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摘  要 

局部二进制拟合(LBF)模型已广泛用于图像分割，但其对初始轮廓敏感且收敛缓慢，严重制约了实用性；

针对LBF模型过度依赖局部信息、易陷入局部极值、收敛效率低的问题，本文引入CV模型的全局能量项，

在局部–全局联合驱动下重新设计能量函数与演化方程，提出一种改进模型(G-LBF)，使曲线可借助图像

整体灰度分布快速锁定目标边界。新模型弱化了初始位置依赖，即便起点设置粗糙亦能稳健收敛；与此

同时，演化效率显著提高，分割时间大幅缩短，为高精度、高时效的图像分割任务提供了良好方案，在

医学影像分析、自动驾驶等领域展现出良好应用潜力。 
 
关键词 

CV模型，LBF模型，ROI，初始轮廓敏感性，水平集，图像分割 
 

 

Research on Image Segmentation Based on 
an Improved LBF Model 
Pengqiang Xie 

School of Mathematics and Statistics, Jishou University, Jishou Hunan 
 
Received: December 9, 2025; accepted: January 2, 2026; published: January 14, 2026  

 
 

 
Abstract 
The Local Binary Fitting (LBF) model has been widely used for image segmentation, but its sensitivity 
to initial contours and slow convergence significantly limit its practical applicability. To address 
issues such as the LBF model’s overreliance on local information, susceptibility to local optima, and 
low convergence efficiency, this paper introduces the global energy term from the CV model. Under 
a joint local-global driving framework, the energy function and evolution equation are redesigned, 
leading to the proposal of an improved model (G-LBF), which enables the curve to rapidly identify 
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target boundaries by leveraging the global grayscale distribution of the image. The new model re-
duces dependence on initial contour placement, allowing robust convergence even with coarsely 
set starting points. Furthermore, it significantly enhances evolution efficiency and substantially 
shortens segmentation time, offering an effective solution for high-precision and time-sensitive im-
age segmentation tasks. The model demonstrates promising application potential in fields such as 
medical imaging analysis and autonomous driving. 
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1. 引言 

1.1. LBF 模型的重要性与应用 

局部二值拟合(Local Binary Fitting, LBF)模型作为图像分割领域的重要工具，由 Li 等人提出，因其能

够有效处理图像灰度不均匀的特性而受到广泛关注；LBF 模型通过引入局部区域信息，该模型通过引入

高斯核函数，在局部区域内拟合轮廓内外两侧的灰度均值，克服了传统全局模型(如 CV 模型)在分割非均

匀图像时的局限性，处理非匀质图像时表现出更高的鲁棒性与准确性，从而在演化过程中更准确地捕捉

感兴趣区域(the Region of Interest, ROI)的边界特征；LBF 模型在医疗影像处理、普通图像切割、人工智能

及工业质检等多领域表现出优异性能；以医学图像为例，该模型能有效区分边界模糊且对比度较低的目

标区域，这对临床诊断具有重要价值；具体实际应用充分证明：LBF 模型在提升分割准确度和系统稳定

性方面优势明显。 
然而，尽管 LBF 模型在理论上具备诸多优点，其实际应用仍面临一些挑战。特别是在复杂场景下，

当图像包含强噪声或对比度极低的目标时，LBF 模型的表现往往受到限制，难以捕捉到 ROI；这些问题

促使研究者不断探索改进的方法，以进一步提升其性能。因此，基于改进 LBF 模型来提升分割效果不仅

是当前图像分割研究的核心之一，也是推动相关领域技术发展的关键驱动力。 

1.2. LBF 模型初始轮廓敏感性问题 

LBF 模型虽然在灰度不均匀图像分割中表现出色，但其对初始轮廓位置的高度依赖性成为制约其性

能的重要因素。具体而言，LBF 模型的演化过程严重依赖于初始轮廓的设定，当初始轮廓远离目标边界

时，模型可能无法准确收敛到真实边界位置。这种现象的成因在于，LBF 模型的能量函数设计主要基于

局部区域信息，而缺乏对全局图像特征的充分利用。因此，当初始轮廓偏离目标较远时，局部信息难以

提供足够的引导力，导致演化曲线无法正确逼近目标边界。 
在实际应用中，初始轮廓敏感性问题带来了诸多困扰。例如，在医学影像分割中，由于图像通常包

含复杂的背景和噪声，手动设定精确的初始轮廓不仅耗时耗力，而且容易引入人为误差。此外，在自动

驾驶和环境感知等领域，目标物体的位置和形状变化多样，难以预先确定合适的初始轮廓。这些问题使

得 LBF 模型在实际场景中的应用受到限制，亟需通过改进算法设计来降低其对初始轮廓的依赖性。 
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1.3. 研究目的与意义 

T. Chan 和 L. Vese [1]提出最小化 Mumford-Shah 函数的水平集算法；T. Wang 等[2]提出了由局部高

斯分布拟合能量驱动的主动轮廓模型；Li 等[3]提出了一个具有局部强度拟合项的能量泛函数和一个辅助

全局强度拟合项的模型；Chunming Li 和 Chiu_Yen [4]等提出最小化区域–可扩展拟合能量用于图像分割；

Zhang 等[5]结合改进 CV 模型，提出了一种融合局部和全局图像信息的活动轮廓模型。Wang 等[6]结合

CV 与 LBF 模型的优点，提出了局部和全局灰度拟合模型，该模型能够分割灰度不均匀图像，且对初始

轮廓的敏感性降低，但其权重系数受初始轮廓位置影响，限制了模型的应用；任鸽等[7]研究结合全局和

局部信息的“两阶段”活动轮廓模型，王顺凤等[8]利用 CV 模型对图像目标进行定位，再利用 LBF 模型

进一步精确化第一阶段的分割结果，这一类方法改进了 CV 模型和 LBF 模型的分割效果，但是分割精度

还有待改善；Liu 等[9]等构造新的局部和全局能量项，Fang 等[10]基于迭代次数设计自适应函数，实现全

局与局部能量权重系数的自动选取。 
本研究旨在通过结合全局信息对LBF模型进行改进，以降低其对初始轮廓的敏感性并提高演化速度。

具体而言，我们将在 LBF 模型的基础上融入全局图像特征，通过设计新的能量函数和演化方程，使模型

能够在演化过程中充分利用全局和局部信息的优势[8]；改进后的模型对于提升图像分割效果具有重要意

义。首先，通过引入全局信息，模型能够在初始轮廓设定不够精确的情况下仍能准确收敛到目标边界，

从而减少人工干预的需求。其次，全局信息的引入可以提高模型对噪声和复杂背景的鲁棒性，使其在低

对比度图像分割中表现更加稳定。最后，该改进方法对弱边界图像进行分割能取得较好的效果，而且在

时间效率上也有所提高。 

2. 相关工作 

2.1. 水平集算法在图像分割中的应用原理 

图像分割问题存在多种数学建模方式。本文将重点阐述介绍其中一种较为实用的模型方法 M-S 模型

[1] (由 Mumford 以及 Shah 于 1989 年提出)。该模型将观察到的电子图像定义在区域Ω上二维函数 

( )0 0 ,u u x y= 来表示，并且假设 ( )1Ω Ωn
ii C

=
= ∪∏ ，其中C 是区域Ω边界形成的一条曲线， n 是一个正整

数。图像分割问题可转化为求解最优解：寻找一个光滑函数连续可微函数 ( ),u u x y= ，使下面函数 

 ( ) ( ) 22
0Ω Ω\

, d d , d d
C

E u C u u x y u x y x y Cµ ν= − + ∇ +∫ ∫  (1) 

满足特定泛函的极值条件；当中 C 表示曲线C 的长度， ,µ ν 是预设的常数。该优化问题仍具挑战性；

为此，可将图像分割任务转化为寻求分段常值函数的最优解：通过找到一个分段单值函数，即在Ωi 上u
为常值 ic ，使下面函数 

 ( ) ( ) 22
0Ω Ω\

1
, d d , d d

i

n

i C
i

E u C u c x y u x y x y Cµ ν
=

= − + ∇ +∑∫ ∫  (2) 

达到最小值。 

2.2. CV 模型 

2.2.1. CV 模型理论 
2001 年，Chan 与 Vese 共同建立了 CV 分割模型[2]，该算法基于目标与背景存在显著差异的假设，

采用水平集技术来最小化能量函数；其核心能量函数表达式如下所示： 

 ( ) ( ) ( ) ( )( )2 2
1 2 1 1 2 2Ω Ω Ω
, , d d d d d dCVE c c x y I c H x y I c I H x yϕ µ δ ϕ ϕ λ ϕ λ ϕ= ∇ + − + − −∫∫ ∫∫ ∫∫  (3) 
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式(3)中，Ω表示图像区域，ϕ 表示水平集函数， I 表示输入图像， 1 2,c c 分别表示演化曲线内部和外

部的平均灰度值， ( )δ ϕ 和 ( )H ϕ 分别表示 Dirac、Heaviside 函数， 1,µ λ 和 2λ 均设为正的权重系数，利基

于梯度下降法，可推导出 CV 模型的演化方程： 

 ( ) ( ) ( )2 2
1 1 2 2dive I c I c

t
ϕ ϕδ ϕ µ λ λ

ϕ

  ∂ ∇
= − − + −   ∂ ∇   

 (4) 

其中： 

 ( )
( )( )
( )( )

Ω
1

Ω

, d d

, d d
e

e

IH x y x y
c

H x y x y

ϕ
ϕ

ϕ
= ∫
∫

 (5) 

 ( )
( )( )( )
( )( )( )

Ω
2

Ω

, d d

, d d
e

e

I I H x y x y
c

I H x y x y

ϕ
ϕ

ϕ

−
=

−
∫
∫

 (6) 

式(6)中， 1 2,c c 为一个全局量， 1c 代表演化曲线的内部灰度平均值， 2c 代表演化曲线的外部灰度平均

值；在实际求解时，Heaviside 函数 H 通常用一个函数 eH 来代替： 

 ( ) 1 21 arctan
2e

zH z
π

  = +     
 (7) 

同样的，对 Dirac 函数也通常用一个函数来代替： 

 ( ) 2 2
1

e z
z

δ
π

=
+



 (8) 

2.2.2. CV 模型实验结果与分析 
在图 1 中三组图像分别展示了不同灰度特征的样本：首列为均匀分布，次列呈现非均匀特性，末列

则显示目标与背景灰度相似。实验结果表明，CV 算法在均匀灰度样本上分割精度较高，但在后两种情况

下表现欠佳。CV 模型作为依赖区域特征的全局性算法，通过分析像素灰度统计特性，在处理灰度分布均

匀的图像时能获得理想的分割效果。然而当面对灰度不均的图像时，该模型不仅收敛速度迟缓，分割精

度也会显著下降。 
 

 
Figure 1. Experimental results of the CV model 
图 1. CV 模型实验结果 
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2.3. LBF 模型 

2.3.1. LBF 模型理论 
与 CV 模型不同 LBF (Local Binary Fitting)模型通过引入局部图像信息来处理强度不均匀性，能够更

好地适应图像中的灰度变化，其实现方式采用高斯核函数。设 ( ) 2:ΩI x → 表示图像域Ω中的待分割图

像，轮廓曲线C 由一个 Lipschitz 函数的零水平集表示，水平集函数 ( )Φ x 定义如下： 

 
( ) ( )
( ) ( )
( ) ( )

0 In
0 On
0 Out

x x C
x x C
x x C

φ
φ
φ

> ∈
= ∈
< ∈







若

若

若

 (9) 

在方程(9)中定义了水平集函数 ( )Φ x 后，LBF 模型中的能量泛函定义为： 

 ( ) ( )( ) ( )( ) ( )
2

1 2, , 1 d d
2

LBF LBFF f f E x x v x x xβϕ φ δ φ φ= + ∇ − + ∇∫ ∫  (10) 

其中， LBFE 表示该模型的能量泛函，表达式如下： 

 
( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )( )

2LBF
1 1Ω in

2
2 2Ω out

* d d

* 1 d d

C

C

E K x y I y f x H y y x

K x y I y f x H y y x

σ

σ

λ ϕ

λ ϕ

 = − −  
 + − − −  

∫ ∫

∫∫
 (11) 

式(11)中， iλ ，β 和ν 为均是正的权重系数， y 是与点 x 无关的空间像素，I 为输入图像，Kσ 表示标

准差为σ 的高斯核函数， 1f 和 2f 则是近似局部的两个拟合函数分别在轮廓内外的灰度平均值。 

( ) ,xy x y
φ φφ

 ∂ ∂
∇ =  ∂ ∂ 

表示 Φ 的梯度。 ( )( ) ( )( )1M x H xεϕ ϕ= 和 ( )( ) ( )( )2 1M x H xεϕ ϕ= − 为函数，其中 

( )( )H xε ϕ 为带有小常数 ε 的Heaviside函数，而Dirac函数 ( )( )xεδ ϕ 为 ( )( )H xε ϕ 的导数。两个函数 ( )Hε ϕ

和 ( )εδ ϕ 写为： 

 ( )

( )1 11 sin
2
1

0

x x x

H x x

x

ε

π ε ε
ε π

ε

ε

  + + ≤   = >

 <


 (12) 

 ( )
1 1 cos

2
0

x x
x

x
ε

π ε
ε εδ

ε

  + <  =  
 >

 (13) 

当保持ϕ 值固定时，基于变分法最小化能量函数式得到： 

 ( ) ( ) ( )
( )1

*
*

K H I x
f x

K H
σ ε

σ ε

ϕ
ϕ

  =  (14) 

 ( ) ( ) ( )
( )2

* 1
* 1

K H I x
f x

K H
σ ε

σ ε

ϕ
ϕ

−  =
−  

 (15) 

分析表明，局部拟合函数 1f 和 2f 会依据空间位置差异产生变化，这使得 LBF 模型在处理灰度分布不

均的图像时表现优异。该模型仅聚焦于局部特征，未纳入全局信息考量；鉴于图像各区域间存在显著的

灰度差异，分割效果很大程度上取决于初始轮廓线的位置和尺寸；相较于 C-V 方法，LBF 算法基于非均
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匀强度假设；然而每次迭代仍需执行四次卷积操作，运算开销较大。同时其分割效果易受初始位置影响，

且难以适应光照变化。 

2.3.2. LBF 模型实验结果与分析 
在图 2 中，前两幅呈现灰度分布不均的特征，第三幅则是边界不清晰的非均匀灰度图像。LBF 算法

对前两种图像的分割效果良好，但对第三种图像的处理效果欠佳。研究数据显示，LBF 模型因其出色的

局部特征提取能力，有效解决了传统区域强度不均匀方法的不足。该模型不仅运算速度快、结果精确，

在处理灰度分布不均的图像时表现优异。然而，当面对强度差异极大的图像时，其分割性能会明显下降。 
 

 
Figure 2. LBF experimental model 
图 2. LBF 实验模型 

3. 基于全局信息改进 LBF 模型的实现 

3.1. G-LBF 模型(Global-Local Binary Fitting) 

基于上述不足，本研究提出了一种结合全局信息和局部信息的改进 LBF 模型[7] [10]。该模型通过融

入全局信息，不仅能够提供更准确的 ROI，还能有效降低对初始轮廓位置的依赖性。同时，通过优化能

量函数和演化方程，本研究旨在进一步提高模型的演化速度，从而提升整体分割效率。该模型即 G-LBF
模型，将 CV 模型和 LBF 模型能量项相加，是一种基于局部区域与全局区域的活动轮廓模型。该模型的

能量泛函是基于 CV 和 LBF 两个模型局部能量泛函的组合，公式如下： 

 ( ) ( ) ( ) ( )GLBF CV LBF
1 2 1 2, , , , 1E c c f f E E vL Pϕ θ θ ϕ µ ϕ= + − + +   (16) 

其中， ,v µ 是正常量，0 1θ≤ ≤ 。将ϕ 固定，然后对 1 2 1 2, , ,c c f f 极小化，得到它们的表达式；最后利用变

分原理及梯度下降流得到该模型的水平集函数演化方程： 

 ( )( ) ( )1 2e F F v div div
t
ϕ ϕ ϕδ ϕ µ ϕ

ϕ ϕ

    ∂ ∇ ∇
= − + + + ∇ −        ∂ ∇ ∇    

  (17) 

其中： 
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 ( ) ( )( )2
1 1 1

2
2 21 1F c cθ λ λ= − − −   (18) 

 ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )2 2
2 1 1 2 21F K x y I y f x K x y I y f xα αθ λ λ= − − − − − −∫ ∫   (19) 

在 G-LBF 模型中，通过θ 值来调节图像全局和局部的权重比例。该模型从两个维度利用全局信息：

首先，借助整体统计建模提升对图像宏观结构的认知；其次，通过构建全局能量函数来改进演化过程的

优化效果。以水平集活动轮廓模型为例，该方法通过整合全局特征构建能量泛函的整体项，使算法在迭

代时能同时考量目标与背景的宏观差异，显著提升边界定位精度。此外，将全局特征与局部特征相融合，

可有效克服单一信息源的局限性，从而优化模型的分割效果。 

3.2. 关键参数θ分析 

在能量函数(式(16))中，参数θ 扮演着平衡全局信息与局部信息贡献的关键角色： 
当 0θ = 时，模型退化为经典的 Chan-Vese (CV)模型，完全依赖图像全局统计信息；此时模型对灰度

均匀但边界模糊的图像有效，但对灰度不均匀区域敏感。 
当 1θ = 时，模型退化为经典的局部二值拟合(LBF)模型，完全依赖局部高斯拟合信息；此时模型能有

效处理灰度不均匀，但对噪声和初始轮廓位置更敏感。 
当 0 1θ< < 时，模型是 CV 与 LBF 的线性组合，其驱动力(式(17))是全局力 1F 与局部力 2F 的加权和；

θ 的值决定了模型在“全局一致性”与“局部适应性”之间的权衡。 
为了直观展示θ 对分割结果的影响，我们选取了具有不同特征的典型图像进行实验，固定其他参数

( 20.001 255v = × ， 1.0µ = ， 1 1 1.0λ λ= = ，核尺度 3.0σ = )，仅改变θ 值。 
对于存在明显灰度不均匀的图像，θ 应设置为一个较小的正值(如 0.1~0.4)，让局部力主导，同时借

助少量全局力提升稳定性；对于高噪声图像，应适当增大θ 值(如 0.4~0.7)，增强全局力的作用以抑制噪

声，但需权衡细节保持能力；对于弱边界图像，需要综合局部与全局信息，通常设置θ 在 0.5 左右能取得

较好平衡。本模型设置 0.5θ = 。 

3.3. 本模型算法设计 

改进的模型算法具体步骤见下表 1。 
 

Table 1. Algorithmic steps of the G-LBF model 
表 1. G-LBF 模型算法步骤 

Step 1. 输入图像 I，选择一个初始轮廓位置并初始化水平集函数 ( )xϕ ； 

Step 2. 设置算法所需参数，计算图像的全局灰度均值 1c 和 2c ，以及局部灰度均值 ( )1f x 和 ( )2f x ； 

Step 3. 计算全局能量项 CVE 和局部能量项 LBFE 的值； 

Step 4. 迭代计算逐步更新水平集函数 ( )xϕ ； 

Step 5. 依据分割结果判断是否满足停止条件，满足则停止分割；否则返回 Step 2。 

4. 实验结果与分析 

本文采用新提出的模型，其与 LBF 方法进行性能比较，重点考察初始轮廓差异对最终分割结果与

ROI 差距的影响；本文的评价算法评估体系主要包含两个指标：算法收敛所需的迭代次数和从轮廓初始
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化到分割结束所消耗 CPU 的处理时间； 
针对一张存在轻微灰度不均匀的人工合成图像进行分析，图 3 显示光照等因素导致目标边缘产生阴

影效应；下面使用本文模型与 LBF 模型通过设置不同初始轮廓进行分割实验，以评估本文模型对于初始

轮廓的敏感程度；不同初始轮廓的位置如图 3 的第一列中红色曲线表示，每行代表不同的初始轮廓；图

3 的第二列为 LBF 模型迭代停止的分割结果；图 3 的第三列为本文模型迭代停止的分割结果。 
 

 
Figure 3. Comparison of segmentation results with different initial contours 
图 3. 不同初始轮廓分割结果对比 

 
Table 2. Iteration counts and CPU processing time (seconds) of different models 
表 2. 不同模型迭代次数及 CPU 处理时间(秒) 

初始轮廓 LBF 模型迭代次数 LBF 模型 CPU 
处理时间 本文模型迭代次数 本文模型 CPU 

处理时间 

轮廓 1 30 3.031037 10 0.467690 

轮廓 2 30 2.995676 10 0.446348 

轮廓 3 30 2.960719 10 0.498609 
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为检验本章算法对初始轮廓的适应能力，采用人工合成图像与 LBF 模型进行对比分析。如图 3所示，

实验设置了三种差异化的初始轮廓：完全包覆目标的大矩形轮廓、局部覆盖目标的小矩形轮廓，以及远

离目标区域的小矩形轮廓。实验数据表明，初始轮廓的差异会显著影响 LBF 模型的性能表现，当仅能覆

盖目标局部区域时，该模型容易与 ROI 相差甚远；而本文模型基本与 ROI 密切吻合；从表 2 展示不同模

型迭代次数与运算耗时对比可见，本方案的计算效率明显优于 LBF 方法。 

5. 结束 

笔者提出了一种融合全局信息和局部信息活动轮廓模型对灰度不均的图像有较好的分割效果，增强

演化曲线对目标边界的捕捉能力和对 LBF 模型进行改进，在能量函数定义及演化方程中融入全局信息，

使模型在演化过程中能充分利用图像的宏观特征；实验结果表明，改进后的模型显著克服了对初始轮廓

的敏感性，即使在初始轮廓设置不理想的情况下，仍能有效收敛到目标边界；同时，模型的演化速度得

到明显提升，大幅地缩短了分割所需时间。 
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