

参考文献