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摘  要 

本文研究了耦合Stuart-Landau振子系统的广义同步解，我们利用旋转周期解方法得出了该系统广义同

步解的临界条件及分支区域。首先，我们对原系统作线性变换得到标准的Stuart-Landau振子系统，然后

我们利用旋转周期解方法得到了变换后系统的完全同步与反同步解分支的临界条件，并获得相应的解的

分支图。其次我们利用数值模拟得到变换前系统的广义同步解的分支图，结果表明，尽管系统经历了形

式转化，其同步解分支的临界条件与分支图保持不变。所以旋转周期解方法能够处理特殊的同步问题即

广义同步问题。 
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Abstract 
This paper investigates the generalized synchronous solutions of a coupled Stuart-Landau oscillator 
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system. We derived the critical conditions and bifurcation regions for the generalized synchroniza-
tion solutions of the system by using the rotating periodic solution method. First, we apply a linear 
transformation to the original system. Then, using the rotating periodic solution method to obtain 
the critical condition for the bifurcation of synchronous solutions in the transformed system and 
derive the corresponding synchronization diagram. Next, we perform numerical simulations to gen-
erate the bifurcation diagram of generalized synchronous solutions for the original system; the re-
sults demonstrate that, despite the formal transformation, both the critical bifurcation conditions 
and the bifurcation diagram of synchronous solutions remain unchanged. Thus, the rotating peri-
odic solution method is capable of handling special synchronization problems, namely, generalized 
synchronization. 
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1. 引言 

同步现象在现实生活中普遍存在，许多专家学者对同步的种类进行了划分：有簇同步[1]，相位同步

[2]，广义同步[3]和周期同步[4]等同步方式。其中广义同步相较于耦合系统中的完全相同的振荡，展现出

更丰富的动态特性，成为非线性动力学研究中的重要课题。广义同步最初被引入到驱动–响应系统，其

定义为响应态与驱动态之间存在某种函数关系即 ( ) ( )( )2 1x t F x t= ，其中这种特殊的同步解连续且稳定，

不保证振幅相同，是完全同步概念在非相同步情形下的推广[5]。尽管研究者们对广义同步的机制进行了

深入的研究，但由于其非线性和非对称性，理论上直接推导广义同步解的分支临界条件仍具有较大挑战

性，现有成果多依赖于数值模拟。 
旋转周期解理论可以被用来分析耦合振子系统中的同步现象。例如有研究学者利用旋转周期解方法

通过建立一个新的旋转周期解的 Hopf 分支定理，判断同步解的类型得出系统同步解分支的临界条件[6]。 
随后，他们将该定理扩展到反同步的系统中，扩大了该理论的使用范围[7]。并且旋转周期解方法还

可以应用到范德波尔振子系统和脉冲系统中解决各种同步问题[8] [9]。在上述旋转周期解理论中，研究的

都是振幅都相同的振子的同步问题，但是对于振子振幅不同的特殊的同步即广义同步问题，我们未能用

该理论得出特殊的同步解的临界条件和解的区域。 
在本文中我们可以将系统进行转化，利用旋转周期解方法得出转化后系统的同步解的临界条件和分

支区域进而推出原系统的特殊的同步解的临界条件和分支图。首先我们将耦合 Stuart-Landau 振子系统进

行线性变换，通过引入变量替换将原系统进行转化。然后我们利用旋转周期解方法得到转化后系统同步

解分支的临界条件和分支图，并且利用数值模拟得出原系统的特殊的同步解的分支图。通过比较发现，

转化前后系统同步解的临界条件和分支图保持不变。所以旋转周期解方法不仅能够解决振子振幅相同的

同步问题还能够解决特殊的同步问题即广义同步问题。 

2. 模型建立与转化 

我们考虑一个由两个耦合 Stuart-Landau 振子构成的模型 
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其中 1 1,x y 表示第一个振子， 1 2,z z 表示第二个振子。n 为 Hopf 分支参数，w 控制非耦合振子的固有频率，

c为耦合强度[10]。 
接下来我们给定一个线性变换，将系统(1)进行转化，通过讨论转化后系统的各种同步解来研究系统

(1)的广义同步解。我们给出一个线性变换令 
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将系统(1)转化为标准的 Stuart-Landau 振子模型，其网络结构如图 1 所示 
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接下来我们先判断系统(2)的同步类型，利用旋转周期解方法证明系统(2)的反同步解分支的存在性，

得出临界条件。研究发现转化前后系统同步解分支临界条件与分支图保持不变，所以我们可以利用旋转

周期解方法由系统(2)的各种同步解区域推出系统(1)的特殊的同步解区域。 
 

 
Figure 1. Coupled Stuart-Landau oscillatorsmodel 
图 1. 耦合 Stuart-Landau 振子模型 

3. 同步类型的判断及反同步分支 

3.1. 同步类型的判断及反同步解分支 

我们可以通过计算系统(2)中的对称群Γ的每个共轭类来判断该系统的同步类型，其中对称群Γ由满

足不同对称性的旋转矩阵 Q 所构成[11]。 
在图 1 中，耦合 Stuart-Landau 振子系统由 2 个节点和 2 条边组成。所有边均被赋予相同权重，权重

值为 1。该网络的拉普拉斯矩阵 G 如下所示： 

1 1
1 1

G
− 

=  − 
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首先我们找到满足QG GQ= 的所有的 Q 

1

0 1
,

1 0
Q

 
=   
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 2

1 0
.

0 1
Q

 
=   
 

 

矩阵 1Q 和 2Q 形成一个对称群Γ，根据特征值群Γ被矩阵划分为 2 个共轭类，即 1 2C CΓ = ⊕ ，其中

{ }1 1C Q= 的特征值 ( )1, 1− ，对应系统(1)的反同步类型。 { }2 2C Q= 的特征值 ( )1,1 ，对应系统的完全同步类

型，因此系统(2)发生完全同步和反同步。 
接下来我们参考[8]的证明过程，用旋转周期解方法证明了系统(2)的反同步解分支的存在性，得出了

解分支的临界条件。 

3.2. 反同步解分支 

在系统(2)中我们用方程 ( ) ( )( ) ( ) ( )( )( ), 0 , 0 1,2i i i ix T y T x y i= = 表示单个振子的周期解，其中 T 表示振

荡周期。此外，我们用下列边界条件来表示系统的反同步解 

 ( ) ( ) ( )( )T
1 1 2 20 , , , .X T QX X x y x y= =   (3) 

反同步的旋转矩阵 Q 可以表示为 

 2
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,
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Q I
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  (4) 

这样，系统(2)反同步周期解可以表示为 
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接下来我们给出系统(2)中上述反同步周期解分支的存在性结果 
定理 3.1： ( )2 0, 0n c X− = = 是系统(2)的反同步周期解分支的临界条件。 
接下来，我们分五步证明该定理 
证明 
第一步对角化转换 
由上文可知，系统(2)的雅可比矩阵 A 和在等式(3)中的旋转矩阵 Q 表示为 

0

0
,
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0
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首先，我们使用可逆矩阵 U 来对角化系统的雅可比矩阵 A 
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接下来，我们使用相同的矩阵处理矩阵 Q，得到 

1
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第二步极坐标系的建立 
极坐标系的建立过程与[8]相同，所以在这里我们直接给出旋转周期性边界条件 
因为 1

2Q U QU N I−′ = = ⊗ ，则旋转周期性边界条件为 
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第三步和第四步分别为方程转化和系统一阶近似解的计算，这两部分内容与[8]证明相同，我们直接

给出第四步的结果。 
因此最后我们可以得到 
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第五步建立向量后继函数 
我们定义 
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系统(2)有旋转周期解，当且仅当 

 ( )( )0 ; 0,V r a =   (7) 

方程(6)等价于 
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这里我们设方程(8)左边的 ( )0r 的雅可比行列式为 
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其中 
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所以当 2a n c= − 时，我们可以得到 ( )2 0 0λ = ， ( )2 0 0u ≠ ， 2 0λ′ ≠ 并且 
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因为 ( ) ( )( )0
0

det 0r
a

J Left
=
≠ ，根据隐函数定理，我们可以得到 ( )( )2 0, 0 0a n c r= − = = 是系统(2)反同步

周期解的一个分支点。 

4. 数值模拟 

接下来，利用数值模拟验证了我们的结论。在图 2(a)中当 0.7n = ， 0.3c = − 时，系统(2)出现反同步周

期解。随着 c 的值逐渐增大，系统的同步性发生改变。在图 2(b)中当 0.7n = ， 0.2c = 时，系统(2)发生完

全同步。实际上，在等式(3)中，如果我们把旋转矩阵 Q 取为(证明过程与[6]的过程相同，且与上述证明
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过程类似) 
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我们可以得到完全同步周期解分支的临界条件为 0n = 。 
 

  
(a)                                                 (b) 

Figure 2. Anti-synchronization and complete synchronization solutions of system (2), v1 denotes oscillator 1, v2 denotes os-
cillator 2. (a) Anti-synchronization solution of system (2) with parameters n = 0.7, c = −0.3, w = 1; (b) Complete synchroniza-
tion solution of system (2) with parameters n = 0.7, c = 0.2, w = 1  
图 2. 系统(2)的反同步解和完全同步解其中 v1 代表振子 1，v2 代表振子 2。(a) 系统(2)出现反同步解，其中参数 n = 
0.7，c = −0.3，w = 1；(b) 系统(2)出现完全同步解，其中参数 n = 0.7，c = 0.2，w = 1 

 

  
(a)                                   (b) 

Figure 3. Generalized synchronization solution of system (1), v1 denotes oscillator 1, v2 denotes oscillator 2. (a) System (1) 
exhibits synchronization type 1 with parameters n = 0.7, c = −0.3, w = 1; (b) System (1) exhibits synchronization type 2 with 
parameters n = 0.7, c = 0.2, w = 1 
图 3. 系统(1)的广义同步解其中 v1 代表振子 1，v2 代表振子 2。(a) 系统(1)发生同步类型 1，参数值为 n = 0.7，c = 
−0.3，w = 1；(b) 系统(1)发生同步类型 2，参数值为 n = 0.7，c = 0.2，w = 1 
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在图 3(a)中展示了当参数 n = 0.7，c = −0.3，w = 1 时，v1即振子 1 与 v2即振子 2 相差 π相位差，振

子 1 到达最高点时，振子 2 到达最低点时系统(1)发生特殊的反同步代表图 4(a)中的蓝色区域即同步类型

1。在图 3(b)中展示了当参数 n = 0.7，c = 0.2，w = 1 时，振子 1 到达最低点时，振子 2 也到达最低点时系

统(1)发生特殊的完全同步代表图 4(b)中的红色区域即同步类型 2。 
在图 4 中展示了系统(1)和系统(2)的各种同步解的分支图且系统保持稳定。其中图 4(a)为系统(2)在理

论上得到的关于 ( ),n c 的分支图，在原点附近 n-c 平面被分成三个区域即完全同步空间，反同步空间和零

解空间。 2 0n c− = 为反同步解分支的临界条件， 0n = 为完全同步解分支的临界条件。图 4(b)是由系统(1)
经过数值模拟得到的，其中蓝色区域表示特殊的反同步记为同步类型 1，红色区域表示特殊的完全同步

记为同步类型 2，黄色区域表示零解区域。蓝色区域与黄色区域的分界线为 2 0n c− = 是同步类型 1 解分

支的临界条件，蓝色区域与红色区域的分界线为 0n = 是同步类型 2 解分支的临界条件。 
我们用旋转周期解方法得到了转化后系统的理论分支图 4(a)并且利用数值模拟得到了原系统的特殊

的同步解的分支图 4(b)，通过比较发现原系统与转化后系统的分支图和临界条件保持一致。 
 

     
(a)                                               (b) 

Figure 4. Bifurcation diagrams of system (1) and system (2) with respect to ( ),n c  (a) Theoretical bifurcation diagram of 

system (2) in the ( ),n c  plane. The line 2 0n c− =  is the critical condition for the anti-synchronization bifurcation, 0n =  
is the critical condition for the complete synchronization bifurcation. (b) Numerical simulations are used to collect all param-
eter points where special anti-synchronization, special complete synchronization, or zero solutions occur. System (1) employs 
numerical simulation to locate every point that exhibits special anti-synchronization, special complete synchronization, or the 
zero solution; these points are then plotted to yield the blue region (synchronization type 1), the red region (synchronization 
type 2), and the yellow region (the zero-solution region), respectively. Finally, the bifurcation diagram of system (2) in the 
( ),n c  plane is obtained, where the boundary between the blue and yellow regions is the critical condition for the special anti-
synchronization bifurcation, and the boundary between the blue and red regions is the critical condition for the special com-
plete-synchronization bifurcation. 
图 4. 系统(1)和系统(2)关于 ( ),n c 的分支图(a)系统(2)理论上关于 ( ),n c 的分支图，其中 2 0n c− = 为反同步解分支的临

界条件， 0n = 为同步解分支的临界条件(b)系统(1)利用数值模拟取所有的发生特殊反同步，特殊的完全同步，零解的

点进行描点，分别得到蓝色区域即同步类型 1，红色区域即同步类型 2，黄色区域即零解区域。最后得到系统(2)关于

( ),n c 的分支图，其中蓝色区域与黄色区域的分界线是 2 0n c− = 为特殊反同步解分支的临界条件，蓝色区域与红色区

域的分界线是 0n = 为特殊的完全同步解分支的临界条件 
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5. 总结与讨论 

本文探讨了耦合 Stuart-Landau 振子的广义同步问题，利用旋转周期解方法得出了系统广义同步解的

临界条件和分支图。 
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