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Abstract

To conduct numerical simulation research on the initial-boundary value problem of the nonlinear
RLW equation, a high-order conservative compact finite difference scheme is first constructed. The
derivative in the time direction is discretized using the implicit mid-point scheme, and the derivatives
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of each order in the spatial direction are discretized using the inverse compact operator, achieving
second-order accuracy in the time direction and sixth-order accuracy in the spatial direction. Fur-
ther, the conservation property of the difference scheme is proved, a priori estimates are made, and
the convergence analysis is carried out. Finally, the correctness of the theory and the effectiveness
and reliability of the scheme are verified through numerical examples.
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Figure 1. The propagation and evolution diagram of a single solitary wave (y = 0.01)
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Figure 2. The propagation and evolution diagram of a single solitary wave (y = 0.005)

& 2. BINSH R E(y = 0.005)

DOI: 10.12677/aam.2026.151010 92 N H it e


https://doi.org/10.12677/aam.2026.151010

=
3=
N=u
ann
4

y(t)=0.16 001t

* Q)

0.14 -

012 -

01r

Q(tykm

0.08

0.06 -

004 I | I
0 20 40 60 80 100

/s

Figure 3. The numerical quality from =0 to =100 (y =0.01)
& 3.t 0 E 100 BFBIRE(y = 0.01)

0.164

y(t)=0.16 60005t
* Q)
015}

Q(tykm

0.09
I’S]

Figure 4. The numerical quality from =0 to = 100 (y = 0.005)
& 4. ¢ )\ 0 2 100 BFBIBRE(y = 0.005)

%1073

y(t)=0.021 £002
2r * E()

18
16

14+

04

02 | I | | )
0 20 40 60 80 100

t/s

Figure 5. The numerical energy from #=0to t= 100 (y=0.01)
5.t M0 Z 100 BFEIEEE(y = 0.01)

DOI: 10.12677/aam.2026.151010 93 N H it e


https://doi.org/10.12677/aam.2026.151010

-3
22 10
5 y(t) = 0.021e0M
*  E®1)
2
181
16
£
<
=14
w
12+
1
08
06 ‘ ‘ | ‘ |
0 20 40 60 80 100

t/s

Figure 6. The numerical energy from =0 to = 100 (y = 0.005)
6.t ]\ 0 Zl 100 FTRIEER(y = 0.005)

i 1 EE 2 FR, WS FEECRE y kN, MR PRSI RIS ZE A W 3 . 1] 3 B o e
S IFRA = 0.16¢°0 , [ 4 iR B EHUHEE MR N = 01600 , pi1[E] 3 AP 4 W I 4 b A B
RSB EE E R y=0.02 le 001 |

(] SR AR BRI (5] 5 From BE R I AR IR » = 0.021e7 7, 5] 6 FronfE &

F 04 Ry fie B A I ) AR B
Bl 4.3 ZEH RLW 72

U, + o, + Buu, +ou’u, +eu, +yu=0, xe(a,b), 1(0,T],
u(a,t) = u(b,t), u, (a,t) =u, (b,t) =0, te (O,T],
u(x,O) =1u, (x), xXe [a,b]
(AT 1) R R RUANSZ I o e BB 2% 1 A
u(x,0)= ZZ:3CJ. sech’ (kj (x—xj )) ,

J=1

Hoi € =4k} [(1-4K7) k=04, k=03, x=15, x,=35.

(b) y=10.01

(a) y=10.001
Figure 7. Three-dimensional graph of double waves varying with the dissipation term
7. BURBEFE RN L = 4E[E]

DOI: 10.12677/aam.2026.151010 94


https://doi.org/10.12677/aam.2026.151010

P SF
6 = 6
=20 Iigo
t=40 =
Sr 5 t=40
4r 4
1 B 5 = P - :
X 5
= =1
2+ 2+
| U\ /V )
0 0
A ‘ | | A ‘ |
0 50 100 150 0 50 100 150
X X
(a) y=10.001 (b) y=0.01
Figure 8. Two-dimensional graph of double waves varying with the dissipation term
8. MUKMEFERLIN I (L HY —4E[E]
37.91654 , ; ‘ , . ;
1 y(t) = 37.91653 ¢ 0.0000001 t
37.91652 * QW
6
. 37.9165 -
4 i 37.91648 |
= E
s “Wf( S 3791646 -
= |
2 (///f// °
A/ L
‘\‘ k\// 37.91644
1 /mb
0. d /‘N\«\/ 37.91642 -
40 ‘H /
\m 37.9164 |
37.91638 . : ' ‘ ‘ '
0 5 10 15 20 25 30 35 40
t 0 X ts
(a) (b)
120.5232 ; : ; ,
y(t) = 1205231 00000002t
*  E(t)
120523
1205228 |

ﬁ 120.5226

120.5224
120.5222 -
120.522 L I L L L I L
0 5 10 15 20 25 30 35 40
t
©

Figure 9. Numerical simulation of double isolated waves. (a) Evolution of double solitary waves; (b) The numerical quality

from ¢ = 0 to ¢ = 40; (c) The numerical energy from ¢ =0 to ¢ = 40
9. ISLHERBER M. (a) IIRZBIE; (b) £ A 0 E 100 BFAIFRE; (o) £ A 0 2 100 FFRAE R

DOI: 10.12677/aam.2026.151010 95 N H it e


https://doi.org/10.12677/aam.2026.151010

Hla=0, b=150, T=40, EEZFNMLEKA=05, HEAPKr=0125, a=1, B=1, o=001,
e=—1o NS AT FE AU X 45 5 152 .

MEEEE] 7 A 8 WL, MFEHO y NN, XOBARMERDN, (GRS . T E T EWE, B
0 =0.005, FERBINRECH y=1x107, PBARTE AT S P AL FE . e & Kol B b [a) AR Ak an 141 9 B

B 9a) il ML, KRARMEPE AL REE LR, ANRIR R BES, RIRMRIIE b /NRIE B G & Al . il i
6], RIRIE B AN RIE S IRIE S . A, P WRE ST, JE9ke iR & A IR %y
5. LB o(b), R T REMOTIAELE, R bEm A (A 23y =37.916533¢ 0", WA &
SEIFEHEER . MEEE 9(c), BTSN, R 2 EREA, EROTFRET, T w A
HILT ReE T4, ZJaReEdksl B I EoEim.
5. INGs

TR T B0 4% AU FE s MO A R B AR L RLW J5 8%, BUE ML 8] s3] —Fr . fE2508] b
BN EE . HAT, M AR R I FERCE B RLW 5 2 (I8 o] R RS A%, BTLAR A Strange
I ZAEIETTRE T BN TT RS, K A Rt AT 21 & B AT A5 31205 RE (LA, 8 ORIE AT R R (1 2 Ak 1=,
A RERTHT AR E S T S

AR RLW 7 B A v Y AL, 45 R R UREBIUR WY K, 2 K )
FEEAL, IRUEZEED, SRR LN, 77 & bR B R 15], IR 7 HARIA Rk S EEE.
[, AR BRI R S R R [A) A2 A0 2 BUAR BRI L, 3K D9 221 0 SE B P 58 A 9IS 35 14
RERTENL. PIIARAL T AR

L, BOA BT OR R AL 0 BB ST A S B b BB R, 2 R — R i
MBS BR R 3

E&UH

2K H AR L 42(62161045);  ZUH #HE i S0 5= JFCR T H (2023KFZDO1): W5 H HIA X H AR S
(2023LHMS01007); P15 HIA X “HBsH:h 7 T H (2024TBGS0010-1); P4 58 il Iy K28 40— o s
B RHER I (2024YLKY19).

&5k

[1] Peregrine, D.H. (1966) Calculations of the Development of an Undular Bore. Journal of Fluid Mechanics, 25, 321-330.
https://doi.org/10.1017/s0022112066001678

[2] Benjamin, B., Bona, L. and Mahony, J. (1972) Model Equations for Long Waves Nonlinear Dispersive System. Philo-
sophical Transactions of the Royal Society A, 272, 47-48. https://doi.org/10.1098/rsta.1972.0032

31 B8, &1, & EOMERERMRIEKSB)T L BBM-KAV 2] IR KR AR (EERR), 2024,
59(8): 67-76.

(4] DRRE, BOGSE, REMK. 2T PINN JVEN KAV 5 RF 0T M OB FE[)]. MR %, 2025, 46(1): 105-
113.

51 EJx, THE, 2% ETWRE SN FIEREEAICLEHT ] NS R 2 R (B RBHEE R,
2025, 54(2): 198-206.

[6] ZEZUH, XUEK. FET PINN KHBGEHRM KAV-mKAV JFE[T]. Wil K224 (HAERR), 2024, 51(6): 702-
711.

[7] Li, S. (2018) Numerical Study of a Conservative Weighted Compact Difference Scheme for the Symmetric Regularized
Long Wave Equations. Numerical Methods for Partial Differential Equations, 35, 60-83.
https://doi.org/10.1002/num.22285

[8] He, Y., Wang, X., Cheng, H. and Deng, Y. (2022) Numerical Analysis of a High-Order Accurate Compact Finite Difference

DOI: 10.12677/aam.2026.151010 9 N H it e


https://doi.org/10.12677/aam.2026.151010
https://doi.org/10.1017/s0022112066001678
https://doi.org/10.1098/rsta.1972.0032
https://doi.org/10.1002/num.22285

b
e
P=nd
P
48

[10]

(1]

[12]

[13]

[14]
[15]

Scheme for the SRLW Equation. Applied Mathematics and Computation, 418, Article ID: 126837.
https://doi.org/10.1016/j.amc.2021.126837

He, Y., Wang, X. and Zhong, R. (2022) A New Linearized Fourth-Order Conservative Compact Difference Scheme for
the SRLW Equations. Advances in Computational Mathematics, 48, Article No. 27.
https://doi.org/10.1007/s10444-022-09951-5

Polwang, A., Poochinapan, K. and Wongsaijai, B. (2025) Numerical Simulation of Wave Flow: Integrating the BBM-
KdV Equation Using Compact Difference Schemes. Mathematics and Computers in Simulation, 236, 70-89.
https://doi.org/10.1016/j.matcom.2025.03.012

IR, Ehelg, xlEze. RLW J7RE7S 2 [0S BE A 2 sy 1E 22 70 4% 2U[0]. SRS R 2k (B SRR i), 2025,
30(4): 395-401.

Hu, J., Li, J. and Wang, X. (2019) New High-Order Conservative Difference Scheme for Regularized Long Wave Equa-
tion with Richardson Extrapolation. Thermal Science, 23, 737-745. https://doi.org/10.2298/tsci180420088h

XERE, FRRIE, BhEite. KiE RLW HREMGEEFEARZE 24 [I]. 18R ITTER S (B AT R), 2022,
35(2): 8-13.

252 eKdV BT REMI L IET X 2 3% Hamilton {45 ML [D]: [ 22608 30, WEANIE A 952 Ve K2, 2025.
SRR, &5, %, NI BUE A R R AR X I S M. dE5T: PR iR AE, 2015,

DOI: 10.12677/aam.2026.151010 97 N H it e


https://doi.org/10.12677/aam.2026.151010
https://doi.org/10.1016/j.amc.2021.126837
https://doi.org/10.1007/s10444-022-09951-5
https://doi.org/10.1016/j.matcom.2025.03.012
https://doi.org/10.2298/tsci180420088h

	带耗散项RLW方程的高阶有限差分算法
	摘  要
	关键词
	High-Order Finite Difference Algorithm for RLW Equation with Dissipation Term
	Abstract
	Keywords
	1. 引言
	2. 差分格式的构造
	3. 先验估计与收敛性分析
	3.1. 离散格式的守恒律
	3.2. 先验估计与收敛性分析

	4. 数值实例
	5. 小结
	基金项目
	参考文献

