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摘  要 

换元法是求解不定积分、定积分的主要方法。本文指出不定积分和反常积分换元函数需要单调，而定积

分则不需要单调，且换元函数的值域可以超出原来的积分区间。 
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Abstract 
The substitution method is a primary approach for solving indefinite integrals and definite inte-
grals. This article points out that the substitution function for indefinite integrals and improper in-
tegrals needs to be monotonic, while for definite integrals, it does not need to be monotonic, and 
the range of the substitution function can exceed the original integration interval. 
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1. 引言 

换元法是求解不定积分和定积分的常用方法，选择合适的换元函数，牢记“换元要换限”。换元法

其实运用的是矛盾转移的思想，把大矛盾转化为小矛盾，把不易求得的积分转化为相对容易求得的积分

[1]。 

2. 不定积分的换元法 

换元函数需要单调。 
定理 1 [1]：设 ( )x tψ= 是单调的可导函数，并且 ( ) 0tψ ′ ≠ ，又设 ( ) ( )f t tψ ψ ′   有原函数，则有换元

公式 

( ) ( ) ( )
( )1d d

t x
f x x f t t t

ψ
ψ ψ

−=
 ′=    ∫ ∫  

其中 ( )1 xψ − 是 ( )x tψ= 的反函数。 
等式左边是 ( )F x C+ ，是自变量 x 的函数；右边方括号内是关于自变量 t 的函数，只有反函数

( )1t xψ −= 存在，把 t 代入后才能变成关于自变量 x 的函数。 

比如在求解 2 2 da x x−∫ 时，令 sinx a t= ，需要限定
2 2

t−
π
< <

π
，这时的函数 ( )x tϕ= 才是单调的，且

有反函数 arcsint x= 。 

3. 定积分的换元 

换元函数 ( )x tϕ= 不需要单调，且值域可以超出积分区间。 
同济版的高等数学教材[2]是这样写的： 
定理 2 [1]：设函数 ( )f x 在区间 [ ],a b 上连续，函数 ( )x tϕ= 满足条件： 
(1) ( ) ( ),a bϕ α ϕ β= = ； 
(2) ( )tϕ 在 [ ],α β  (或 [ ],β α )上具有连续导数，且其值域 [ ],R a bϕ = ，则有 

( ) ( ) ( )d d
b

a
f x x f t t t

β

α
ϕ ϕ′=   ∫ ∫  

但是教材加了注释：当 ( )tϕ 的值域 Rϕ 超出 [ ],a b ，但是 ( )tϕ 满足其余条件时，只要 ( )f x 在 Rϕ 上连续，

则定理的结论仍成立。 
例 1. ( ) ( )2 2

0
d , 0

a
a x x a− >∫  

解：方法 1 令 sinx a t= ； 0, 0x t= = ， ,
2

x a t= =
π
，这时换元函数 ( )x tϕ= 在区间 0,

2
 
  

π
上单调， ( )tϕ

的值域 Rϕ 恰好是 [ ],a b 。这时有 

( )2 2 3 3 32
0 0

2d cos d
3

a
a x x a t t a

π

− = =∫ ∫  

方法 2 令 sinx a t= ， 0,x t= = π，
5,
2

x a t = π
= ；通过函数图像容易看出这时函数 sinx a t= 在

5,
2

 π
π 
  

内不单调，且值域 Rϕ 为 [ ],a a− ，已经超出了 [ ]0,a ，此时有 
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( ) ( )
5 5

2 2 3 3 3 2 32 2
0

2d cos d 1 sin dsin
3

a
a x x a t t a t a

π π

π π
− = = − =∫ ∫ ∫ ， 

结果还是 32
3

a 。 

例 2. 计算
1 2
0

1 dx x−∫  

解：方法 1 令 sinx t= ； 0, 0x t= = ， 1,
2

x t= =
π
，这时 

1 2 22
0 0

1 d cos d
4

x x t t
π

− =
π

=∫ ∫ ， 

这时候变换满足定理条件。 

方法 2 令 sinx t= ； 0, 0x t= = ，
51,
2

x t = π
= ，这时 

3 551 2 2 2 2 22 22 2
30 0 0

2 2

1 d cos d cos d cos d cos d
4

x x t t t t t t t t
π ππ π

π π
π

− = = − + =∫ ∫ ∫ ∫ ∫  

这时候的函数 sinx t= 在
50,
2

 π
  

上不单调，且值域 [ ]1,1Rϕ = − 也超出 [ ]0,1 。 

结论：定积分换元法：① 不需要函数 ( )x tϕ= 单调；② ( )tϕ 的值域 Rϕ 可以超出 [ ],a b 。 
我们来证明这个定理，即证明以下公式成立 

( ) ( ) ( )d d
b

a
f x x f t t t

β

α
ϕ ϕ′=   ∫ ∫ ， ( )x tϕ=  

证明：假设 ( )f x 的原函数是 ( )F x ，那么左式等于 ( ) ( )F b F a− ，右边积分的原函数记为 ( )F tϕ  ，

右式等于 ( ) ( ) ( ) ( )F F F b F aϕ β ϕ α− = −       ，这就证得左式等于右式，即 ( ) ( ) ( )d d
b

a
f x x f t t t

β

α
ϕ ϕ′=   ∫ ∫ 。 

 

 
Figure 1. Graph of range exceeding the interval 
图 1. 值域超出区间图 

 
可以用图 1 来理解这个问题。当 t ：α β→ 时， ( )x tϕ= ： a b c b→ → → ，根据积分的区间可加性 

( ) ( ) ( ) ( ) ( ) ( )d d d d d d
c b b c b b

a c a b c a
f x x f x x f x x f x x f x x f x x+ = + + =∫ ∫ ∫ ∫ ∫ ∫  

可以看出超出区间 [ ],a b 部分恰好抵消[3]。 
还可以从物理意义来理解这个问题。定积分是第二类曲线积分的特例，这时曲线为直线且仅考虑 x

轴正向。第二类曲线积分用来描述做功、位移等问题。此时曲线积分就是 ( )db

a
f x x∫ ，这里 xoy 面单连通， 
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( ),P x y x= ， ( ), 0Q x y = ，所以 0P Q
y x

∂ ∂
= =

∂ ∂
，由此得到此积分与路径无关，只和起点、终点有关[4]。 

在高等数学课程中物理知识提及得比较多，要注重数学和物理的结合，从不同的角度思考、分析问

题，这才能学得深、学得透。 

4. 反常积分的换元 

为保证极限转换的有效性，通常要求换元函数 ( )x tϕ=  (至少在积分区间端点附近)是严格单调的。 

例 3. 反常积分
( )0 3

d

1

x

x x

+∞

+
∫  

解： 0x = 是瑕点，令
1x
t

= ， 2
1d dx t
t

= − ，当 0x +→ 时， t →+∞， x →+∞时， 0t +→ ，此时 

( ) ( )
0

20 03 3 3

d 1 1 dd 2
1 11 11

x tt
tx x t

t t

+∞ +∞

+∞
= − ⋅ = =

+ + + 
 

∫ ∫ ∫  

这时做的变换
1x
t

= 在 [ ]0,+∞ 上单调。反常积分中考察的是变量趋于无穷或瑕点时的极限，如果不单调的

话，极限就可能不存在，也就没办法确定上下限[5]。 

例 4. 反常积分
1

d
1

x
x x

+∞

−∫  

解： 1x = 是瑕点，令 2 1x t= + ，d 2 dx t t= ，当 1x +→ 时， 0t +→ ，x →+∞时，t →+∞，变换 2 1x t= +

在 ( )0,+∞ 上单调，此时 

( ) 2 021 0 0

d d d2 d 2 d 2arctan
11 1

x t tt t t t
tx x t t

+∞ +∞ +∞ +∞= ⋅ = = = π
+− +∫ ∫ ∫  

反例： 20

1 d
1

x
x

+∞

+∫ ，我们知道这个反常积分的正确结果是
2
π  

如果这里令 tanx t= ，则 0x = 时， 0t = ， x →+∞时，
3
2

t → π
，于是

3
2

20 0

1 3d d
21

x t
x

+∞
π

= =
+

π
∫ ∫ ，结果

错误。因为这里的换元函数 tanx t= 在
30,
2

 π
  

内不是单调的！ 
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