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Abstract

Graph entropy is widely applied in the field of characterizing the system structure of graphs. It can
reflect different structural information and various complexity measures. It plays an important role
in physics, chemistry, medicine and other fields. As a generalization of ordinary graphs, hypergraphs
can better represent key information for more complex graph structures, such as complex networks.
Naturally, we can consider extending graph entropy to hypergraphs, and consider the graph entropy
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based on vertex coloring of hypergraphs, combining hypergraph vertex coloring and graph entropy
to obtain more complex chromatic entropy problems, providing a more long-term problem for chro-
matic entropy problems. This paper mainly studies the extremal values and extremal graph struc-
tures of chromatic entropy of k-uniform hypertrees under the condition of fixed maximum match-
ing number, and gives the corresponding graphs.
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Figure 1. A k-uniform hypertree with a superstar
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Figure 2. The fixed maximum matching number & uniform hypertree Hi
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Figure 3. The fixed maximum matching number & uniform hypertree H>
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Figure 4. The fixed maximum matching number & uniform hypertree /3
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