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Abstract

This paper investigates the generalized synchronous solutions of a coupled Stuart-Landau oscillator
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system. We derived the critical conditions and bifurcation regions for the generalized synchroniza-
tion solutions of the system by using the rotating periodic solution method. First, we apply a linear
transformation to the original system. Then, using the rotating periodic solution method to obtain
the critical condition for the bifurcation of synchronous solutions in the transformed system and
derive the corresponding synchronization diagram. Next, we perform numerical simulations to gen-
erate the bifurcation diagram of generalized synchronous solutions for the original system; the re-
sults demonstrate that, despite the formal transformation, both the critical bifurcation conditions
and the bifurcation diagram of synchronous solutions remain unchanged. Thus, the rotating peri-
odic solution method is capable of handling special synchronization problems, namely, generalized
synchronization.
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Figure 1. Coupled Stuart-Landau oscillatorsmodel
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Figure 2. Anti-synchronization and complete synchronization solutions of system (2), vi denotes oscillator 1, v2 denotes os-
cillator 2. (a) Anti-synchronization solution of system (2) with parameters n = 0.7, c =—0.3, w = 1; (b) Complete synchroniza-
tion solution of system (2) with parameters n = 0.7, ¢ =0.2, w=1
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0.7, ¢c=-03, w=1; (b) RZQHINTLRELHE, HFEHn=07, ¢c=02, w=1
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Figure 3. Generalized synchronization solution of system (1), vi denotes oscillator 1, v> denotes oscillator 2. (a) System (1)
exhibits synchronization type 1 with parameters n = 0.7, ¢ = —0.3, w = 1; (b) System (1) exhibits synchronization type 2 with
parameters n =0.7,¢c=0.2,w=1
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Figure 4. Bifurcation diagrams of system (1) and system (2) with respect to (n,c) (a) Theoretical bifurcation diagram of

system (2) in the (n,c) plane. The line n—2c =0 is the critical condition for the anti-synchronization bifurcation, n=0

is the critical condition for the complete synchronization bifurcation. (b) Numerical simulations are used to collect all param-
eter points where special anti-synchronization, special complete synchronization, or zero solutions occur. System (1) employs
numerical simulation to locate every point that exhibits special anti-synchronization, special complete synchronization, or the
zero solution; these points are then plotted to yield the blue region (synchronization type 1), the red region (synchronization
type 2), and the yellow region (the zero-solution region), respectively. Finally, the bifurcation diagram of system (2) in the

(n,c) plane is obtained, where the boundary between the blue and yellow regions is the critical condition for the special anti-

synchronization bifurcation, and the boundary between the blue and red regions is the critical condition for the special com-
plete-synchronization bifurcation.
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