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摘  要 

尼帕病毒(NiV)在猪场中的传播构成重大公共卫生威胁。本研究建立SEAIRS-SEI人猪耦合模型，通过理论

分析和数值模拟评估三种控制措施的效果。结果表明：当基本再生数R0小于1时疫情可控，当R0大于1时
可能暴发疫情；单一措施效果有限，而工人防护(ε)、有效治疗(φ)和猪群扑杀(ξ)三措施协同可将R0降至

0.63，实现有效防控。本研究为尼帕病毒防控提供了重要理论依据。 
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Abstract 
Nipah Virus (NiV) transmission in pig farms poses a significant public health threat. This study es-
tablishes a coupled human-pig SEAIRS-SEI model to assess the effectiveness of three control 
measures through theoretical analysis and numerical simulations. The results indicate that an out-
break is controllable when the basic reproduction number (R₀) is less than 1, but may escalate if R₀ 
exceeds 1. While individual measures show limited efficacy, the combined implementation of 
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worker protection (ε), effective treatment (φ), and pig culling (ξ) can synergistically reduce R₀ to 
0.63, thereby achieving effective containment. This research provides an important theoretical 
foundation for the prevention and control of Nipah Virus outbreaks.  
 
Keywords 
Nipah Virus, SEAIRS-SEI Model, Basic Reproduction Number, Global Asymptotic Stability,  
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1. 引言 

人畜共患病在全球范围内持续加剧，对公共卫生与经济构成严重威胁。尼帕病毒作为一种高致死性

人畜共患病[1] [2]，自 1998 年在马来西亚被首次发现以来，已造成重大人员伤亡和经济损失[3] [4]。该病

毒以果蝠为自然宿主，通过“蝙蝠–猪–人”的传播链在养殖场中扩散。猪[5]作为关键中间宿主，感染

后呈现从无症状携带到急性症状的异质性表现[6] [7]，而猪场工人因密切接触成为高危人群。人类感染后

病情危重，且存在显著的无症状传播[8] [9]，极大地增加了疫情防控的复杂性。 
尽管尼帕病毒危害严重，但针对其传播动力学的数学建模研究仍相对有限。现有研究多基于经典仓

室模型[10] [11]，或在多宿主传播机制[12] [13]、最优控制策略[14] [15]等方面进行了探索。基于此，本研

究受 Das [16]等人工作的启发，本文提出一个 SEAIRS-SEI 人–猪耦合模型，来模拟尼帕病毒在猪场中传

播的动态过程，具体假设如下： 
(1) 接触感染猪只的养殖场工人，因尼帕病毒潜伏期可能进入无症状感染阶段：在此阶段，工人可在

出现发热、头痛等临床症状及住院治疗前，通过飞沫或接触将病毒传播给同事或家属。 
(2) 猪与人的交叉感染率遵循饱和发病形式：随着猪群感染规模扩大，生物安全措施(如强化个人防

护装备、增加环境消毒频次)会抑制人猪间有效接触率持续上升，使人感染风险呈现饱和增长态势。饱和

发病率函数的引入旨在反映现实猪场中随着感染猪数量上升，工人防护意识与措施会相应增强，从而使

得感染率增长趋于平缓，而非无限上升，这与实际生物安全行为响应相符。 
(3) 假设采用“外购仔猪场内育肥”模式，仅聚焦 6 月龄以下、症状明显的猪只：因猪群处于育成阶

段，暂不考虑与市场供应相关的对外出售。 
(4) 对猪群实施区域化管理：若某区域出现感染猪只，该区域内所有猪只将被扑杀。该假设体现的

是规模化猪场在疫情暴发初期采取的“精准清除”策略，虽理想化，但符合当前国际推荐的疫病根除原则。 
目前，尚无可用于防控尼帕病毒感染的特异性疫苗。基于既往控制尼帕病毒传染病爆发的经验教训

[17] [18]，本研究引入以下三种关键参数：一是工人防护措施有效率ε ，用于量化防护服装以及预防知识

宣传等措施降低工人感染风险的实际效果；二是针对 I 阶段的有效治疗率φ ，表示通过住院或“利巴韦

林”药物治疗，使感染者的病情有所改善；三是猪群扑杀响应速率ξ ，即某区域发现感染猪时，该区域猪

群被快速且全面扑杀，体现扑杀策略在阻断猪群间病毒传播过程中响应的及时性。 

2. 模型建立 

假设尼帕病毒在一个猪场里传播，遵循 SEAIRS-SEI 人–猪耦合传播，我们只考虑猪到人的传播，忽
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略人到猪的传播。多数尼帕病毒疫情中，猪作为中间宿主，病毒传播主要方向为猪→人，而人→猪传播

的证据较少且影响有限[13]。传播舱室图如图 1 所示。 
 

 
Figure 1. The compartmental diagram of the transmission model for NiV 
图 1. 尼帕病毒传播舱室图 

 

假设猪到人的感染率是饱和发病率，形式为
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hΛ 代表猪场工人的招募率， pΛ 代表猪场的猪仔采购。 hµ 代表猪场工人的辞职率或退出率， pµ 代表

猪场猪仔的自然死亡率， hσ 代表猪场工人感染尼帕病毒的致死率， pσ 代表猪场中的猪仔因病致死率。

,h pβ β 分别代表猪场的易感工人和易感猪的感染率， hα 代表猪场的易感工人被无症状感染的感染率，处

于暴露阶段的农场工人分别以θ 和1 θ− 的比率，以 hτ 的转换率进入 hA 和 hI 。处于无症状感染阶段和有症

状感染阶段的农场工人分别以 ,δ η 的恢复率进入 hR ，恢复的人会以 hγ 的免疫失效率再次变得易感。 
根据以上讨论，模型参数的综合总结见表 1。猪场的尼帕病毒人—猪耦合的数学模型为系统(1) 
 

Table 1. System definition of parameters 
表 1. 参数说明 

参数 a 含义 

Λ  猪场工人招募率 

pΛ  猪场猪仔采购数 

hµ  猪场工人的辞职率或退出率 

Pµ  猪场猪仔自然死亡率 

,h pσ σ  猪场工人和猪仔感染尼帕病毒的致死率 

,h pβ β  猪场有症状的工人和猪对易感工人和猪的传播率 

phβ  猪场中感染的猪仔到易感工人的交叉感染率 

hα  猪场中无症状工人对易感工人的传播率 

θ  猪场中处于潜伏期的工人进入下一阶段的比率 

hτ  猪场中处于潜伏期的工人进入下一阶段的转换率 

δ  猪场中无症状工人的恢复率 

η  猪场中有症状工人的恢复率 

1 hγ  猪场中工人的平均免疫期 

a  饱和常数 

ε  工人防护率 

φ  有效治疗率 

ξ  猪群扑杀响应速率 

 
初始条件如下： 
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农场中的工人总数和猪总数分别为 

 ,h h h h h hN S E A I R= + + + +   (3) 

 .p p p pN S E I= + +   (4) 

接下来引入三种不同的控制参数 ε 、φ、ξ ，基本方程更新为(5) 
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初始条件是在 0t = 时刻。 

3. 基本理论 

3.1. 非负性与有界性 

对于系统(3)，满足初始条件 ( )0 0X ≥ 的解 ( )X t ，在所有 0t > 时均保持非负，其中 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 .h h h h h p p PX t S E A I R S E I=   (6) 

根据(1)和(2)，分别对猪场中的工人和猪的总数量的表达式求导、化简，可以得到 
当 t →∞， 

 ( )limsup ,h
h

t h

N t
µ→∞

Λ
≤   (7) 

 ( )limsup ,p
p

t p

N t
µ ξ→∞

Λ
≤

+
  (8) 

即人和猪总数有界。则得到系统(5)的最大正不变集为 

 ( ){ }5 3, , , , , , , : 0 ,0 .P P P P P PS E A I R S E I R R N Nµ µ ξ+ +Ω = ∈ × < ≤ Λ < ≤ Λ +   (9) 

接下来，我们将在Ω中研究系统系统(5)的解的动力学行为。 

3.2. 基本再生数 

系统(5)的无病平衡点为 

 0 ,0,0,0,0, ,0,0 .ph

h p

Q
µ µ ξ

 ΛΛ
=   + 

  (10) 

根据下一代矩阵法[19]求出系统(5)基本再生数的表达式为： 

 ( )0 0 0max , .h pR R R=   (11) 
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其中 
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由上述的表达式可以看出，基本再生数 0R 与交叉感染率 phβ 无关。 

3.3. 地方病平衡点的存在性 

定理 3.1：当 0 1pR > 时，系统(5)存在地方病平衡点 ( )* * * * * * * * *
p, , , , , , ,p pQ S E A I R S E I 。 

证明：令系统(5)的右端为 0，如果存在地方病平衡 *Q ，则有以下方程组成立： 
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利用上述表达式以及变量之间的相互关系可得 
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根据 0 1pR > ，则有 

 ( )( )( ).p p p p p p p pτ β µ ξ τ µ ξ σ µ ξΛ > + + + + +   (16) 

根据式(16)可以判断出 * 0pI > ， * 0pS > ， * 0pE > 。再看关于猪场工人部分的方程组，可得 

 ( ) ( )* * **
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经过变换，可以得到关于 *
hE 的一元二次方程，我们将其记为 

 ( )* *2 * 0.h h hP E aE bE c= + + =   (18) 

其中系数为 
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因为 0a > ， 0c < ，且 2 4 0b ac∆ = − > ，故该一元二次方程存在唯一正根。即证得 

 * * * * *0, 0, 0, 0, 0,h h h h hE S A I R> > > > >   (22) 

故系统(5)的地方病平衡点存在。 

3.4. 无病平衡点的局部渐近稳定性 

定理 3.2： 0 1hR < ， 0 1pR < 时，系统(5)的无病平衡点 0Q 局部渐近稳定； 0 1hR > ， 0 1pR > 时， 0Q 不稳定。 

证明：定义系统(5)在无病平衡点 0 ,0,0,0,0, ,0,0p
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因此求矩阵 J 的特征值转换成了求矩阵 A 和 C 的特征值。 
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显然矩阵 A 的两个特征值为 

 1 0,hλ µ= − <   (23) 

 ( )2 0,h hλ γ µ= − + <   (24) 

因此只需要判断以下矩阵 D 的特征值实部的符号。 

( ) ( ) ( )

( )
( ) ( )

1 1

.
0

1 0

h h
h h h h

h h

h h

h h h

D

τ µ α ε β ε
µ µ

θτ δ µ
θ τ η σ µ φ

Λ Λ − + − − 
 =  − +
  − − + + + 

 

矩阵 D 的特征多项式为 

 ( ) 3 2
2 1 0.f a a aλ λ λ λ= + + +   (25) 

根据 Routh-Hurwitz 判据[20]， ( )f λ 具有负实根当且仅当 2 0a > ， 0 0a > ， 2 1 0 0a a a− > 。我们定义 

 , , .h h h h hX Y Zτ µ δ µ η σ µ φ= + = + = + + +   (26) 
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那么就会有 

 ( ) ( ) ( )2 0.h h h h ha X Y Zτ µ δ µ η σ µ φ= + + + + + + + = + + >   (27) 

 

( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1 1

1 1 1
.

h h h h h h h h h h

h h h h h h

h h

h h h h h h

h h

a

XZ YZ XY

τ µ η σ µ φ δ µ η σ µ φ τ µ δ µ

τ ε θα τ ε β θ
µ µ

τ ε θα τ ε β θ
µ µ

= + + + + + + + + + + + +

Λ − Λ − −
− −

Λ − Λ − −
= + + − −

  (28) 

 
( )( )( ) ( ) ( ) ( )( )

( ) ( ) ( )

0

0

1 1

1 1 (1 )
1 .

h h h h h h h
h h h h h

h

h h h h h h h

h h

a

XYZ Z Y XYZ R

τ ε θα η σ µ φ β θ δ µ
τ µ δ µ η σ µ φ

µ
τ ε θα τ ε β θ

µ µ

 Λ − + + + + − + = + + + + + −

Λ − Λ − −
= − − = −

  (29) 

当 0 1hR < ， 0 0a > ， 

 

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )
( )( ) ( )( ) ( )
( )

2 1 0 0

0

0

0

1 1 1
1

1 1 1

1

1

0.

h h h h h h h

h h

h h h h h h

h h

h

h

h

a a a X Y Z XZ YZ XY XYZ R

X Y Z XZ YZ XY X Y Z

XYZ R

X Y Z XZ YZ XY X Y Z XY XZ XYZ R

Y Z YZ XYZR

τ ε θα τ ε β θ
µ µ

τ ε θα τ ε β θ
µ µ

Λ − Λ − − 
− = + + + + − − − − 

 
Λ − Λ − − 

= + + + + − + + + 
 

− −

> + + + + − + + + − −

= + + >

  (30) 

( )

( )
( )

( )

( )

0 0 1
0

0 0 1
, .0

0 0 0
0 0 0 0
0 0 0

h
ph ph p p

ph
ph

ph
p p p

p

p p p

B C

β ε
µ µ ξ β

µ ξ
β ε

µ µ τ ξ β
µ ξ

τ µ σ ξ

Λ − −  Λ 
− + −   + Λ  

−   Λ= =   − + +
  + 
   

   − + +  
 

 

矩阵 C 的特征值为 

 ( )3 0,pλ µ ξ= − + <   (31) 

 ( ) ( ) ( )( )( )2
4 02 2 2 2 4 1 0,p

p p p p p p p p p p Rλ µ τ σ ξ µ τ σ ξ τ µ ξ σ µ ξ= − + + + − + + + − + + + + − <   (32) 

 ( ) ( ) ( )( )( )2
5 02 2 2 2 4 1 0,p

p p p p p p p p p p Rλ µ τ σ ξ µ τ σ ξ τ µ ξ σ µ ξ= − + + + + + + + − + + + + − <   (33) 

若 0 1pR < ，则特征根 4λ 和 5λ 的实部为负，则系统(5)的无病平衡点的局部渐近稳定性得证。 

3.5. 无病平衡点的全局渐近稳定性 

定理 3.3：当 0 1hR < ， 0 1pR < 时，系统(5)的无病平衡点 0Q 全局渐近稳定。 
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证明：类似文献[21]的证明方法来证明无病平衡点的全局渐近稳定性。将系统(5)中的感染类变量

( ), , , ,h h h p pE A I E I 的动力学方程分离出来，忽略恢复和易感类的动态，构造一个线性系统作为系统的上界，

已经证明，上述系统所有变量初始非负，解保持非负，且有界。我们可以知道饱和项的上界 

 
( ) ( ) ( )
1

1 0 ,
1

ph p
ph p

p

I
I

I
β ε

β ε α
α
−

≤ − ≥
+

  (34) 

则感染类动力学上限系统如下 

 

( ) ( ) ( ) ( )

( )

( )

( )

d 1 1 1 ,
d

d ( ) ,
d

d 1 ( ) ,
d
d

,
d

d
.

d

h h h h
ph p h h h h h h h

h h h

h
h h h h

h
h h h h h

p p
p p p p p

p

p
p p p p p

E I I A E
t

A E A
t

I E I
t
E

I E
t

I
E I

t

β ε β ε α ε τ µ
µ µ µ

θτ δ µ

θ τ η σ µ φ

β µ τ ξ
µ ξ

τ µ σ ξ

Λ Λ Λ
= − + − + − − +

= − +

= − − + + +

Λ
= − + +

+

= − + +

  (35) 

我们令 

 
T

, , , , ,h h h p pu E A I E I =  
   (36) 

线性化系统可以记为 

 d ,
d
u Ku
t
=


   (37) 

 .K F V= −   (38) 

根据文献[22]中定理 2 的证明，如果 

 ( )1
0 1,R FVρ −= <   (39) 

那么则会有 

 ( ) 0,s F V− <   (40) 

因此系统(35)的任意正解均满足 

 ( )lim lim lim lim lim lim 0.h h h p pt t t t t t
u t E A I E I

→∞ →∞ →∞ →∞ →∞ →∞
= = = = = =   (41) 

因为原系统(5)的变量都是非负的，可由比较定理[23]知，(5)的感染类变量同样趋于零，易感类趋于

,h pN N ，即满足式(7)、(8)、(41)。综上，当 0 1hR < ， 0 1pR < 时，系统(5)从任意初始状态出发的解均收敛于

无病平衡点 0Q ，故该平衡点是全局渐近稳定的。 

3.6. 对控制参数 ε、φ、ξ进行求偏导 

在本节中，对控制参数 ε (工人防护效率)、φ (有效治疗率)和 ξ (猪群扑杀响应速率)进行求偏导分析，

以探究其对基本再生数 R0的影响。具体推导如下： 
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( ) ( )( )

( )( )( )
0

1
0,

h
h h h h h h h

h h h h h h

R τ θα η σ µ φ β θ δ µ
ε µ τ µ δ µ η σ µ φ

 − Λ + + + + − +∂  = ≤
∂ + + + + +

  (42) 

 
( ) ( ) ( )( )

( )( )( )
0

2

1 1
0,

h
h h h h h h h

h h h h h h

R τ ε θα η σ µ β θ δ µ
φ µ τ µ δ µ η σ µ φ

 − Λ − + + + − +∂  = ≤
∂ + + + + +

  (43) 

 

( )( ) ( )( )
( ) ( ) ( )

( )( )
( ) ( ) ( )

0
2 2 2

2 2 2

0.

p
p p p p p p p p p p

p p p p p

p p p p p p

p p p p p

R τ β τ µ ξ σ µ ξ µ ξ σ µ ξ

ξ µ ξ τ µ ξ σ µ ξ

τ β µ ξ τ µ ξ

µ ξ τ µ ξ σ µ ξ

 − Λ + + + + + + + +∂  =
∂ + + + + +

 − Λ + + + +
+ + + + +

≤

  (44) 

由上述表达式可以看出三种控制措施对 R0 都有积极的影响，当这些控制参数在合理范围内提升时，

均可降低基本再生数 R0，进而有效抑制尼帕病毒的传播，为实际防控策略的制定提供了理论依据。 

4. 数值模拟 

为验证理论结果并评估控制策略的有效性，我们进行了数值模拟。模拟基于一个猪场的合理参数设

定，分析了三种控制措施(工人防护、有效治疗、猪群扑杀反应速率)的单一、组合及综合运用对尼帕病毒

传播动态的影响。为了模拟三种控制措施的七种不同组合(干预措施 A-G，见表 2)对感染群体的影响，我

们将初始条件设置为： ( )0 100hS = ， ( )0 12hE = ， ( )0 5hA = ， ( )0 3hI = ， ( )0 0hR = ， ( )0 1000pS = ，

( )0 30pE = ， ( )0 9pI = 。所有控制参数的取值范围均为 [ ], , 0,1ε φ ξ ∈ 。根据相关数据以及合理假设，数值

模拟是在以下参数值下进行的： 2hΛ = ， 0.02hµ = ， 0.13hτ = ， 0.01hα = ， 0.4δ = ， 0.15hγ = ， 0.01phβ = ，

0.03hβ = ， 0.3a = ， 0.6θ = ， 0.5η = ， 0.06hσ = ， 6pΛ = ， 0.06pµ = ， 0.02pβ = ， 0.11pτ = ， 0.4pσ = 。 
图 2 和图 3 展示了三种控制措施七种不同的组合在 , ,ε φ ξ 分别取 0、0.1、0.4 和 0.7 的情况下，感染

群体的变化情况。此外，表 2 详细列出了每种干预策略对再生数 R0的影响，进一步说明了不同控制措施

对疫情传播的抑制效果。 
 

Table 2. The impact of intervention measures A-G on the basic reproduction number R0 
表 2. 干预措施 A-G 对基本再生数 R0的影响 

控制水平 控制名称 控制参数值 基本再生数 R0值 

只有一种控制措施 

( ): 0A ε φ ξ= =  

0.10 2.78 

0.40 2.78 

0.70 2.78 

( ): 0B φ ε ξ= =  

0.10 2.82 

0.40 2.78 

0.70 2.78 

( ): 0C ξ ε φ= =  

0.10 3.09 

0.40 3.09 

0.70 3.09 
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续表 

两种控制措施相结合 

( ): 0D ε φ ξ= =  

0.10 2.81 

0.40 2.81 

0.70 2.81 

( ): 0E φ ξ ε= =  

0.10 2.82 

0.40 2.36 

0.70 2.11 

( ): 0F ε ξ φ= =  

0.10 2.78 

0.40 1.85 

0.70 0.92 

三种控制措施同时使用 :G ε φ ξ= =  

0.00 3.09 

0.10 2.54 

0.40 1.41 

0.70 0.63 

 

  

 
Figure 2. The impact of a single control measure on NiV transmission 
图 2. 只有一种控制措施对 NiV 传播的影响 

https://doi.org/10.12677/aam.2026.151031


李文慧，王帅 
 

 

DOI: 10.12677/aam.2026.151031 323 应用数学进展 
 

  

  
Figure 3. The impact of different combinations of two control measures and the simultaneous implementation of all three 
measures on NiV transmission 
图 3. 两种控制措施的不同组合以及三种措施同时控制对 NiV 传播的影响 

 
结果显示，在无干预措施的情况下，计算得出的基本再生数 R0约为 3.09，疫情会爆发并持续。模拟

结果通过图进行了可视化展示，展示了不同干预措施的不同取值对尼帕病毒传播的动态影响。单一控制

措施虽能略微降低 R0或减少感染人数，但效果有限，无法单独将 R0降至阈值 1 以下。两种措施组合使用

能取得更好效果，例如当工人防护效率 0.7ε = 且猪群扑杀响应速率 0.7ξ = 时，R0降至 0.92，小于 1，可

实现疫情控制。最优策略是三种措施协同实施，可显著降低基本再生数 0R ，如 0.7ε φ ξ= = = 时，R0显著

降至 0.63，并能有效压低感染峰值、缩短疫情持续时间。 

5. 总结与讨论 

本章通过构建 SEAIRS-SEI 人猪耦合动力学模型，系统模拟解析了尼帕病毒在猪场中的传播机制及

防控策略。理论分析表明，系统稳定性由基本再生数 R0主导：当 0 1R < 时无病平衡点全局稳定，而 0 1R >

时疫情可能持续存在并扩散显著(无干预时 0 3.09R ≈ )。数值模拟进一步揭示，单一控制措施(如工人防护

率 ε)对 R0 的抑制有限(降至 2.78)，但三措施协同( 0.7ε φ ξ= = = )可显著降低 R0 至 0.63，有效缩短疫情周

期并减少感染峰值。 
与现有研究对比，本模型的 R0估值处于已报道范围的高位，这主要源于对无症状感染环节和饱和接

触率的显式考虑，提示忽略这些因素可能低估疫情风险。然而，“所有措施最大化”的理想结论面临现
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实约束。高强度防护成本高昂，快速扑杀造成重大经济损失，高效治疗依赖充足医疗资源。因此，我们

提出一个更务实、分阶段的优化策略思路：在资源常态配置期，应优先投资于提升猪场整体生物安全水

平(这体现为提高饱和常数 λ 所表征的防护响应强度)与维持基础人员防护(保持一定的 ε)。当疫情早期被

侦测到时，应急响应的核心必须转向优先保障快速扑杀(力求实现较高的 ξ)与实施最高级别的人员防护，

而对病例的治疗资源(φ)则应采取集中使用的原则。本研究的模拟表明，扑杀措施(ξ)在与其它措施协同降

低 R0 时效果尤为显著(参见表 2 及图 3)。这意味着，在实践中，一个侧重于快速扑杀与稳固基础防护的

策略组合，在理论上具有将 R0压制到阈值以下的潜力。这为在资源约束下，制定“以快速清除动物端传

染源为核心，强化人员端基础隔离防护”的应急方案提供了理论依据和优先级参考。 
未来研究需进一步拓展模型的多尺度特性，可以考虑一是纳入病毒变异、环境介质(如蝙蝠排泄物污

染)及猪场外部流动(如生猪交易)的影响，或是结合 COVID-19 防控经验[24] [25]，探索将环境拭子检测与

血清学筛查纳入无症状感染者监测体系，量化其对降低 R0的贡献。此外，值得注意的是，本文仅关注了

小月龄猪(4 周龄至 6 月龄)的感染特性，而大猪的感染情况未被纳入研究。大猪在养殖周期中可能表现出

不同的传播模式和感染特征，其在病毒传播链中的作用仍需进一步探讨。随着全球养殖集约化与生态交

互的加剧，此类多学科交叉研究将为防范人畜共患病大流行提供关键科学支撑，同时为政策制定者提供

兼顾公共卫生安全与经济可持续性的决策工具。 
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