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Abstract

H,/CO, separation is a critical step in producing clean energy and reducing greenhouse gas emis-
sions, which is essential for achieving sustainable development and addressing climate change chal-
lenges. Conventional separation technologies are often energy-intensive, whereas membrane sep-
aration technology has attracted significant attention due to its energy efficiency, operational
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simplicity, and scalability. Metal-organic framework (MOF) membranes, with their highly ordered
pore structures, tunable pore sizes, and adjustable chemical environments, offer a revolutionary
platform to overcome the upper bound of the “permeability-selectivity” trade-off faced by tradi-
tional polymer membranes. This review summarizes different types of MOF membranes, including
polycrystalline continuous membranes, mixed-matrix membranes (MMMs), and two-dimensional
MOF (2D-MOF) membranes, highlighting their characteristics and advantages while clarifying their
optimal operating conditions. Key issues in membrane design are discussed, such as multi-phase
design, microstructure control, and separation mechanisms. Finally, the main challenges and future
research prospects for MOF membranes in H, and CO, separation are outlined.
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Figure 1. Schematic of the major mechanisms of H2/CO: separation
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Figure 2. The structure of ZIF-L membrane along two crystalline orientations and models for the transport of Ho/CO2 through
the interlayer channels (part i) or intralayer pores (part ii)
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Figure 3. The in situ synthesis process of the ZrPP membrane
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Figure 4. Schematic of the crystalline ZIFs and polymer-incorporated amorphous ZIFs MMMs
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Figure 5. Schematic of the MMM prepared by a solid-solvent processing method
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Figure 6. A schematic diagram illustrating the fabrication process of CuBDC-GO composite membrane based
on an assembly strategy
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Figure 7. Schematic illustration of the partial functional substitution in Zn2(bim)4 via a 5-ambim ligand
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