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摘  要 

为了利用非线性RLW方程的初边值问题进行数值模拟研究，首先构造高阶守恒型紧致有限差分格式，对

时间方向的导数采用隐中点格式进行离散，对空间方向的各阶导数用逆紧致算子进行离散，使其在时间

方向上的精度达到二阶，在空间方向上的精度达到六阶。进一步，对差分格式进行守恒性证明、先验估

计及收敛性分析。最后，通过数值算例验证理论的正确性和格式的有效性与可靠性。 
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Abstract 
To conduct numerical simulation research on the initial-boundary value problem of the nonlinear 
RLW equation, a high-order conservative compact finite difference scheme is first constructed. The 
derivative in the time direction is discretized using the implicit mid-point scheme, and the derivatives 
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of each order in the spatial direction are discretized using the inverse compact operator, achieving 
second-order accuracy in the time direction and sixth-order accuracy in the spatial direction. Fur-
ther, the conservation property of the difference scheme is proved, a priori estimates are made, and 
the convergence analysis is carried out. Finally, the correctness of the theory and the effectiveness 
and reliability of the scheme are verified through numerical examples. 
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1. 引言 

1966 年，Peregrine [1]在研究水波问题时首次提出非线性正则长波(RLW)方程(也称为 BBM 方程) 

 0,t x x xxtu u uu u+ + − =   (1) 

该方程与非线性 KdV 方程 
 0 0t x x xxxu c u uu uβ γ+ + + =  (2) 

所描述的运动相似，能够描述浅水域中的弱非线性孤立波的演化过程。目前求解非线性 RLW 型方程的

数值方法主要包括物理信息神经网络(PINN)方法、有限元法及(紧致)有限差分法，成果丰富[2]-[10]。紧致

有限差分格式计算量较小，仅用 3~5 点模板即可达到四到六阶精度，适合求解数值耗散误差敏感、求解

区域规则的问题。 
本文研究 RLW 方程的初边值问题 
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其中， 0c 为相速度， ,β σ 分别为低阶非线性项系数和高阶非线性项系数， ε 为涡动系数， γ 为耗散项系

数。此非线性初边值问题的解析解比较困难，用数值方法研究该问题的解显得尤为重要。 
全文结构如下：第 2 节引入一些相关的算子符号，列出相关的定义和引理。第 3 节构造方程的有限

差分格式，对时间方向一阶导数采用隐中点格式进行离散，分别对空间方向的各阶导数用六阶逆紧致算

子进行离散验证差分格式的守恒律，对格式进行先验估计与收敛性分析。第 4 节给出一些数值实例。 
如果没有特殊说明，本文对求解区域 [ ],x a b∈ ， [ ]0,t T∈ 进行网格剖分，取时间步长 T Nτ = ，空间

步长 ( )h b a J= − ，其中 J，N 为正整数。记网格点 jx a jh= + ，( )0 j J≤ ≤ ， nt nτ= ，( )0 n N≤ ≤ 。用 n
ju

表示 ( ),u x t 在网格 ( ),j nx t 处的近似值， { }0 1, , ,h JI x x x= 
表示区间 I 上的节点集合。 hZ 表示在离散网格

点上定义的函数集合，用 n
jU 表示网格点 ( ),j nx t 处的精确值。 1

EH 表示定义在 hI 上的一组网格函数 u，满

足 ( ) ( ) ( ) ( )0 1 1, , , ,n n J n J nu x t u x t u x t u x t−= = = 。约定 M，C1及 C2为一般正常数，即在不同处有不同的取值。 

2. 差分格式的构造 

为了方便后续内容的叙述，引入记号 
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当 0γ = 时，这些算子退化为标准算子。 
定义算子 xP 、 xQ 使得 
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3 11x
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= =  (5) 

满足 
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由式(5)可知 xP 、 xQ 是对角占优的，所以可逆，从而有 
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U 关于 x 的各阶导数可表示为如下的矩阵形式 
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其中 

( )T 1 1 1 2
0 1 2, , , , .n n n

J x x xxU U U D P D Qδ δ− −= = =  

基于 Strange 分裂，将问题(3)中的控制方程分裂为方程 

 ( ) ( ) ( ]2
0 ,  , ,  0, ,t x xxtu c u u u u x a b t Tβ σ ε= − + + ∈ ∈−  (9) 

和方程 
 ( ) ( ],  , ,  0, .tu u x a b t Tγ= − ∈ ∈  (10) 

对第一个方程，时间方向的一阶导数采用隐中点格式进行离散，空间方向的各阶导数用六阶紧致差分格

式进行离散，记 ( )1n nu uτξ
+ = 。第二个方程容易求得解析解，记 ( ) ( )1n n nu u e uγτ

τφ
+ −= = ，两个方程解的组

合 2 2τ τ τφ ξ φ  即为原方程的解。 

对由方程(9)和方程(10)构成的方程组在网格点 ( )1
2+,j nx t 处进行离散，其离散方程组为 
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对方程组(11)式中的第一个方程在时间方向用隐中点格式离散，在空间方向用六阶紧致差分格式离散得

差分方程 
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其中 n
jr 为截断误差。再用数值解 n

ju 近似代替精确解 n
jU 并忽略高阶小项，即可得问题(3)的六阶紧致差分

格式： 
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由对 D1，D2，D3及 At和 tδ 的构造易知 n
jr 的误差阶为 ( )2 6O hτ + 。 

下面给出相关的定义和引理。 
定义 1 对于任意的两个网格函数 ,n n

hf g Z∈ ，定义如下的离散内积和范数： 

( ) ( )
1

1 11
, , , , max .

J
n n n n n n n n n

j j jj Jj
f g h f g f f f f f

−

∞ ≤ ≤ −=

= = =∑  

经过简单推导很容易得到下列结论。 
引理 1 对任意的两个网格函数 nu ， n

hZρ ∈ ，有 

( ) ( )1 1 1 1, , ,n n n n
x x x xP u u Pδ ρ δ ρ− −= −  

特别地， 

( )1 1 , 0.n n
x xP u uδ− =  

引理 2 对任意的两个网格函数 nu ， n
hZρ ∈ ，有 

( )( ) ( )2 21 2 1 1 1 1, .+n n n n n n
x x x x x xQ P Pu u uδ ρ ρ δ δ ρ− − −− = − −  

3. 先验估计与收敛性分析 

3.1. 离散格式的守恒律 

下面给出离散格式满足的能量守恒律和质量守恒律。 
定理 1 定义能量和质量分别为 

 
2 22 2

1
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=
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对于任意的 0n ≥ ，格式(14)满足离散的能量和质量衰减律，即 

 +1 2 +1, .n n n nE e E Q e Qγτ γτ− −= =  (15) 

证明 用
1

2 2n
tA u
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与式(13)作内积可得 
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由定义 1，引理 1 及引理 2 可得 
2 21

1

2

1

21 ,n nn ne u e ue D u e D uγτ γτγτ γτε ε+ −+ −= −−  

由 nE 的定义可知， +1 2n nE e Eγτ−= 。 
接下来证明 +1 en nQ Qγτ−= 。由式(13)可得 
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再由边界条件整理可得 
1

0 0

J J
n n
j j

j j
h u h e uγτ

=

−+

=

=∑ ∑ . 

由 nQ 的定义可知 +1n nQ e Qγτ−= 。 

3.2. 先验估计与收敛性分析 

定理 2 假设 [ ]1
0 ,EU H a b∈ ，则问题(3)的精确解U 满足 

,  .xU M U M≤ ≤  

证明 结合定理 1 经简单推导可得。 
定理 3 假设 [ ]1

0 ,Eu H a b∈ ，则格式(14)的数值解 nu 满足 

2,  ,  .n n n
tu M D u M u M
γ

∞
≤ ≤ ≤  

证明 由定理 1 经过推导易得。 
定理 4 设初始条件 [ ]0 1 ,Eu H a b∈ ，则差分格式(14)的数值解 nu 以 ⋅ 收敛到初边值问题(3)的精确解

nU ，且收敛阶为 ( )2 6O hτ + 。 
证明 因为 nU 是初边值问题(3)的精确解，故令 2 2 2n n n

t j t j t jA e A u A U
γ γ γ

= − ，由式(13)减式(12)得 

 

1 1 1 1
2 2 2 2 2 2 2 2

1 1 1
2 2 2 2 2 2

2 2

0 1 1 1

3 3

1 1 2

1

,

1
2 2

1 1
3 3

n n n nn
j t j t t t

j j j

n n n
t t t

jj j

r D e c D A e D A u D A U

D A u D A U D D e

γ γ γ γ

γ γ γ

β β

σ σ ε

+ + + +

+ + +

        = + +        
        

        +        
     

−

+ −
  

 (18) 

将式(18)与
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作内积，可得 
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考虑到 1 3,D D 是反对称矩阵，令矩阵 2D 的最小特征值为 M ，则有 
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对式(22)中的 n 从 0 到 N-1 求和，则有 
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假设 0 0e = ，根据 

 ( )
1

6 2

0 10
max ,

N

n Nn

n nr N r T O hτ τ τ
−

≤ ≤ −=

≤ = ⋅ +∑  (24) 

可得 

 
( ) ( )6 2

2 1
N T

M
e O h τ

ε
⋅

+
≤ + . (25) 

即，差分格式(13)的数值解 nu 以 ⋅ 收敛到初边值问题(3)的精确解 nU ，且收敛阶为 ( )2 6O hτ + 。 
由 ⋅ 和

∞
⋅ 的等价性可知，数值解 nu 以

∞
⋅ 收敛到精确解 nU ，且收敛阶为 ( )2 6O hτ + 。 

4. 数值实例 

定义 2 记能量和质量分别为 

( ) ( )( )-1 2 22
1

0

N
n n n

j jj
E e h u D uγτ ε−

=

= −∑ , 
-1

0

N
n n

j
j

Q e h uγτ−

=

= ∑ . 

时间方向上与空间方向上的收敛阶如下 

( )
( )

( )
( )1 1

22

11

2 2

log , lo ,gt h h
h

err err h
Order Order

err err hτ
τ

τ
τ

= =  

其中 

( )
0

, max n n

n N
err h u Uτ

≤ ≤
= − . 

算例 4.1 考虑用 RLW 方程 

 

( ) ( ]
( ) ( ) ( ) ( ) ( ]
( ) ( ) [ ]

2
0

0

0,  , ,  0, ,

, , ,  , , 0,  0, ,

,0 ,  ,

t x x x xxt

x x

u c u uu u u u x a b t T

u a t u b t u a t u b t t T

u x u x x a b

β σ ε+ + + + = ∈ ∈

= = = ∈

= ∈

 (26) 

的初边值问题描述单波。 
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取 0 1c = ， 1β = ， 1ε = − ， 0σ = ，方程退化为 RLW 方程(2)。RLW 方程有解析解 

( ) 2 1 1, sech .
4 3

u x t x t  = −    
 

取 [ ]50,50x∈ − ， 1T = 。时间方向上的收敛阶如表 1 所示，空间方向上的的收敛阶如表 2 所示。表 3
为不同格式下的误差比较。 

 
Table 1. Numerical solution error and time convergence order (h = 0.5) 
表 1. 数值解误差与时间收敛阶(h = 0.5) 

τ  ∞
⋅ 误差 误差阶 

0.5 0.0027 —— 

0.25 6.917e−04 1.9674 

0.125 1.74164−04 1.9897 

0.0625 4.3906e−05 1.9879 

 
Table 2. Numerical solution error and spatial convergence order (τ = 0.001) 
表 2. 数值解误差与空间收敛阶(τ = 0.001) 

h ∞
⋅ 误差 误差阶 

0.8 8.3389e−06 —— 

0.625 1.9453e−06 5.9028 

0.5 4.8963e−07 6.1758 

0.4 1.3000e−7 5.5429 

 
Table 3. The comparison results of numerical errors of this paper’s format with those of references [11]-[13] at T = 1 moment 
表 3. 在 T = 1 时刻本文格式与文献[11]-[13]的数值误差比较结果 

文献 h τ  
∞

⋅ 误差 

格式(13) 0.4 0.01 1.0179e−06 

文献[11] 0.1 0.00625 1.2671e−06 

文献[12] 0.1 0.00625 1.4205e−06 

文献[13] 0.1 0.00625 1.1220e−04 

 
由表 1 和表 2 可见，时间方向具有二阶精度，空间方向上具有六阶精度，即数值结果与理论分析相

一致，验证了算法的有效性。由表 3 可见，不需要太小步长即可达到更高精度，说明格式(13)在计算效率

方面有明显的优势。 
算例 4.2 考虑带耗散项的 RLW 方程 

 

( ) ( ]
( ) ( ) ( ) ( ) ( ]
( ) ( ) [ ]

2
0

0

0,  , ,  0, ,

, , ,  , , 0,  0, ,

,0 ,  ,

t x x x xxt

x x

u c u uu u u u u x a b t T

u a t u b t u a t u b t t T

u x u x x a b

β σ ε γ+ + + + + = ∈ ∈

= = = ∈

= ∈

 (27) 
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的初边值问题模拟海洋内孤立波。 
假设海水分为上下两层，上层厚度 1 100 mh = ，下层厚度 2 300 mh = ，上层密度 3

1 1025 kg mρ = ，下

层密度 3
2 1025 kg mρ = 。参照文献[14]，取 6 22 10 kmε −= − × ，各系数计算如下： 

( )1 2 2 1 3

1 2 2 1
0 1.621 10 km s

gh
h

c
h

h
ρ ρ

ρ ρ
−−

= = ×
+

，
2 2

11 2 2 1
2 2

1 1 2 2 2

0

1

3 0.022 s
2

h h
h h h

c
h

ρ ρβ
ρ ρ

−−
= − = −

+
， 

0

2 2
4 1 11 1 2 2

1 2

3 4.462 10 km sh h h h
h

c
h

σ − − −− +
= − = − × ⋅ 。 

取初始波 

( ) 2
0

1, sech
4

u x t a x =  
 

， 

初始振幅 0a 为 20 m， 50 kma = − ， 50 kmb = ， 100T = ，空间步长 0.5h = ，时间步长 0.25τ = 。分别取

0.01γ = 和 0.005γ = ，海洋内孤立波的演化过程及质量与能量随时间的变化如图 1~8 所示。 
 

 
Figure 1. The propagation and evolution diagram of a single solitary wave (γ = 0.01) 
图 1. 单孤立波传播演变图(γ = 0.01) 

 

 
Figure 2. The propagation and evolution diagram of a single solitary wave (γ = 0.005) 
图 2. 单孤立波传播演变图(γ = 0.005) 
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Figure 3. The numerical quality from t = 0 to t = 100 (γ = 0.01) 
图 3. t 从 0 到 100 时的质量(γ = 0.01) 

 

 
Figure 4. The numerical quality from t = 0 to t = 100 (γ = 0.005) 
图 4. t 从 0 到 100 时的质量(γ = 0.005) 

 

 
Figure 5. The numerical energy from t = 0 to t = 100 (γ = 0.01) 
图 5. t 从 0 到 100 时的能量(γ = 0.01) 
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Figure 6. The numerical energy from t = 0 to t = 100 (γ = 0.005) 
图 6. t 从 0 到 100 时的能量(γ = 0.005) 

 
如图 1 至图 2 所示，随着耗散系数 γ 的减小，海洋内孤立波的振幅在不断地增大。图 3 所示质量规律

近似表示为 0.010.16 ty e−= ，图 4 所示质量规律近似表示为 0.0050.16 ty e−= ，由图 3 和图 4 可见全局质量随时

间呈指数衰减。图 5 所示能量规律近似表示为 0.020.021 ty e−= ，图 6 所示能量规律近似表示为 0.010.021 ty e−= ，

表明全局能量随时间呈指数衰减。 
算例 4.3 考虑用 RLW 方程 

( ) ( ]
( ) ( ) ( ) ( ) ( ]
( ) ( ) [ ]

2
0

0

0,  , ,  0, ,

, , ,  , , 0,  0, ,

,0 ,  ,

t x x x xxt

x x

u c u uu u u u x a b t T

u a t u b t u a t u b t t T

u x u a

u

x x b

γβ σ ε+ + + + = ∈ ∈

=

=

+

= = ∈

∈

 

的初边值问题描述双孤立波。选取初值条件为 

( ) ( )( )
2

2

1
,0 3 sechj j j

j
u x c k x x

=

= −∑ ， 

其中 ( )2 24 1 4j j jC k k= − ， 1 0.4k = ， 2 0.3k = ， 1 15x = ， 2 35x = 。 
 

   
(a) γ = 0.001                                       (b) γ = 0.01 

Figure 7. Three-dimensional graph of double waves varying with the dissipation term 
图 7. 双波随耗散项变化的三维图 
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(a) γ = 0.001                                        (b) γ = 0.01 

Figure 8. Two-dimensional graph of double waves varying with the dissipation term 
图 8. 双波随耗散项变化的二维图 

 

   
(a)                                                    (b) 

 
(c) 

Figure 9. Numerical simulation of double isolated waves. (a) Evolution of double solitary waves; (b) The numerical quality 
from t = 0 to t = 40; (c) The numerical energy from t = 0 to t = 40 
图 9. 双孤立波的数值模拟。(a) 双孤立波演化；(b) t 从 0 到 100 时的质量；(c) t 从 0 到 100 时的能量 
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取 0a = ， 150b = ， 40T = ，固定空间步长 0.5h = ，时间步长 0.125τ = ， 1α = ， 1β = ， 0.01σ = ，

1ε = − 。下面分别讨论耗散项对双波结果的影响。 
观察图 7 和图 8 可见，当耗散项 γ 增加时，双波振幅减小，传播速度减慢。为了便于直观观察，取

0.005σ = ，耗散项系数为 71 10γ −= × ，两波相撞前后波的演化过程、能量及质量随时间变化如图 9 所示。 
由图 9(a)可见，大振幅波传播速度快，小振幅波速度慢，大振幅波追上小振幅波后发生碰撞。碰撞瞬

间，大振幅波和小振幅波的振幅叠加。碰撞后，两者均恢复至碰撞前的波形，并继续维持各自的传播方

向与特性。观察图 9(b)，由于耗散项的存在，质量随时间的变化规律呈现
71037.916533 ty e
−−= ，表明质量

呈现指数衰减。观察图 9(c)，由于耗散项的存在，能量也呈现衰减趋势，在衰减的过程中，由于两波相撞

出现了能量干扰，之后能量继续呈现指数衰减。 

5. 小结 

主要利用紧致差分格式研究带耗散项的高阶非线性 RLW 方程，数值解在时间上达到二阶、在空间上

达到六阶收敛精度。目前，尚未发现带耗散项高阶 RLW 方程的初边值问题的精确解，所以采用 Strange
分裂把原方程分裂为两个方程，将两个解进行组合即可得到该方程的数值解，在保证原有精度的基础上，

有效提升计算稳定性与可实施性。 
通过带耗散项的 RLW 方程模拟浅水域海洋内孤立波，结果显示：当耗散项逐渐增大，经过长时间传

播演化，振幅逐渐减小，波的传播速度减慢，符合实际的物理规律[15]，验证了算法的有效性与可靠性。

同时，模拟结果显示质量与能量随时间变化呈现指数耗散的情况，这为刻画实际海洋环境中内孤立波的

能量衰减、波形演变提供了依据。 
事实上，没有耗散且波形保持不变的理想孤立波在实际问题中是比较少见的，该研究具有一定理论

价值和实际意义。 
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