关于双树度差下界的一个例子

张雅琴

浙江师范大学数学科学学院, 浙江 金华

收稿日期: 2023年3月24日; 录用日期: 2023年4月18日; 发布日期: 2023年4月26日

摘要

如果图G由两个边不交的生成树的并组成,其中 $E(G) = E(T_1) \cup E(T_2)$,且 $E(T_1) \cap E(T_2) = \emptyset$ 那么称图G是双树。本文证明存在一个双树G,对于G任意一个分解 $f = (T_1, T_2)$ 而言 (T_1, T_2) 是生成树 (T_1, T_2) 是生成树 (T_2, T_2) 。

关键词

双树,分解,生成树

An Example of the Bound of Double Tree

Yaqin Zhang

School of Mathematical Science, Zhejiang Normal University, Jinhua Zhejiang

Received: Mar. 24th, 2023; accepted: Apr. 18th, 2023; published: Apr. 26th, 2023

Abstract

If the graph G contains two spanning trees such that the edges of spanning trees are disjoint. And $E(G) = E(T_1) \cup E(T_2)$ and $E(T_1) \cap E(T_2) = \emptyset$, then we call the graph G is double tree. In this paper we prove that there exists a double tree graph G, for any decomposition $f = (T_1, T_2)$ (T_1, T_2 are spanning trees), there exists at least a vertex $v \in V(G)$ such that $|d_{T_1}(v) - d_{T_2}(v)| \ge 2$.

Keywords

Double Tree, Decomposition, Spanning Tree

文章引用: 张雅琴. 关于双树度差下界的一个例子[J]. 应用数学进展, 2023, 12(4): 1615-1619. DOI: 10.12677/aam.2023.124166

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Open Access

1. 基本概念

我们首先给出图论中的一些相关概念。对于只有一个元素的集合\$x\$,我们通常用 x 来表示它。对于一个图 G,我们用 V(G) 和 E(G) 来定义图 G 的顶点集和边集。对一些边 $e=uv\in E(G)$,我们称 u 和 v 与 e 关联或者说 e 连接 u 和 v 。对于某些 $X\in V$,用 $\delta_G(X)$ 来定义一个顶点在 X 中,一个顶点在 V(G)-X 中的边集,用 $d_G(X)$ 来表示为 $|\delta_G(X)|$ 。对一些顶点 $v\in V(G)$,我们定义图 G-v 的顶点集为 V(G-v)=V(G)-v 它的边集为 $E(G-v)=E(G)-\delta_G(v)$ 。此外对于一条新边 $e=uv\notin E(G)$,其中 $u,v\in V(G)$,我们定义 G+v 的顶点集为 V(G+e)=V(G)边集为 E(G+e)=E(G)+e。对一条新边 $e=uv\notin E(G)$,其中 $u\in V(G)$ 但是 $v\notin V(G)$,我们定义 G+e 的顶点集为 V(G+e)=V(G)+v 边集为 E(G+e)=E(G)+e。一个图 H 被叫做是另一个图 G 的子图如果满足 $V(H)\subseteq V(G)$, $E(H)\subseteq E(G)$ 。一棵树是一个连通的图且不含圈。给一个图 G,一个 G 的子图 G 被称为 G 的支撑树如果 G 是一棵树 且满足 G 以 G 以 G 以 G 和果一个图 G 包含 G 包含 G 化 G 化 G 和果 G 以 G 和果 G 和来 G 和来 G 和果 G 和来 G 和来

 $E(G) = E(T_1) \cup \cdots \cup E(T_k)$, $E(T_1) \cup \cdots \cup E(T_k) = \emptyset$ 我们就说 G 是一个 k 重树,并说 T_1, \cdots, T_k 是 G 的支撑树分解。此外我们把 2 重树叫做双树。如果图 G 是一个双树,在图 G 上存在一个分界 $f = (T_1, T_2)$,其中 T_1, T_2 都是生成树并且 $E(T_1) \cup E(T_2) = \emptyset$ 。那么称这个分解 f 为图 G 的双树分解。我们可以得到双树有如下的结论。

命题 1: 每个双树满足|E(G)|=2|V(G)|-2。

下面的命题是我们所熟知的支撑树的交换操作。

命题 2 [1]: 令 G 是一个双树, (T_1,T_2) 是 G 的支撑树分解。则存在一个函数 σ : $E(T_1) \to E(T_2)$ 使得 $(T_1-e+\sigma(e),T_2-\sigma(e)+e)$ 也是 G 的一个支撑树分解。

我们把如上的命题中的函数叫做从了到了,的树交换函数。这个在文献[1]中已经被证明。

2022 年 8 月,学者 Florian Horsch 在文献[2]证明了对每个包含两个边不交的支撑树的图 G,我们可以选择图 G 中的一个分解 (T_1,T_2) 使得对于任意的顶点 $v\in V(G)$ 都有 $\left|d_{T_1}(v)-d_{T_2}(V)\right|\leq 5$ 。这给出了如果图 G 可以分解成两个支撑树,那么这两个支撑树的顶点度差的上界是 5。在这个文献中学者证明了树交换函数的性质。

命题 3: 令 G 是一个双树, (T_1,T_2) 是 G 的一个支撑树分解,且 $v \in V(G)$ 其中 x 关联于 T_1 中的唯一的 边。则对任何树交换函数 $\sigma : E(T_1) \to E(T_2)$,我们都有 $\sigma(e) \in \delta_G(x)$ 。

证明: 因为 $T_1 - e + \sigma(e)$ 是一个G的支撑树,存在至少一条边 $f \in (E(T_1) - e + \sigma(e)) \cap \delta_G(x)$ 。因为 $(E(T_1) - e) \cap \delta_G(x) = \varnothing$,我们有 $f = \sigma(e)$ 。

在 1961 年,在文献[3]中学者 Nash-Williams 以及在文献[4]中学者 Tutte 独立地证明了一个基本定理,该定理表征了包含固定数量的边不相交生成树的图的特征。从那以后,已经发现了几个扩展该定理的结果。例如,虽然它没有扩展到一般的无限图,但它已被学者 Lehner [5]和 Stein [6]推广到某些类的无限图。学者 Chuzoy,Parter 和 Tan [3]已经考虑了有界直径的生成树。此外,满足某种平衡条件的生成树,即删除指定的顶点不应留下包含在单个连接组件中所有顶点的图,Bang-Jensen,Havet 和 Yeo [7]以及 Bessy 等人已经进行了相关研究。在这篇文章中我们通过一个例子从而得到存在一个双树 G,对于它的任何一个分解 (T_1,T_2) ,而言满足存在至少一个顶点 v 使得 $|d_{T_1}(v)-d_{T_2}(v)|\geq 2$ 。

2. 主要定理

本文主要证明的定理如下:存在一个双树 G,对于任何 G 的任何一个双树分解 (T_1,T_2) 而言,存在一个顶点 $v \in V(G)$,使得 $|d_{T_1}(v)-d_{T_2}(v)| \ge 2$ 。

3. 主要定理证明

接下来我们给出一个例子"见图 1"所示,通过对于这个例子的所有分解进行讨论,从而得到定理 1的证明。

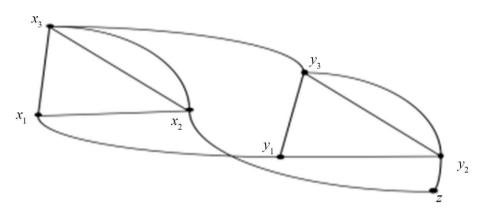


Figure 1. Example *G* 图 1. 例 *G*

引理 1: 对于 G 的任何一个分解 $\left(T_1, T_2\right)$,如果 e, f 是 G 上的重边,那么 e, f 不可能位于同一棵树 T_i ,其中 i=1,2 。

证明: 我们利用反证法进行证明,不妨假 e, f 都在同一棵树 T_1 上,那么对于图 G 的任何一个分解,我们都会得到 T_1 上存在一个圈,矛盾于 T_1 是一棵树。

我们对上述所给出的例子进行分析,首先收缩项点 x_1, x_2, x_3 为一个项点 X,收缩项点 y_1, y_2, y_3 为一个项点 Y,则我们得到了一个新的图 G' ,"见图 2"中展示它的项点集为 $V(G') = \{X, Y, Z\}$ 。

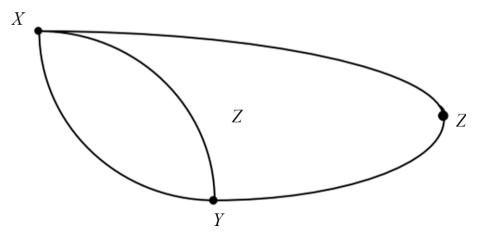


Figure 2. Edge contracted of the graph G **图 2.** 图 G 的收缩图

事实 1: 图 G 是一棵双树,则通过收缩操作之后得到的图 G' 也是一棵双树。

证明: a 如图所示不妨假设 $E(G') = \{e_1, e_2, e_3, e_4\}$,其中 $e_1 = XY, e_2 = XY, e_3 = XZ, e_4 = YZ$,根据引理 1

可得 e_1,e_2 不可能位于同一棵树 T_i 中,不妨假设 $e_1 \in T_1$ 以及 $e_2 \in T_2$ 。由于Z在G'上只有二度点,因此 e_3,e_4 在不同的树上,那么在新图G'中我们得到了新的分解 $\left(T_1,T_2\right)$,从而证明了这个事实。

事实 2: 图 G 中包含一个三角形不妨假设这三条边分别为 e_1,e_2,e_3 ,那么这三条边都不会属于同一个 T_i 。

证明:利用反证法,不妨假设 e_1,e_2,e_3 都在同一棵树 T_1 上,那么对于图 G 的任何一个分解,我们都会得到 T_1 上存在一个圈,矛盾于 T_1 是一棵树。

推论 1: 图 G 中包含一个三角形,那么这三条边中至少有一条边属于 T_i 其中 i=1,2 ,另外两条边属于 T_{3-i} 。

下面我们对于上述给出的例子,通过对这个例子的所有的分解进行讨论从而证明对于双树 G,对于任何 G 的两个边不相交生成树 (T_1,T_2) 而言,存在一个顶点 $v \in V(G)$,使得 $|d_{T_1}(v)-d_{T_2}(v)| \ge 2$ 。下面我们都是基于图 $G = (T_1,T_2)$ 进行讨论。

下面我们对图 G 的边集进行讨论,不妨假设 e_1 , f_1 是关联 x_2 和 x_3 的两条重边, e_3 , f_3 是关联 y_2 和 y_3 的两条重边, $e_2 = x_3 y_3$, $f_2 = x_1 y_1$ 。与 Z 点相关联的边集我们在下面的 Case 中进行具体的分析讨论。接下来根据上述所谈到的事实和推论我们对它们的边集进行划分,因为 e_1 , f_1 以及 e_3 , f_3 是两对重边,因此 e_1 , f_1 属于不同的 T_i , e_3 , f_3 属于不同的 T_i 。为了不失一般性我们不妨假设 e_1 , e_3 ∈ T_1 , T_1 , T_2 。由引理 1 可得 T_3 0 位于不同的树上。接下来我们分情况讨论。

Case A.如果 $e_2 \in T_1, f_2 \in T_2$

Case A.1 因为 $G[x_1, x_2, x_3]$ 中包含两个三角形,由事实 2 可得 x_1x_2, x_1x_3 不可能同时位于同一棵树上。 如果 $x_1x_3 \in T_1$,那么 $x_1x_2 \in T_2$ 。我们发现对于顶点 x_3 来说有, $|d_{T_1}(x_3) - d_{T_2}(x_3)| = 2$ 。如果 $x_1x_2 \in T_1$,那么

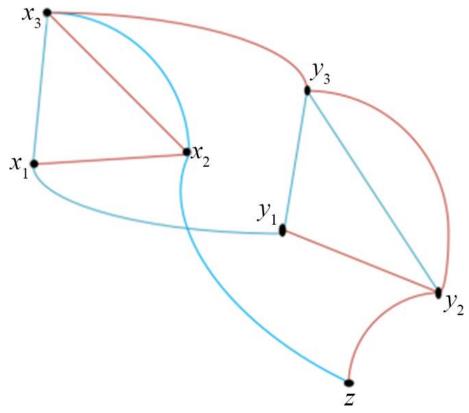


Figure 3. The Case B.2 图 3. 情况 B.2

 $x_1x_3 \in T_2$ 。我们来讨论 $G[y_1, y_2, y_3]$,因为 $G[y_1, y_2, y_3]$ 中包含两个三角形,由事实 2 可得 y_1y_2, y_1x_3 不可能同时位于同一棵树上。如果 $y_1y_3 \in T_1$,那么 $y_1y_2 \in T_2$ 。我们发现对于顶点 y_3 来说有度差的绝对值为 2。

Case A.2

如果 $y_1y_3 \in T_2$,那么 $y_1y_2 \in T_1$,这时候我们发现对于 x_2, y_2 来说有且 $d_{T_1}(y_2) - d_{T_2}(y_2) = 1$ 。又因为 $z \in V(G)$,且 $d_G(z) = 2$, T_1, T_2 是 G 的支撑树,因此 $d_{T_1}(z) = d_{T_2}(z) = 1$ 。我们知道 zx_2, zy_2 不可能属于同一棵树,则存在 x_2 或者 y_2 中至少一个点有 $|d_{T_1}(x_2) - d_{T_2}(x_2)| = 2$ 或者 $|d_{T_1}(y_2) - d_{T_2}(y_2)| = 2$ 。

Case B.否则 $e_2 \in T_2, f_2 \in T_1$ 。

Case B.1 因为 $G[x_1, x_2, x_3]$ 中包含两个三角形,由事实 2 可得 x_1x_2, x_1x_3 不可能同时位于同一棵树上。如果 $x_1x_3 \in T_2$,那么 $x_1x_2 \in T_1$ 。我们发现对于顶点 x_3 来说有, $|d_{T_1}(x_3) - d_{T_2}(x_3)| = 2$ 。

Case B.2 如果 $x_1x_2 \in T_2$,那么 $x_1x_3 \in T_1$ 。我们来讨论 $G[y_1, y_2, y_3]$,因为 $G[y_1, y_2, y_3]$ 中包含两个三角形,由事实 2 可得 y_1y_2, y_1x_3 不可能同时位于同一棵树上。如果 $y_1y_3 \in T_2$,那么 $y_1y_2 \in T_1$ 。我们发现对于 顶点 y_3 来说有, $\left|d_{T_1}(y_3) - d_{T_2}(y_3)\right| = 2$ 。如果 $y_1y_3 \in T_1$,那么 $y_1y_2 \in T_2$,这时候我们发现对于 x_2, y_2 来说有 $d_{T_2}(x_2) - d_{T_1}(x_2) = 1$ 且 $d_{T_2}(y_2) - d_{T_1}(y_2) = 1$ 。又因为 $z \in V(G)$,且 $d_G(z) = 2$, T_1, T_2 是 G 的支撑树,因此 $d_{T_1}(z) = d_{T_2}(z) = 1$ 。我们知道 zx_2, zy_2 不可能属于同一棵树,则存在 x_2 或者 y_2 中至少一个点有 $\left|d_{T_1}(x_2) - d_{T_2}(x_2)\right| = 2$ 或者 $\left|d_{T_1}(y_2) - d_{T_2}(y_2)\right| = 2$ 。"见图 3"片所示。

4. 结语

森林分解在图论研究中占据了极大的比重,文献[5]中已经证明了双树分解的度差上界是 5,那么对于双树分解度差的下界就是一个非常值得研究的问题,通过对度差上下界的讨论从而帮助我们的得到相对平衡的双树分解。我们目前已经找到一种双树,使得对于任意的分解都会存在一个顶点的度差大于等于 2,那对于任意的图都有这样的问题这也是值得进一步探讨的问题。

参考文献

- [1] Frank, A. (2011) Connections in Combinatorial Optimization. Oxford University Press, Oxford.
- [2] Illingworth, F., Powierski, E., Scott, A. and Tamitegama, Y. (2012) Balancing Connected Colourings of Graphs. ar-xiv.org, 2205.04984.
- [3] Nash-Williams, C.St.J.A. (1961) Edge-Disjoint Spanning Trees of Finite Graphs. *Journal of the London Mathematical Society*, **36**, 445-450. https://doi.org/10.1112/jlms/s1-36.1.445
- [4] Tutte, W.T. (2004) On the Problem of Decomposing a Graph into n Connected Factors. *Journal of the London Mathematical Society*, 36, 221-230. https://doi.org/10.1112/jlms/s1-36.1.221
- [5] Florian, H. (2022) Globally Balancing Spanning Trees. arxiv.org, 2110.13726.
- [6] Stein, M. (2006) Arboricity and Tree-Packing in Locally Finite Graphs. *Journal of Combinatorial Theory*, Series B, 96, 302-312. https://doi.org/10.1016/j.jctb.2005.08.003
- [7] Bang-Jensen, J., Havet, F. and Yeo, A. (2016) The Complexity of Finding Arc-Disjoint Branching Flows. *Discrete Applied Mathematics*, 209, 16-26. https://doi.org/10.1016/j.dam.2015.10.012