Advances in Applied Mathematics & %23t 2026, 15(1), 336-350 Hans X
Published Online January 2026 in Hans. https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2026.151033

— AT RFER L RER S )R REYTHE

FhE, FhR
AR S5, K

Weks . 20254F12 7210 F#HBER: 20264F1H16H; KA HM: 20264F1H21H

wm B

B B TR SFFPUR. [FoAE. FRhlSEE SIS RE ZRNATER, K4S
RARTHE RS, RET SN . EWEENKNSI 2T, o 7 eHe
W 2% FELyapunovik X I EME, FER THPE S5 R HERRENFNE.

XKigid

WIS, BERAEE, FRLOW, 2REK, Lyapunoviz et

A Recurrent Neural Network for Solving
Equality-Constrained Saddle Point
Problems

Hongzhi Ye, Xiaobing Li

School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing

Received: December 21, 2025; accepted: January 16, 2026; published: January 21, 2026

Abstract

Saddle point problems have broad applications in various fields such as engineering optimization,
economic decision-making, signal processing, and intelligent control. This paper proposes a novel
recurrent neural network model for solving equality-constrained saddle point problems. By con-
structing the corresponding dynamic equations, the stability of the neural network in the Lyapunov
sense is analyzed, and the equivalence between its equilibrium point and the optimal solution of
the original problem is proven.
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V(X )==A"2
* * T * (6)
Vyf(x , Y ):C J738

B 1 TR S AERTAT AR E L RS, ELAE X () RKT x 0B 15 (x') R%T y
L, R R RO, T

f(x,y*)—f(x*,y*)ZVXf(x*,y*)T(x—x*>, ‘v’xeX(y*), o
f(x*,y)—f(x*,y*)SVXf(x*,y*)T * % .

5456), (7), W15

DOI: 10.12677/aam.2026.151033 339 N H it e


https://doi.org/10.12677/aam.2026.151033

M,

[\

(—ﬂ*)TA(x—x*):O, ‘v’xeX(y*>,

(,u*)T C(x—x*):O, Ver(x*>,

f(xy7)=r(xy")
f(xy)=r(xy")

IA

R
f(x*,y)sf(x*,y*)éf(x,y*), V(xT,yT)T eE.

HLSHE (x,) ) < E ALBUBHR AR R, BT 75 ML AR

SET R 3.0, ASCAESCHR(2S | h R RN Z A R (R b, S0 2 A A T R T 2 R
TR ATR), M T I SRARA IR M R W I R, R 23 4.2 E I T 1%
2 L4 10 2RO ) S5 . A SOOI I 28T 2430 113 T R0 T

%:_(lm _Px)vxf(an/)—AT (Ax—b),
é @®)
o~ =RV, S (ny)=CT(Cr=a),

S, B =CT(CCT) € (1, - P) BRI R RIERE 4 FA b, (1, - P) R R

B C %A

BT x HITTAFR (x| Ax = b) BTy BOTTAFSR | Gy = d) ROTSSE, 04 x By ZERTAFRINESEINS, 1
BEEBH TSR LERAR Ax=b I Cy=d . -V f(x.y)+ ¥,/ (x.y) S BRI £ (,y)
RGBS £ (x,) EFHRARIT TR, (1, - B) R (1, - B, ) A BIXHERRE AT 4, £
PRI 25 S (SR V2 7 P A7 ) 2 1) LR 3 A FL A B 5 T | Ax— b A1 Cy — 550
TR x My H AR, 2 x By RAERTATBN T, — A" (Ax—b) FI—CT (Cy—d) ABBERE T,
SY BN x A1 y BI L LI5K A = b A1 Cy = d IUTTAFE E Huioicsn.

KIS, A SO T AL S R LM A HA(S), it

I, 0 P 0
S RS PO S

y

F(z):(_vgﬁg;fy))} G:[A;A c(T) CJ, H=(§2J

P2 2% (8) FH KT AT R fRIAL A R »

dx

dz_| dr

— = =—(I-P)F(z)- H.

il P I O S )
de

SEX 300 2 BRI IOV P, W 2" W LU T R
0=—(/-P)F(z)-Gz+H.
4. WSS A

TEATTH, ARSCHG S TR 25 (9)1E Lyapunov & 3R AR E MEFI A R ICSUE o 1 S iE B W46 R
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SRS, ﬁmmﬁ%@u“d—fso, W (z)=0 FLw (2) RARFIE T . AR B MW () s

P, MFEEe>0, #E5>0, 13 |z-2]|<5, W(z)<§o RN, HQYH, z(1,)—>z, HFHAHE
— RS, 5132 (ty) -2 <6, B

DOI: 10.12677/aam.2026.151033 344 N H it e


https://doi.org/10.12677/aam.2026.151033

Mk, I

W (=(0)) = (=(1)) - (2)] < - (30)
R W (2(0)) BRI AREIEER(29), (30), AIEL, XF T vi>1,,

|z ()= =2 (=(0)) <2 (=(1,) <

Bp

limz(t) =Z.

t—0

M FAE BRI 2, = (3090 )| € B, WERIR 2 O)IIRAS I 5 2 (1) ¥ 4 LR 0 — AP A
5. HERH
AT B T AR 2 AT SR A PN BB ST B R AT IE,  FRIARA SO Hh i 42 R 2% (47 B AT R AT
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Figure 1. The convergence behavior plot of the objective function in Example 5.1
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Figure 2. Convergence trajectories plot of each component of the state variables in Example 5.1
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Figure 3. The convergence behavior plot of the objective function in Example 5.2
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Figure 4. Convergence trajectories plot of each component of the state variables in Example 5.2
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