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摘  要 

对于由加性噪声驱动的且具有时变函数项的随机非线性薛定谔方程，其解析解的构造具有本质困难，这

表明数值方法是研究该方程性质的必要手段，其核心问题就是分析数值格式的收敛阶。本文利用中点格

式的时间半离散方法，在空间具有充分正则性的条件下，结合截断方法和Gronwall不等式证明其在非全

局Lipschitz情况下的概率收敛阶为1阶。 
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Abstract 
For the stochastic nonlinear Schrödinger equation driven by additive noise and with time-dependent 
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coefficients, constructing its analytical solution is intrinsically difficult. This indicates that numeri-
cal methods are a necessary means to study the properties of this equation, and the core issue is to 
analyze the convergence order of the numerical scheme. In this paper, by employing the time semi-
discrete method of the midpoint scheme, under the condition that the space has sufficient regularity, 
and combining the truncation method with Gronwall’s inequality, it is proved that its probability con-
vergence order is 1st order in the case of non-global Lipschitz. 
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1. 引言 

非线性薛定谔方程在物理学的许多分支中有广泛的应用[1] [2]，而在实际观测中，发现由非线性薛定

谔方程预测的轨迹受到随机噪声的干扰，因此由 Gauss 白噪声驱动的随机非线性薛定谔方程引起国内外

学者的关注，其中对随机非线性薛定谔方程的数值格式的误差分析是一个重要的研究内容。 
近年来，针对于随机非线性薛定谔方程提出了不同的数值分析方法。例如，Liu [3]研究了确定性非线

性薛定谔方程的 Strang 型分裂格式与带乘法噪声的随机非线性薛定谔方程的保质量分裂格式，并证明此

格式有 1 阶概率收敛阶。Cui 等[4]指出带白噪声色散的非线性薛定谔方程具有随机辛和多辛结构，据此

提出了随机辛与多辛全离散格式，这些格式均能保持离散电荷守恒律，时间收敛阶为依概率 1 阶，数值

实验验证了相关理论结果。Hong 等[5]研究了带二次势和加性噪声的随机非线性薛定谔方程，提出了保辛

结构的时间中点半离散化格式，在适当正则性条件下证明其依概率一阶收敛，并通过数值实验验证了收

敛阶。 
受以上文章启发，本文研究具有时变线性损耗/增益的随机非线性薛定谔方程的中点格式。由于非线

性项是非全局 Lipschitz 的，以及方程带有时变函数，本文在非全局 Lipschitz 条件下，通过截断技术克服

了非线性项带来的分析困难，给出了严格的误差估计，以及利用三角不等式性控制时变系数，最终得到

该格式的依概率收敛阶为 1 阶，得到的 1 阶收敛阶与确定性中点格式的经典收敛阶一致，且在随机框架

下已接近最优。与文献[5]中辛中点格式在加性噪声下的结果相比，本文在时变系数情形下保持了相同的

收敛阶，说明中点格式在此类问题中具有较强的稳健性。 

2. 中点格式 

在本文中，我们研究以下具有时变线性损耗/增益的随机非线性薛定谔方程： 

 
( )( ) ( ) [ )

( ) ( )0

d d d ,       , 0, ,

0, ,     ,

d

d

i u u u u ia t u t W t x

u x u x x

αλ + ∆ + + = ∈ ∞ ×

 = ∈





 (2.1) 

其中，λ∈，非线性项指数满足 ( )40 3
2

d
d

α< < ≥
−

且当 1,2d = 时 0α > ， ( )a t 是定义在区间 [ )0,∞ 上的

有界实值函数，即 ( )a t C≤ ，且 ( ) 0a t > 或 ( ) 0a t < 描述损耗或增益的强度。 ( ) ( ),i i
i N

W t e xβ ω φ
∈

= ∑ 是复值 
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维纳过程，其中，{ }i i N
β

∈
是一族定义在概率空间 ( )( )0

, , , t t
P

≥
Ω   上相互独立的布朗运动，{ }i i N

e
∈

是 ( )2 dL 

上的一组标准正交基， 0,
2

sφ ∈ 是从 ( )2 dL  到 ( )( )s dH s N∈ 的 Hilbert-Schmidt 算子，其范数定义是 

( ) ( )2

22
s s di H

i N
tr eφ φ φ φ∗

∈

= = ∑


。Miao 等[6]已验证，该方程在 ( )1 dH  上具有全局适定性，类似地，当初值 

0u 和φ 满足充分的正则性时，即 0
su H∈ ， 2

sφ ∈ 时，方程在 ( )s dH  中具有全局适定性。现考虑对方程

(2.1)的采用时间半离散的中点格式， 

 
1 1 1 1 1
2 2 2 2 2

1

,     0,1, , 1,
n n

n n n n n nWu ui u u u ia u n N
t t

α

λ
+

+ + + + + ∆−
+ ∆ + + = = −

∆ ∆
  (2.2) 

其中，
Tt
N

∆ = 是时间步长， ( ) ( )1n n nW W t W t+∆ = − ， ( )1
2 11

2
n n nu u u+ += + 。 

3. 全局 Lipschitz 情况强收敛阶 

现在我们研究 2α = 时方程(2.2)的收敛阶。由于非线性项不是全局 Lipschitz 的，首先要引入阶截断函

数 ( )dCθ ∞∈  满足 [ ]sup 0,2θ ∈ ，且在 [ ]0,1 上 1θ = 。截断后方程为 

 ( ) ( ) ( )( )d d d ,R R R R Ri u u F u ia t u t t Wλ+ ∆ + + =  (3.1) 

其对应的中点格式为 

 ( )1 1 1
2 2 21

1,n n nn n
R t R t R R t R t nu S u i tT F u tT a u i tT+ + ++

∆ ∆ ∆ ∆ += + ∆ − ∆ − ∆   (3.2) 

其中， 

( ) ( ) ( ) 12 , ,H
R R R R R R R

u
F u u u u u

R
θ θ θ

 
= =   

 
 

( ) ( )1 1
1

11 1 , 1 , .
2 2 2

n n
t t n

W t W ti t i t i tS T
t

− −
+

∆ ∆ +

−∆ ∆ ∆     = − ∆ + ∆ = − ∆ =      ∆     
  

关于算子 tS∆ 和 tT∆ 有以下重要估计[7]， 

 ( ) ( ) ( )2 2 2 ,1,   1,   ,t t tL L H HS T S I K tα α+∆ ∆ ∆≤ ≤ − ≤ ∆
  

 (3.3) 

 ( ) ( ) ( ) ( )3 3 2, ,
,   ,n n

n t t tH H H L
S t S K t S s S T K tα α α

α
+

−
∆ ∆ ∆− ≤ ∆ − − ≤ ∆
 

 (3.4) 

其中， [ ]0,1α ∈ ， ( ),U V 是由从可分Hilbert空间U 到空间V 的全体线性有界算子构成的空间，将 ( ),U U

简记为 ( )U ，此时， ( ) ( ) 2
R R R R R RF u u u uθ= 满足全局 Lipschitz 条件，其 Lipschitz 系数为

RFL ，且方程

(3.2)具有全局适定性且解 n
Ru 是由 0u 唯一确定的。在此基础上，需要给出方程(3.1)的解和非线性项 ( )R RF u

的强正则性，即当 4 4
0 2,u H φ∈ ∈ 时， 

( ){ } [ ] ( )( )2 4
0,

; 0, ;p
R R t T

F u L L T H∞
∈

∈ Ω , 

( ) ( )444
2

2
0

0
sup , , , ,

p
R HHt T

E u t C p T R u φ
≤ ≤

≤


. 

为了简化符号，将 n
Ru 和 Ru 分别写为 nu 和 u 。假设 ( ) ( )( )2 ,

RFt C M C Lλ∆ < + ，那么对于任意的 n ，

方程(3.2)存在如下数值解， 

( )1 1 1
2 2 2

0
1 1 1

.
n n nl l ln n n l n l n l

t t t R t t t t l
l l l

u S u i t S T F u t S T a u i t S Tλ − − −− − −
∆ ∆ ∆ ∆ ∆ ∆ ∆

= = =

= + ∆ − ∆ − ∆∑ ∑ ∑   
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接下来，我们给出方程(3.1)和(3.2)解之间的误差估计。 
定理 3.1 假设 4 4

0 22, ,u Hα φ= ∈ ∈ ，对于任意的 0T > 和 1p ≥ ，都存在常数 1K 使得 

( ) 1

2 2
10, ,

max .
pn p

R n R Hn N
E u t u K t

=
− ≤ ∆



 

证明：由于 ( )a t 是有界时变函数，不妨假设上界为 M。定义 ng 是将解 0 1, , nu u −
 映射到 nu 的映射，

即 ( )0 1, , n n
ng u u u− = ，那么对于任意满足 0 0u v= 的序列{ }ku 和{ }kv ，有 

( ) ( )

( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1 1 1 1
2 2 2 2 2

1 1

1 1

1

0 1 0 1

1 1

1
0 1 0 1

1

1
0 1 0

1

  , , , ,

,
, , , , ,

2

  , , , ,
2

R

R

n n
n n H

n nl l l l ln l n l
t t R R t t

l lH H

n Fl l n n
F n nH Hl

n
l l n

n nHl

g u u g v v

t S T F u F v t S T a u v

tC L
tC L u v g u u g v v

tC M
C M u v g u u g v v

λ

λ
λ

− −

− − − − −− −
∆ ∆ ∆ ∆

= =

−
− −

=

−
−

=

−

≤ ∆ − + ∆ −

∆
≤ ∆ − + −

∆
+ − + −

∑ ∑

∑

∑

 

 

 ( ) 1
1n

H

−

 

因此，我们推断 

 ( ) ( )
( ) ( )( )
( ) ( )( ) 1

1
0 1 0 1

1

2 ,
, , , , .

2 ,
R

R

nFn n l l
n n HlF

t C M C L
g u u g v v u v

t C M C L

λ

λ

−
− −

=

∆ +
− ≤ −

− ∆ +
∑   (3.5) 

由于 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

0 0

0 0

d

           d d .

n

n n

t
n n n R

t t
n n

u t S t u i S t r F u r r

S t r a r u r r i S t r W r

λ= + −

− − − −

∫

∫ ∫
 

那么 

( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( )( ) ( )

1
1 2

1 1
1 2 2

1

0
1

0
1

1

1

, ,

d

  d

  d

: ,

l

l

l

l

l

l

n n n

n tn n l
n t n R t t R lt

l
n t n l

n t t l lt
l

n t n l
n t tt

l

n n n n

u t g u u t

S t S u i S t r F u r S T F u t r

S t r a r u r S T a t u t r

i S t r S T W r

A iB C iD

λ
−

−

−

−

−
∆ ∆ ∆ −

=

−
∆ ∆ − −

=

−
∆ ∆

=

−

 = − + − − 
 

− − −

− − −

= − − −

∑∫

∑∫

∑∫



 

首先用(3.3)式处理 nA ，用(3.4)式处理 nD ，则有 

( )( )41 4
2

2 2 22
00, ,

max .p p pp
n n H Hn N

E A D C t E u φ
=

+ ≤ ∆ +



 

接下来我们处理 nB ，将 nB 分裂成如下形式， 

( ) ( )( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( ) ( )( )

1
1 2

1 1

1
1 2

1

1
1 1

1
1

1 2 3

d

d d

   d

: .

l

l

l l

l l

l

l

n t n l
n R t t R lt

l
n nt tn l n l

n t t R t t R lt t
l l

n t n l
t t R l lt

l

n n n

S t r F u r S T F u t r

S t r S T F u r r S T F u r u t r

S T F u t u t r

B B B

λ

λ λ

λ

−

− −

−

−
∆ ∆ −

=

− −
∆ ∆ ∆ ∆ −

= =

−
∆ ∆ − −

=

 − − 
 

= − − + −

+ −

= + +

∑∫

∑ ∑∫ ∫

∑∫
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下面我们分别来估计这三项。对于 1
nB ， 

( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( ) ( ) ( )( )

1 1

1 11 1

3 2
1 11 4

1

1 1

,1 1

  d

d d

d d

su

l

l

l l

l l

l l

l l

n t n l
n t t Rt

l H

n nt tl n l
n n t t R n t t t Rt t

l lH H

n nt tl n l
t t R n t t t Rt tH Ll lH H

S t r S T F u r r

S t r S t S T F u r r S t S S T F u r r

S r S T F u r r S t S S T F u r r

CT t

λ

λ λ

λ λ

−

− −

− −

−
∆ ∆

=

− −
∆ ∆ ∆ ∆ ∆

= =

− −
∆ ∆ ∆ ∆ ∆

= =

− −

≤ − − + −

≤ − − + −

≤ ∆

∑∫

∑ ∑∫ ∫

∑ ∑∫ ∫

( )( ) 4
0

p ,R Ht T
F u t

≤ ≤

 

因此， 

1

21 2

0, ,
max .

p p
n Hn N

E B C t
=

≤ ∆


 

对于 2
nB 使用 Taylor 公式，我们有 

( )( ) ( )( ) ( )

( )( ) ( ) ( )( )( )
( )( ) ( ) ( ) ( )( )

1

1 1

1 1

1

2
1 1 1

1

1
1

1
1

1

d

        d d

        d d

        

l

l

l

l l

l

l l

l

l

n t n l
n t t R l l lt

l
n t rn l

t t R l Rt t
l
n t rn l

t t R lt t
l

n t n l
t tt

l

B S T F u t S r t Id u t r

S T F u t i S r s F u s s r

S T F u t S r s a s u s s r

i S T

λ

λ λ

λ

λ

−

− −

− −

−

−
∆ ∆ − − −

=

−
∆ ∆ −

=

−
∆ ∆ −

=

−
∆ ∆

=

′= − −

′+ −

′− −

′−

∑∫

∑∫ ∫

∑∫ ∫

∑∫ ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )( )

1

1

1 2
1 10

1
21 22 23 24 25

d d

1        1 d d
2

     ,

l

l

l

r
R t

n t n l
t t l lt

l

n n n n n

F S r s W s r

S T F u r u t u r u t r

B iB B iB B

ρ ρ ρ

−

−

−
∆ ∆ − −

=

−

′′+ + − −

= + − − +

∫

∑∫ ∫

 

其中，对于任意 ρ ∈， ( )S ρ 是等距映射，满足 ( ) ( )4 2,
,

H H
S I Cρ ρ− ≤


其中 I 是单位算子，则 

( )4 41

221 2

0, , 0 0
max sup sup .

p p
n R H HHn N t T t T

E B C T t F u C t
= ≤ ≤ ≤ ≤

 ′≤ ∆ ≤ ∆ 
 


 

对于 22
nB 和 23

nB ， 

( )( ) ( ) 41 14
22 23

0 0
sup , sup ,n R n HH HHt T t T

B CT t F u t B CT t u t
≤ ≤ ≤ ≤

≤ ∆ ≤ ∆  

因此， 

1 1

2 222 2 23 2

0, , 0, ,
max ,    max .

p pp p
n nH Hn N n N

E B C t E B C t
= =

≤ ∆ ≤ ∆
 

 

接下来利用 Fubini 定理和鞅不等式处理 24
nB ，我们得到 

( ) ( )( )
( )( )

1
1 1 1

11 1
2

2
224

0, , 0, , 1

2
2

1

max max d d

d d .

l

l l

l

l l

pnp t rn l
n t t Rt tHn N n N l H

pn t rn l p
t t R kt t

l

E B E S T F S r s W s r

C E S T F S r s e r s C tρ

λ

φ

− −

− −

−
∆ ∆= = =

−
∆ ∆

=

′= −

 
′≤ − ≤ ∆ 

 

∑∫ ∫

∑∫ ∫

 



 

对于 25
nB ，已知 F ′′有界，那么通过 Minkowski 不等式与 Burkholder-Davis-Gundy 不等式，我们有 
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( ) ( )

( ) ( )

( )( ) ( ) ( ) ( )( )

( ) ( )

11
1

1
1

111

1

2 425
10, , 1

4
10, ,

4

1 10, ,

0, ,

max d

max sup

max sup d

  max sup

l

l

l l

ll l

l l

np t p
n l HtHn N l

p
l Hn N t r t

pr
l l Rtn N Ht r t

n N t r t

E B CE u r u t r

CE u r u t

CE S r t Id u t i S r s F u s s

CE S r s a s

λ

−

−

−
−

−

−= =

−= ≤ ≤

− −= ≤ ≤

= ≤ ≤

 ≤ − 
 
 

≤ − 
 
 

= − − + − 
 

+ − −

∑∫

∫









( ) ( ) ( )
11 1

4

2

d d

.

l l

pr r

t t H

p

u s s i S r s W s

C t

− −

 
− − 

 
≤ ∆

∫ ∫

 

利用上述类似的不等式处理 3
nB 项，得到 
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−
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对于 nC ，仍利用三角不等式将其拆分得到， 
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其中， 
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此时，由于 ( )a t 是有界的，项 1 21 22 3, , ,n n n nC C C C 可以用上述处理 nB 的方法进行类似的处理，最终得到 
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综合以上不等式，我们有 
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又由(3.5)和 Minkowski 不等式可知 
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再结合 Gronwall 引理[5]，证得引理 3.1。 

4. 数值解收敛性 

通过上述的探讨，可以得到方程(2.2)的数值解的收敛性，也是本文的中心定理。 
定理 4.1 令 4 4

0 22, ,u Hα φ= ∈ ∈ ，则对于任意的 0 n N≤ ≤ ，有 

( )( )10, ,
lim max 0.n

n HC n N
P u t u C t

→∞ =
− ≥ ∆ =



 

证 定义停时 { }1 1
1

0, ,
inf : n n

R n R RH Hn N
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=
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

或者 ，且当 n Rt τ< 时有离散解 n n
Ru u= ，由定理 3.1

可知，对于任意的 0R > ，有 

( ) 1

2 2

0, ,
max .

pn p
R n R Hn N

E u t u C t
=

− ≤ ∆


 

这表明当 0τ → 时， ( ) 10, ,
max n

R n R Hn N
u t u

=
−



依概率收敛于 0。由 Chebyshev 不等式可知 
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结合 ( ),n
nu u t 的一致有界性和定理 3.1，我们可以得到当 0C → 时有 

( )( )10, ,
max 0.n

n Hn N
P u t u C t

=
− ≥ ∆ →



 

因此该格式的依概率收敛阶为 1 阶。 
本文仅研究了时间半离散格式，后续可结合谱方法或有限元方法进行空间离散，建立全离散格式的

误差估计，并探讨时空步长的耦合影响。 
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