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Abstract

Hydrogen peroxide (Hz202), as a green and efficient oxidant, is widely used in chemical synthesis,
environmental treatment, and biomedicine, etc. However, the traditional anthraquinone method
has the drawbacks of high energy consumption and significant pollution. Photocatalytic production
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of H20: utilizes solar energy and photocatalysts to drive the reduction of Oz and oxidation of water
to generate Hz20z, which is a promising green approach. Covalent organic frameworks (COFs) have
become ideal materials for photocatalytic production of H202 due to their adjustable structures,
large specific surface areas, stable conjugation, and easy structural regulation. This paper reviews
the photocatalytic mechanism, design strategies, and optimization directions of COFs, analyzes the
challenges such as stability and cost, and summarizes several representative design strategies and
shortcomings of COFs for photocatalytic production of Hz02 from 2020 to 2025. It looks forward to
the precise design and practical application of COFs, providing reference for the development of
COFs in the field of photocatalytic production of H20:.
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AR L0 2“4 (LT IRE, =IO K AR, EEANEN . R, GHLE RS
FUEA AT BB 1], H8 €2025 FE4Ek Ho0, i3 di sl ) » EBRTREB K RIE 52%, B EGH]& 757 E
I REERE L A REIR(REAE 7 1 W HoO0 75 0.8 MiARAESE) (2], HPAEFHULM: TG EMEIR
F 2 AR R ISR BH 8 33X 50 O XU HL F38 5 (2e~ ORR) Bl i 7K XU T 484 (2e” WOR)A: B H,05 [3],
TG AR L T Mkt IRREREMIN TS, Je i Al SR UTE AE il HaO0 SR I G BR AT o AL SO
BHUT TiO2. g-C3Na) [4] [SIAFFEGIE B BBl AR (R A0 ) 80 + E & E(>70%) O WPt g /155 (Wb
it <—0.2eV)5F R H[6] [7]. COFs M I Ay — 4ty K 5 mk . F AL Z LKL, COFs B4 =Kz
P ——GE W mT R ORS A 4% FLIE R ST 5 TR ) i ELER TN AR (- 4E COFs LR AR AIIA 2000 m?-g '),
FEHEARE (IR B F-AE4) [8] [9]. FHIL COF JefEAL AR & N EVGIRZIM ALY RE, JF el T3
7 () ZHL ZFUNE SRR S ) Vv R RR I, S T LT RS R IR TIE R 2R, LAk B T LB R SR B B
UeAh, T AT/ FAHESE, COFs fuvixf g s s A AL s AT RO, EJ6iEAA R Ha00 4
ORI BRIV JI[10] [11]e ARSCHET 2020~2025 FORF L, &g T LR IR COFs M aH i & it
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T HoOo A2 77 I B R BT LA Gy N =ANELE R 73 . B 28, e IBOGR FEIOE+. B
ST Re BRI FIR T BR(E) T, B M (VB)BUR B S (CB) [12]. FLIR, B IOR B HLF A
BEP= A I 2 RAE AR W SRR S AL A5 [13]. WOR G, PRI O B AT, 2 it [R]
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[15], I HIXPRR B [E I A2 AR st B e AR B RSB BRI R
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Figure 1. Reaction potentials corresponding to ORR and
WOR during H20: production
B 1. &= H0, Bt ORR 1 WOR X Ri K& R %

Hy00 A BT FE BT I ) ORR A1 WOR X B AL U0 1 Fiom. iR3E R MIRIAAE S TS, 2¢” ORR
A N E AR B IR0 . N T8I 2¢” ORR IB12 LIRS Ha0,, JGHEAL TS (CB) FEL A7 0 i )

DOI: 10.12677/aac.2026.161001

3 Tk


https://doi.org/10.12677/aac.2026.161001

£ 0.68 V LA T o 2¢” ORR ¥ [AJ45 % A% 38 5 9 S (A4 (1 28 ORI i AL o FE 3 EE A2, O B il N <O;
EA, SR JE XA AR 28 0 BT A AE— 20 1 S B B 22 i HaOn N 1 SEIRIX — 3 F%, Dt E57I CB
FA I 75 ZUET-0.33 V, LLIKZ) O, FLH TR R AN <O, o AHE T W LT E 1, BARMBHRATE T (A
Wy F BEABORRRGEE, EW AR R RS T s ER . MR, 2e” WOR A/ H
P& . B 2¢ B 4% WOR 27 Ho0, BT 7 OGHEAG R AN 7 (VB) L3 Hi F A28 T 1.76
V. M2 R, @i 2e i WOR 7= Hy0, T 75 (1) VB HAHS AU 2.73 V[16]. [FIRF, Hial#E
WAL, 2e B WOR Al ORR BB 22035, (HERZ 2 1124038 [17]. 1E B H0, 7= A Ay
BEREMRE, 4e WOR K EHM HyOp AR R AFRE M . X FHIEBL AT AR T8 5 R R 1 2
ORR 354+, YL HyO0 AT O YENIE KL, 4e” WOR J4E HoO A2 00 S5 O) MBI AL, %
ik 7 2¢” ORR WHM O RFEZ. AR, 4e- WOR {HFERER Ho0, X gl HEa, (A 2¢
ORR ffJidtfE. B4k, 4e” WOR F=AE (1) O, W] REE T Btk [ NHEAL HoOn IR R, A T 4 H0, 1)
BIFER, PR 2 IR MR BVt A OGHT AT E R

3. St H20: B9 COFs #RHE T 5Rmg

COFs HJZE kBt 2 SEIL i RO HEAL P HaOa B0y, W SR, $R15 HaOp 7 FR A NS 45 70 7 T
FE. T COF [R5 5 45 4 I A A AR 5 A (R R 9 18] [ A BRI “RG R = BC iR SR 3o
IR A BRSNS s SINThRER T, HREE S RES T Bt IEIA RSEIT R 7 2 RIREML COFs, BFxi gtk
O MR IR+ A7 e S A i kv

3.1. RAERGKRBALEFSILESH

Tang %5 B PA[19]R VR G O AL 50 SRM % PR 2 B fs, BIGH 2R — O RR(TA) AN 2,5-— (M -2-5%)
XK HR(DTTA)Y 2,4,6- = HHE-1,3,5- =B (TMT) LU il 1 LU FL 3R 6, TR RS B HER 1 — 4EREZE
TA/DTTA-2-TMT. Z &l 7FLIER (1.5 nm, 3&& 0¥ #0), HLRIEAEETE 1800 m>g™'; [HK,
WEEWY PTG 1 5 N R R 3k T AR B T 0 B, AR IR AR S A T O AR B T E A 20 [21], A
T3 2.1 ns K ZE 43 ns, GIMTEZHHETSE M, RALH H0, A BUEA 3451 pmol-g -h s

BIRTRA BRSNS B8 A AL T 5 FLIE 451, (H1Z 1 1T SR T i COFs AR 5 ThREVE I 58«
IR A BRSNS 75T HT “ KM 5 “455E” RIMERT, TA (5] N BEARIGEE T KERF, HSHR DTTA
ILAELE, FEELLL W T R[22 KU AR, XMEMLT S —Dnm, 51 RiEEAL s
SR o RN AR BRI TA 5 DTTA FIUREHABE /R L, 75 Tl 28 A Hb X DASE I 431 J2 TH RDARS I 1 8 5
Bt LA M i 22 2 S B LB RS BB BUR (23], R BRI O, IO BN, BRI VEBE T B

3.2. ThEER TR O, MM SEHN

Chi ZFHIBA[24151 % O WA AR, Bevt 1 & BEnE 570 BTT-MD-COF: LA 1,3,5-=(4- 2B %
F)ZWRBTT) AERMR, HEWEIEAR 2,5- ZF50 8 — WIRMD)E S W R & . Mg E Ay sm 1
A, B e A EAE A8 5 O W (W AE—0.5 eV, 1 T A& WENE K] COFs), 4 0. iBJEAEL2 M 0.8
eV [£% 0.3 eV; ¥—fLiE(1.2 nm)A O 75 H.0, B R AL m A0l IE, 2 Ha0, 4 il Rk 5691.2
umol-g~*h7!,

IR “RENE SR ITIE R O M SRIL T ENERRE — 2P 2¢ ORR, HIZ B TH 7 SR AFAE HEHE = PR 14
SRR E MR e E N T2, 8 nen FERIRSE T O WP, HId RS S8 0, T

CRIE” AETEVEAL R E—— & O HRMEE IR T HUE G, SHDEAE TR O, A FE[25], [RINRH
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15 S N [E] A «OOH FITE B, i AR AL g 5 s HEZR MY “WItE - SRR 4 2 CRAE KU VE BE A S8
BEUH AR T i IR D 0 f R F R 1 5 O WRBR, (E I O W BRY - PR A 22 51 K “HEZRBICREL” (i
ar (A EEAN 0.34 nm 37K 2 0.38 nm), 4RSS0 B T B, IETEAL e A th ik, BB H.0, 77
HIZHT T B

3.3. RERSRIAMIRIFER Z14E

Wang 252611 BAFF & 1 1B & B (-N=N-)JE ] COF-TPT-Azo: LA 4,4>- “EIMEE KNI, 5 2,4,6-
Z(4- IR HE)-1,3,5- = (TPl i R A B K 6 . AU (B RE 210 kJ-mol )iz /& T iZ B8 (160 kJ-mol ™)
[27], {# COF-TPT-Azo £ pH =10 [HIEVE R TELHEAT 72h J5, 458 JEVITRER 85%, HaoOp AL U ZRAX
TFE 10%; A ZRUBEE 1) S ) AR 1A (S 7 40 ) W] Bh A5 VR B FL -4 4, SRR - 2 RO ) EE 4 LA S SR 4
HIVER, PRI IR 2R [28] .

A ST I A SRR A e AR T AESEAR e M, AEAEAE e S AR 5 P e R R A B D B0 IE )
R AR IS R R R BRI 5 T ORI G, (RIS R (i E R AR, U R 2
AT A A [ [29], FEAEZLILELEBEIN, GBI 7100 8, BT a4 s, &
A3 0, 77 F T B WA AR 7 “ e B 25 A7 R B RE(1498 pmol-gh ), ARITAL 5 2%
PR P B B —— PO AR B I8 SRR A LD (D R ) (R K A U Y i S A v mT R AR e BT L
[30], TMiHEIEJE Ox A5 HoO2s  H bR =i BPENG KR T B

3.4. HLRIEREHEIR TEM

Wang % N[311JF &A% T WA & 3L8EK =¥ 3 COFs, B TBP-COF Al TTP-COF, A& 1 &1
7E Ha00 277 (R 4k 2% . TBP-COF (1882 umol-g"-h™")F1 TTP-COF (4244 pmol-g "-h ")ZE4E/KH1, 10
W LED (4 = 420 nm)n] WOGHES TP REZE Sl B 1% S MR SLHE RS 3G 5 7 ORIRIK[32], 23T O,
WeBH, $em T EERRE ST, BRI TR AR =S BRI . Tan N33R T = - W LS
COFs: @i DASLIHI = eI g FEHER,  DAF R R R I =Wy (BTT) MEERY [3,2-b] (TT) i E i) 46 58 7
P I A T P AR SR A A S =B 4 CTF-BTT 1 CTF-TT. G R % % 600 nm
(B HAT WIGX), WEWy BT SR MAESE COFs [ 107° Sem ™ $27FE 1.2 x 1072 S-em™, BEEHE 7%
AR [34]

Wang, Tan AR R FH =R SE M, M50 T m3L5E0) COFs, HIESE T 3RS0 A F| T ik e A4
IR T WA, BN T R TR R R [35]. EARIZ UL SRS ] B 2K, (EATYSRAEAE KAASE I 1)
MR WKk COFs HOGMIIERIG PR, 7 7 B RAE DU 2, WGAE LT - 20O 4 B R A itk
—BHRE, P AME IR I = PR TE B B TR R A PR R (36 ], WA R A, A R
H.

3.5. WS FRRAEREM TR

Liu %8 A\ [37]38 5 5] Nid& & PRI N T4 148, it COFs 7k, R F7E COFs H1f
TERRAERE . LARIE(m = 0, 1, 2)F A 1) =A% = ROV RT oA, §il & 7 — BG5S ARMEr =
A COFs . fEX =M COFs v, J\MILBugityrh BA a5 NARPER COF-N32 6N T A LA
H0: B ER B Z BT EATERPERIMTEIL T, COF-N32 7E1] WL 12 /N, HoO, 7%
%% 605 pmol-g “h'. tbAh, COF-N32 W] RL7EH 2 nf A B8 /K AR (CBLAE B RK S KA ZK) o 2
PR HyO,, WERERS B ARBH GRS A &t 7= A4 Hy05.
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SHCEATHETE38], BIMEOULE R COF-N32, JLAUEAL R ZCREWAGEAS] 60%, ARERME “ Mt
- BT SR

4. NRARSRE

RGN COFs H T 607" Ha0p W ST HUAS 5 32, {2 COFs Yt A= HaOo 4731 s DU K Bk ik «
1. R AR LG0T e B COFs TERRBU & 1F T 2 /KM, BRI T PR /K A FE 2537 S N FH[39]5 2. A s
COFs & s & 5t 5 T EAR (1 =R IC A& 500 Jo/g), MUBALSAY) 20 Jiot/kg, T TiO: (500 Ju/kg)
[40]: 3. HAOGHHZEAC: WA COFs XL KIHEE 50%) MM ZE < 10% [41]: 4. P“¥IH >
fi#: COFs L& % S8 H,0, LR, 5IKHME[42]. HILRAIAFRWEWSE: 1. FFRERE COFs: 5N
B - s, AR E RS A, AR 2 [43]: 2. AR A R I ol g itk
(WA R P2 SR AR & k441, FRIRRAS; 3. JEA MR Bt 51 NnbE, BEE S IT[45], §E
Wi S AT ZLANX ;4. FRESLIE R @ shAILO R RmE) vt <RI Y)H T fLIE[46], > HOn
B fi#s 5. SEBRR SR UE : A ] 58 PR SR 25 (471, FH TR /KT B B Tk 2 7K AL B ) HoO0 BRI i) 4%
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