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摘  要 

本文针对学生在学习线性代数过程中易混淆的核心概念，系统梳理了向量组线性相关与部分组的关系、

矩阵秩的几何意义、行列式与矩阵可逆性的等价性，以及特征值与矩阵迹、行列式的关联这四个关键问

题。通过定义阐释、实例验证与理论透视，澄清概念误区，帮助学生建立“定义–实例–几何意义”三

位一体的认知框架，打通线性代数理论与应用之间的理解壁垒。 
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Abstract 
This paper addresses common conceptual confusions encountered by students in learning linear al-
gebra. It systematically organizes four key issues: the relationship between linear dependence of a 
vector set and its subsets, the geometric meaning of matrix rank, the equivalence between zero deter-
minant and matrix singularity, and the connection between eigenvalues, matrix trace, and determi-
nant. Through definition explanation, concrete examples, and theoretical analysis, this paper clarifies 
misunderstandings, helping students establish a trinity cognitive framework of “definition-exam-
ple-geometric meaning” and bridge the gap between linear algebra theory and application. 
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1. 引言 

线性代数[1]作为描述向量空间、线性变换与数据结构的核心数学工具，是计算机科学、物理学、工

程学及经济学等领域的基础课程，其理论体系兼具抽象性与逻辑性，学生在学习中常对“线性相关的局

部与整体关系、矩阵秩的直观意义、行列式与可逆性的深层关联、特征值性质的应用边界”产生认知偏

差，这些偏差既源于概念本身的抽象性，也与部分教材侧重计算、轻几何解释的编排有关。 
从学科教学实践看，国际权威教材已高度重视这些概念的澄清。例如，Strang 在《Introduction to Linear 

Algebra》[2]中强调，“矩阵的秩是线性代数的核心纽带”，其本质是向量组生成子空间的维度，而非单

纯的“非零子式最高阶数”；Hoffman 的《Linear Algebra》则通过线性变换的视角，揭示“行列式为零”

与“线性变换不可逆”的等价性，而非孤立的计算规则；Axler 在《Linear Algebra Done Right》[3]中更是

摒弃传统行列式优先的讲法，直接从线性变换的核与像出发，诠释特征值与矩阵迹、行列式的关系，避

免学生陷入“重计算、轻本质”的误区。 
本文立足上述学术背景，针对教学中反复出现的概念混淆点，结合实例与几何意义展开分析，既呼

应国际教材对核心概念的本质解读，也为线性代数教学提供更具针对性的澄清思路，助力学生从“会算”

走向“懂理”。 

2. 向量组线性相关 ≠ 部分组线性相关 

学生常误认为“整体向量组线性相关，则其任意部分组也线性相关”或“部分组线性无关，则整体

也线性无关”，本质是混淆了线性相关的“整体性质”与“局部性质”的逻辑关系。 

2.1. 核心定义 

定义 1 (线性相关) 设 1 2, , , mα α α 是数域 上的 n 维向量组，若存在不全为零的数 1 2, , , mk k k ∈ ，

使得 1 1 2 2 0m mk k kα α α+ + + = ，则称该向量组线性相关；否则称线性无关。 
逻辑关系：由定义 1 可知，线性相关的核心是“存在非平凡线性组合为零向量”，其逆否命题为“若

所有线性组合为零向量仅当系数全为零，则线性无关”。 

2.2. 反例与验证 

例 1 (整体相关但部分组无关) 

设 3
 中的向量组为 ( ) ( )T T

1 2,1,0,0 0,1,0α α= = ， ( )T
3 1,1,0α = 。 

(1) 验证整体相关性：取 1 2 31, 1, 1k k k= = = −  (不全为零)，则 ( )1 2 31 1 1 0α α α⋅ + ⋅ + − ⋅ = ，故 1 2 3, ,α α α 线

性相关。 
(2) 验证部分组无关：对 1 2,α α ，若 1 1 2 2 0k kα α+ = ，则 ( ) ( )T T

1 2, ,0 0,0,0k k = ，仅当 1 2 0k k= = ,故 1 2,α α
线性无关。 

例 2 (部分组相关则整体相关) 

设 2
 中的向量组为 ( ) ( ) ( )T T T

1 2 31,2 2 ,, ,4 3, 5β β β= = = 。 
(1) 部分组 1 2,β β ：因 2 12β β= ，存在 1 22, 1k k= = −  (不全为零)使 1 22 0β β− = ，故 1 2,β β 线性相关。 
(2) 整体组 1 2 3, ,β β β ：取 1 2 32, 1, 0k k k= = − =  (不全为零)，则 1 2 32 0 0β β β− + ⋅ = ，故整体线性相关。 
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2.3. 理论透视：生成子空间的维度视角 

线性相关的本质可通过“向量组生成子空间的维度”解读：若向量组 1, , mα α 线性无关，则其生成

子空间 ( )1, , mL α α 的维度 dim L m=  (向量组个数 = 子空间维度)；若线性相关，则 dim L m< ，即子空

间维度小于向量组个数[4]。 
例 1 中， 1 2,α α 生成的子空间是 3

 中的 xy 平面( dim 2= )，加入 3α 后， 3α 仍在 xy 平面内，子空间维

度未增加(仍为 2)，故整体相关但部分组无关；例 2 中， 1 2,β β 生成的子空间是 2
 中的一条直线( dim 1= )，

加入 3β 后，子空间维度最多为 2，但部分组已使“维度 < 个数”，故整体必然相关。 
结论：线性相关的传递性仅单向成立，即部分组相关→整体相关，反之不成立；整体无关→部分组

无关，反之不成立。 

3. 矩阵的秩：行秩 = 列秩的几何意义 

学生常记住“矩阵的行秩等于列秩，统称为矩阵的秩”，但不理解其几何本质，仅将秩视为“非零子

式的最高阶数”，导致无法关联线性变换的直观意义。 

3.1. 核心定义 

定义 2 (矩阵的秩)：设 A 是 m n× 矩阵，其行向量组的秩称为行秩，列向量组的秩称为列秩；矩阵 A

的秩 ( )rank A 定义为行秩(或列秩)，也等于 A 中非零子式的最高阶数。 
关键等价：对任意矩阵 A ，行秩 = 列秩，此性质是线性代数的“桥梁性结论”。 

3.2. 实例验证 

例 3 (行秩 = 列秩的计算) 设矩阵

1 2 3
4 5 6
7 8 9

A
 
 =  
 
 

，计算其行秩与列秩。 

(1) 行秩计算：对行向量组 ( ) ( ) ( )1 2 31,2,3 , 4,5,6 , 7,8,9γ γ γ= = = ，做初等行变换。 
由于 3 2 12γ γ γ= − ，行向量组线性相关，又 1 2,γ γ 不共线(不存在 k 使 2 1kγ γ= )，故行秩 = 2。 
(2) 列秩计算：对列向量组 ( ) ( ) ( )T T T

1 2 31,4,7 2,, ,5,8 3,6,9α α α= = = ，做初等列变换。 
由于 3 2 12α α α= − ，列向量组线性相关，又 1 2,α α 不共线(不存在 k 使 2 1kα α= )，故列秩 = 2。 
综上， ( )rank 2A = ，行秩 = 列秩。 

例 4 设矩阵

1 2 3
2 4 6
3 5 7
4 6 8

B

 
 
 =
 
 
 

 (行向量线性关系不直观)，计算其行秩与列秩。 

解：(1) 行秩计算：初等行变换化为阶梯形。阶梯形矩阵的核心特征是“非零行首非零元列标严格递

增”，非零行个数即为行秩。对 B 做如下初等行变换。 
第一步：第 2 行 − 2 × 第 1 行，第 3 行 − 3 × 第 1 行，第 4 行 − 4 × 第 1 行，得  

1

1 2 3
0 0 0
0 1 2
0 2 4

B

 
 
 =
 − −
 

− − 

 

第二步：交换第 2 行与第 3 行(使非零元列标递增)，得 
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2

1 2 3
0 1 2
0 0 0
0 2 4

B

 
 − − =
 
 

− − 

 

第三步：第 4 行 − 2 × 第 2 行，得 

3

1 2 3
0 1 2
0 0 0
0 0 0

B

 
 − − =
 
 
 

 (阶梯形矩阵) 

阶梯形 3B 中非零行的个数为 2，故行秩 = 2。 
(2) 列秩计算：判断列向量组的极大无关组。设 B 的列向量为 ( )T

1 1,2,3,4γ = ， ( )T
2 2,4,5,6γ = ，

( )T
3 3,6,7,8γ = 。 

第一步：判断 1 2,γ γ 的线性相关性。设 1 1 2 2 0k kγ γ+ = ，得方程组   

1 2

1 2

1 2

1 2

2 0
2 4 0
3 5 0
4 6 0

k k
k k
k k
k k

+ =
 + =
 + =
 + =

  

由第 1 式得 1 22k k= − 代入第 3 式： 2 2 2 26 5 0 0k k k k− + = − = ⇒ = ，故 1 0k = ，因此 1 2,γ γ 线性无关。 
第二步：判断 3γ 是否可由 1 2,γ γ 线性表示。设 3 1 1 2 2k kγ γ γ= + ，得方程组 

1 2

1 2

1 2

1 2

2 3
2 4 6
3 5 7
4 6 8

k k
k k
k k
k k

+ =
 + =
 + =
 + =

 

由第 1 式得 1 23 2k k= − ，代入第 3 式： ( )2 2 2 23 3 2 5 7 9 7 2k k k k− + = ⇒ − = ⇒ = ，则 1 3 4 1k = − = − 。 
验证第 4 式： ( )4 1 6 2 4 12 8− + ⋅ = − + = ，满足方程，故 3γ 可由 1 2,γ γ 线性表示。 
因此，列向量组的极大无关组含 2 个向量，列秩 = 2。 
综上， ( )rank 2B = ，行秩 = 列秩，验证核心结论。 

3.3. 理论透视：初等变换与秩零定理的基础解读 

3.3.1. 行秩 = 列秩的基础证明(基于初等变换) 
(1) 初等行变换不改变行秩 

初等行变换包括三种操作：① 交换两行；② 某行乘非零常数；③ 某行加另一行的 k 倍。 
操作①：交换行向量顺序，不改变向量组的线性相关性(线性组合的系数仅对应向量顺序变化，非零

系数仍存在)，故行秩不变； 

操作②：某行乘非零常数 c，新行向量 icβ 与原行向量 iβ 线性相关( iβ ′为新行)，但向量组的极大无关

组仍包含原无关向量(若原组无关，新组仍无关)，故行秩不变； 
操作③：第 i 行 = 第 i 行 + k × 第 j 行，新行向量 i i jkβ β β′ = + 是原两行的线性组合。此时原行向量

组 { }1, , , ,i jβ β β  与新行向量组 { }1, , , ,i jβ β β′  等价 (原组可表示新组，新组也可表示原组：

i i jkβ β β′= − )，而等价向量组的秩相同，故行秩不变。 
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(2) 初等行变换不改变列秩 

列向量组的线性相关性等价于“齐次线性方程组 0Ax = 是否有非零解”：若列向量 1, , sγ γ 线性相关，

则存在非零 ( )T
1, , sx k k=  使 1 1 0s sk kγ γ+ + = ，即 0Ax = 有非零解；反之则无解。 

初等行变换对应方程组的同解变形，(如交换两行等价于交换方程顺序，不改变解；某行乘非零常数

等价于方程两边乘非零常数，不改变解)，因此“是否存在非零解”的性质不变，即列向量组的线性相关

性不变，故列秩不变。 
(3) 阶梯形矩阵的行秩 = 列秩 

对任意矩阵 A ，可通过有限次初等行变换化为阶梯形矩阵U 。设U 有 r 个非零行，则 
行秩：非零行向量线性无关(后一行的首非零元列标大于前一行，无法用前一行线性表示)，故行秩 = 

r； 
列秩：非零行首非零元所在的 r 个列(主列)线性无关(各主列在不同行有非零元，无法用其他主列线

性表示)，其余列(非主列)可由主列线性表示(通过回代消元可得系数)，故列秩 = r。 
因此，阶梯形矩阵的行秩 = 列秩 = r，而 A 与 U 行秩、列秩均相等，故任意矩阵的行秩 = 列秩。 

3.3.2. 秩零定理的直观解释(补充几何意义) 
秩零定理：对m n× 矩阵 A (表示 n m→  的线性变换)，有 

( ) ( )dim Im dim KerA A n+ =  

其中，像空间 Im A ，列向量组生成的子空间， ( ) ( )dim Im rankA A= ；核空间 Ker A， 0Ax = 的解空间，

( )dim Ker A 称为零维数； n 原空间 n 的维度(矩阵列数)。 
几何意义：原空间 n 中的任意向量 x 可分解为“被 A 映射到零向量的部分”( ker Kerx A∈ )和“被 A

映射到像空间的部分”( im Imx A∈ 的原像)，两者维度之和等于原空间维度[5]，即“零向量的‘贡献’+ 非
零像的‘贡献’= 总空间的‘大小’”。 

例 4 中，B 是 4 × 3 矩阵(n = 3)，其阶梯形矩阵有 r = 2 个非零行，故 ( )dim Im 2B = 。由秩零定理得 

( ) ( )dim Ker dim Im 3 2 1B n B= − = − =  

实际计算 0Bx = 的解空间。由阶梯形 3B 得方程 1 2 3

2 3

2 3 0
2 0

x x x
x x
+ + =

− − =
，取自由变量 ( )3x t t= ∈ ，则 

2 1 2 32 , 2 3x t x x x t= − = − − = ，解为 ( )T1, 2,1x t= − ，即解空间是 1 维子空间，与秩零定理结果一致。 

4. 行列式为零与矩阵不可逆的等价性 

学生常机械记忆“行列式为零则矩阵不可逆，可逆则行列式不为零”，但忽略“行列式为零”的本质

是“矩阵的列向量组线性相关”，导致无法解释“为什么行列式为零会使逆矩阵不存在”。 

4.1. 核心定义 

定义 3 (可逆矩阵) 设 A 是 n 阶方阵，若存在 n 阶方阵 B ，使得 AB BA E= =  ( E 为单位矩阵)，则称

A 可逆， B 为 A 的逆矩阵，记为 1A− ；否则称 A 为奇异矩阵(不可逆矩阵)。 
定义 4 (行列式) n 阶方阵 A 的行列式 ( )det A 是对 A 的列向量(或行向量)的一种“多线性反对称”运

算，其几何意义是 n 个列向量张成的 n 维平行多面体的体积。 

4.2. 实例 

例 4 (行列式与可逆性的关联) 
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(1) 可逆矩阵：设
1 2
3 4

A  
=  
 

，则 ( )det 1 4 2 3 2 0A = × − × = − ≠ ，令 1 2 1
1.5 0.5

A− − 
=  − 

，则 1 1AA A A E− −= = ，

故 A 可逆。 

(2) 奇异矩阵：设
1 2
2 4

B  
=  
 

，则 ( )det 1 4 2 2 0B = × − × = . 假设存在逆矩阵 1B− ，使 1BB E− = ，两边 

取行列式得 ( ) ( ) ( )1det det det 1B B E− = = ，但 ( )det 0B = ，矛盾，故 B 不可逆。 

4.3. 常见误区 

误区 1：“为零是因为矩阵有全零行或全零列”。反例：
1 1
1 1

C  
=  
 

，无全零行或全零列，但 ( )det 0C = ， 

本质是列向量线性相关( 2 1α α= )。 
误区 2：“矩阵不可逆仅因为行列式为零”。本质是“行列式为零”与“列向量组线性相关”“秩 <

n ”“ 0Ax = 有非零解”等价，这些性质共同导致逆矩阵不存在。若 A 的列向量线性相关，则 0Ax = 有

非零解 0x ，若 A 可逆，则 1 1
0 0 0 0x A Ax A− −= = = 。 

4.4. 理论透视：体积的几何意义 

行列式的几何意义是“列向量张成的平行多面体体积”。 

若 ( )det 0A ≠ ，则 n 个列向量线性无关，张成的是 n 维空间的“满秩”平行多面体(体积非零)，此时

线性变换 ( )T x Ax= 是“满射且单射”(双射)，故存在逆变换 ( )1 1T y A y− −= ，即 A 可逆； 
若 ( )det 0A = ，则 n 个列向量线性相关，张成的平行多面体“退化”(体积为零，如 3

 中三个共面向

量张成的平行六面体体积为零)，此时线性变换 ( )T x Ax= 是“非单射”(存在非零 0x 使 ( )0 0T x = )，故不存

在逆变换，即 A 不可逆。 
结论：行列式为零是矩阵不可逆的“表象”，本质是列向量组线性相关导致线性变换非双射。 

5. 特征值的和、积与矩阵迹、行列式的关系 

学生易记错“特征值的和等于矩阵的迹，特征值的积等于矩阵的行列式”，或忽略“重特征值需计

入重数”的前提，导致应用时出错。 

5.1. 核心定义 

定义 5 (特征值与特征向量) 设 A 是 n 阶方阵，若存在数λ 和非零向量 x ，使得 Ax xλ= ，则称λ 为

A 的特征值， x 为 A 对应 λ 的特征向量；特征值的全体称为 A 的谱。 
定义 6 (矩阵的迹) n 阶方阵 A 的迹 ( )tr A 定义为主对角线元素之和，即 ( ) 11 22tr nnA a a a= + + + 。 

5.2. 实例 

例 5 (特征值与迹、行列式的关系) 设
2 1 0
1 2 1
0 1 2

A
 
 =  
 
 

 (三阶对称矩阵)，计算其特征值、迹与行列式。 

解：矩阵 A 的特征多项式为 

( ) ( ) ( ) ( )( )3 2

2 1 0
det 1 2 1 2 2 2 2 4 2

0 1 2
E A

λ
λ λ λ λ λ λ λ

λ

− −
− = − − − = − − − = − − +

− −

， 
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从而解得特征值 

1 2 32, 2 2, 2 2λ λ λ= = + = −  (均为单特征值)。 

矩阵的迹为 

( )tr 2 2 2 6A = + + =  

矩阵 A 的行列式为 

( )det 4A =  

容易验证 

( )
1

tr
n

i
i

Aλ
=

=∑ ， ( )
1

det
n

i
i

Aλ
=

=∏  

5.3. 易错点 

忽略重特征值。设

1 2 2
0 2 0
0 0 2

B
 
 =  
 
 

，特征值 1 1λ = ， 2 3 2λ λ= =  (二重)，若 2 3 2λ λ= = 仅计一次特征值， 

则迹为 ( ) 1 2tr 1 2 2B λ λ= + + ≠ + ，矩阵的行列式为 ( ) 1 2det 4B λ λ= ≠ ⋅ ；需计入重数，则矩阵的迹为

( ) 1 2 3tr 5B λ λ λ= + + = ，矩阵的行列式为 ( ) 1 2 3det 4B λ λ λ= ⋅ ⋅ = ，满足关系。 

5.4. 理论透视：特征多项式的展开 

n 阶方阵 A 的特征多项式为 

( ) ( ) ( ) ( )1det tr 1 detnn nE A A Aλ λ λ −− = − + + −

. 

另一方面，特征多项式可分解为 

( )( ) ( )1 2 nλ λ λ λ λ λ− − −

 ( iλ 为特征值，含重数)。 

展开后，有 

( ) ( )1
1 2 1 21 nn n

n nλ λ λ λ λ λ λ λ−− + + + + + −  

 

对比两式的同次幂系数，可得 

( ) ( )1 2 1 2tr , det .n nA Aλ λ λ λ λ λ+ + + = = 

  

本质：迹与行列式是矩阵“谱不变量”不随相似变换改变，而特征值的和与积恰好是最直观的谱不

变量，反映矩阵的“整体性质”，如迹反映线性变换在基向量上的“伸缩总和”，行列式反映“体积缩放

比”。 
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