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Abstract

The Local Binary Fitting (LBF) model has been widely used for image segmentation, but its sensitivity
to initial contours and slow convergence significantly limit its practical applicability. To address
issues such as the LBF model’s overreliance on local information, susceptibility to local optima, and
low convergence efficiency, this paper introduces the global energy term from the CV model. Under
a joint local-global driving framework, the energy function and evolution equation are redesigned,
leading to the proposal of an improved model (G-LBF), which enables the curve to rapidly identify
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target boundaries by leveraging the global grayscale distribution of the image. The new model re-
duces dependence on initial contour placement, allowing robust convergence even with coarsely
set starting points. Furthermore, it significantly enhances evolution efficiency and substantially
shortens segmentation time, offering an effective solution for high-precision and time-sensitive im-
age segmentation tasks. The model demonstrates promising application potential in fields such as
medical imaging analysis and autonomous driving.
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1. 51§
1.1. LBF #RHNEEHENH

Jai ¥ —fE 4% (Local Binary Fitting, LBF)# Ry {5 70 RIGUR A 2 T, ot Li 58 A, BEIOLRe
A7 AL B UG K FEANI ST R T 52 31 )92 943E s LBF BAYIEE 5 NREFIX E B, Al 5| A
T BR B, A SR I DX A UM 5 8 R A AP R AR FE S8, Se i 1 AR 8 4 SRR B (B CV BB 7E 73 1R 1)
SIEUG I BRI PR A, AL FR RS 5T BRI S0t B v B B i e S5 R I, T R VS A A v S A b Al 312
JEOGER X 38(the Region of Interest, ROT) W FHR-E; LBF #AIERIT 2B 038 . Hd G UI#El. N T8 R
Je b iker 46 2 U I AL S e s DABE 2 BBONM, A2 AR REAT 281X 70 3 S SR HOE e B LA A B
PRIXIE, XSmRS W B AN, BARSEOR R 78 2E W] . LBF BERLAE SR T SIMERG L A1 R GiAe €
PE5 T L3 W] R .

SR, R LBF BIRZERG E R 20, LSERRR i e — LBkl Al RERE K5,
2 R A R A B B EARAIC A AR, LBF YR IATAE 52 3 IR, X DL P25 ROL; 1K 46 ] il
PRAER T B AWHR R e 7%, DL — PR e R . DR, 25T 2503k LBF BOASREETH 73 BIRCRAMY
& 1T B BT T RIAZ 02—, WIS AH S U AR R e i S 3R B )

1.2. LBF #8454 %5 BEBUA4 o] 21

LBF #58 BARLE IR EAN I ST EG 70 B ep R B o, (ELEERT AT a6 e JE s L P vt FEE M P ke A ) 20 Ak
REMIEE R R . BAKTM S, LBF BRI R ™ AR T WA R BRI BOE , A pIanie st & H brid 5t
I, B AT RETCIEHEI B S S E . XA IS ERIFE T, LBF BB RE R RO BT
JEFBIXaEAE R, M0 4R B RHE I R A R . BRI, S0 A% B B H ARG i, R s S AR
SRR HEI T, SRR 2 TCE IEwhE H AR 5t .

FESEBRRL I R, AIAa e B URYE R AU R 1 2 W, B0, fEERFEREET, T EHEEE R
BRI SRS, P sOE e YIG R A CGERN A7, MHAESSIANNRE. A, EE3)
B RAA BRI S UE, BRI B AR 2R, MEATSE i E B IE IR IRFE R . XL [ L
73 LBF A AUAE Stz 5t v ) P 52 2R, 3 75 e e et S B v R B IR L BT AR 52 8 A s 7
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1.3. IREBNERX

T. Chan F1 L. Vese [1]$2H /Mt Mumford-Shah A1 /KFEERE; T. Wang 252188 T R
Wiy LA RE = IR BN 1 EBAC R Li S [3138H T — AN B R i B & T e &7 ek SO — Nl Bh
4 SR 5 B AU A T AR ; Chunming Li A1 Chiu_ Yen [4]4542 H B/ MEIX 35 - AT 9 JE LA RE & T 1% 4 #
Zhang Z[S)45G M0 CV BAL, 2t T — Rl & R4 R EEAE B 0E S B . Wang 5F[6]45 G
CV 5 LBF BRI A, $2t 7R a /K ER G A, 2R Re8 7 EUK A S IR, B W46
ERRR IR PR, (B E RECZYIG R ERA B R, PR TN ERSSR 7 A A AR R
RGBT PR B TGS AR, FIRR S8R CV B R H AR AT e Ar, A LBF 4
BE— RS — B B A B EE B, X —2ROESGlE T CV BURLAN LBF B8 1) 73 BIBUR, (HR 4 EIHS B
AR, Liu S50 A8 B (1 R A4 R e B0, Fang 2510136 TR QWS B & N sk 8, seal 4
JR 5 R0 RE AN R AU BIE L.

AHIE B @I S5 A 4 R 1E BT LBF B8 IEAT B0k, DA AR R 46 6 58 11 U 1 - 4 van e A T
BARTI S, FATKEAE LBF B8 (A RN 4> R BEMRRAE, 38 I vk 37 1) R B o B8ORS AL 7 7, AASEARY
RERETETH AL AR b 70 0 R L 4 R AR (S B AR 34 (8] et Ja RSB T2 T+ G Ay B R A B S
Xo B, EETIANERELR, B YR FBOE ARSI IO T Ui ReEm USSR B Aril 5,
MM N TF TR R Hak, A5 B 5IN AT AP m B e s R 4 R i) Bk, (AR
Xof LB UG B RIS Infase . e, 1ZGE v 55 10 A UG AT 4 B RE S B i AR, T HLAE
I T2 A T

2. HXIE
2.1. KK EEEZERG IR RE

FEMR A3 i LA 2 MO R Iy o A SRR TR AL A o — R S5 PR R 7 2 M-S Y
[1] (1 Mumford PL Az Shah T 1989 442 ). A ALK LS )1 FiL 1 MG E AE X I Q B 4 i £k
uy =y (v, ) KFR, FHABEQ=([],Q,)0C, HhC R QBATMI— KL, n &4 FH
B MBS S0 R TR SRR AR Tk RO B PR B = (v, ) » B R T8

E(u,C) = Ig|u0 —u|2 dxdy + ,ujﬂ\c

TR ETZ R IR 25 A5 2 |C| o 2R C B, g, v RETIUBE 38 B0 A AK i REAT L Bk e k5
L, DR R G TR 55 Fe A o SRy BUR M R BN e U B 3k 2] — A BURE R, BIEQ, Eu
NHEAE ¢, TR %L

[Vu(x, )| dxdy+v[C] (1)

E(u,C) = Zjﬂ, |u0 -G |2 dxdy + yIQ\C|Vu(x,y)|2 dxdy + V|C| 2)
BB 5/ IME
2.2.CV &=

2.2.1. CV {&&ITE I
2001 4, Chan 5 Vese JLFIZES. T CV 2 EAL2], ZHEET Hir 5 FAA0E T E 2R,
KHACFERAR KR MUBEEREG HAZOREE REERIE 0T FoR:

EY (c¢5,0) = uf[ 5(9)|Voldedy+ 4, [[ 1=, H(p)dxdy+ 4, [[ [T-c,[ (- H(9))dxdy 3)
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Figure 1. Experimental results of the CV model
1. CV fREUSLIEE R
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2.3. LBF &8

2.3.1. LBF {R&EiR
5 Cv BAYAE LBF (Local Binary Fitting) #8858 51 A\ R & B (E EORAC SR EA T 511, Refs s
U 4 3 3 G B FEAR A, Fsz 7 ORI s i st . 801 (x): Q - R FRos BRI Q 175 20 B K
&, RERHIZ C H— Lipschitz s ZKPEFIR, KFHERE O (x) 2 XIF:
#(x)>0 Hxeln(C)
#(x)=0 HxeOn(C) ©)
#(x)<0 FixeOut(C)

TETTRE9) T LT /K- ALK E @ (x) J5, LBF BB i REEIZ 1R 5E SU9:
FY (g, f, /)= E™" +§I(|V¢(x)|—1)2 dr+v[5(¢(x))|V(x)) dx (10)
Horp, EYF IORZEAIMRE R R, RIER W
EY =2 IQ[L“(C)KG (=) (r)= () *H (fp(y))dy}dx
# A [ Ko e 0) = (0 H(1-H (o ()

XADF, 4, Ay NERIEFMERE, y 5 x BRNZEEGER, 1 3MARE, K, Zombs
HEZE o WL R, f AN f, I3 AL =) 30 ) PR A 90045 R 8020 T 58 6 PN A (R A S T 494

(Vo). :(% %J Tomo Wb E. M(o(x)=H,(o(x)) F1 M,(p(x))=1-H, (p(x)) Je& %, 3

(1n

ox’ oy
H,(p(x)) 3 /INHHL e 1) Heaviside 58, 1 Dirac B35, (o (x)) N H, (¢(x)) 035 B8 H, ()
M6 (o) BGA:
%(1 +§+%sin(7zx/g)) |x| <eg
Hg(x): 1 x>¢ (12)
0 x<¢g
1 X
—[1 + cos—j |x| <&
5, (x)=12¢ £ (13)
0 |x| >&
MRFE o B ERT, T AR R /MURE E R B 3
K, *[H,(9)1(x)]
fi(x)= X H(9) (14)
K *1-H I
()= Ke L1 o)) (1s)

K, *[1-H,(p)]
INTRI, JRHELA R £ £, S A (A B 2 e AR AR, X TS LBF RAAE A FR AR FE A AN
BB GE RIS . SRR TR EEHE, ROANEREESE; ST RIS X AERE D
IKIEES, ER KR FIR T HIMR5C B AL B AR ~F s AT C-V 7k, LBF HykiE TR
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Figure 2. LBF experimental model
B 2. LBF SLI0#%H)

3. ET2F/IERMIEHE LBF R3S
3.1. G-LBF #23&4(Global-Local Binary Fitting)

BT ERAR, AHEFIRE T —Fhah &R E SRS S ot LBF B3 [7] [10]. 12 BALE i fil
ANEREE, MMUAEWSIR AR ROL I REA RUFEARX Idr e B f B M. A, @ e e
BT RS, AW B A D IR R AR, TR THEER S HIRCR . 1A G-LBF
B, R CV AN LBF A RE R TR N, 52— Fhdk T Ras XI5 4/ X s sh A B . A i
REEZ RS T CV H LBF PI/MER R RE Bz s &, A

[ OLBF ((/),Cpczafpfz)ngcv +(1_9)ELBF +VL(¢)+,uP((p) (16)

Horb, v RIEWE, 0<0<1. KolElE, REXtc,c,, fi, L BME, FRENINERIER; HREHAAZ
0 IR B R B B AT B2 (R KT bR s AL T R

% 5. (o)(F +Fz)+vdiv(|Z—Z|J+u((Vgo)—div(mB {17

Vo
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E:ﬂaU—qf—@U—qf) (18)
(1=0)(A] K, (x=2)(1(2)= £ (=)' ))~ (2] K. (x=2)(1(0) = £(+) ) (19)

fE G-LBF FALrh, i o i R 1 B 4 R AR B ROALE Ll o 12528 P A4 B R Y 4 R -
B, fEEEBARGTHEAIRTIO EE WA IR HK, B 4R BE R R EOR SO R AL I R )
PACRCR . DUKPERIESIRC BTN, 207 100 i 48 5 4 R Rp A ) e e i bR O BRI, i SRR A
A BE A58 HAr 5 RV E M ZE R, B FRTHL T E AR . LAk, KRR 5 R SR AT fl
A R R 15 SR R R, AT AR AL F) 73 B

3.2. XESH T

FERE R R B(GN(16) T, S0 Pyl -F 4 RfE B S R EE B DTk i i A

L 0=0r, HALRMNE M Chan-Vese (CV)IEAL, S8R 2 RGETHE S BURAL K
P SUEIL SR UG A R B IR AN 5 X IRk

60 =11F, BALRANZ I R E A A (LB, S8 o= i mdlfratl & 5 2 SR R g
RO BRI FEANI Y, AE X W 75 A0 4 6 o 6 S UG

H0<O<1i), BALE CV 5 LBF M4 s, HIk=h/1(:R17) 24/ F 5 R F, BIURT;
O WHMERE THRTE “A)m—8E” 5 “RFIERIE” Z A AL .

NT EAER 0% 53 BRI , FRATIEIC T AT A FIRAAE Y SR RTS8, [ E Hofh 24
(v=0.001x255", w=1.0, A4=4=10, BRZEc=3.0), {Xk%o1H.

XFTAAAE B EA S ER, 0 MEE RN —MUNMYIEHE@ 0.1~0.4), ERMATET, [FR
Wb B2 R R TR E ML X TR A IR, ROE 28GR 0 A (1 0.4~0.7), BSR4 R 7 AR F DA o) g
B BT AR AR AT TSR EIR, REGGRTESERELR, BERE 61 0.5 i h RIS
BT, ABIERE 6=05.

3.3. FRERZKRIT
it AR R SR BACOD BRI T 4% 1.

F,

Table 1. Algorithmic steps of the G-LBF model
# 1. G-LBF fREE X LR

Step 1. SINFEIR 1, Hff— VIR RO B H ALK TR o (x)
Step 2. WEEIEFT RS, W HEENARKELEL  Me,, URRBREBIE £ (x) M £, (x):
Step 3. T84 R LI ECY LR FE AR I ST (4

Step 4. PefHHELIES HHACTHE R M o(x) s

Step 5. #7145 R A2 i 215 1L 260, B NF R3] AR [E Step 2.

4. IWERS D

ASCRAGE R IR, H5 LBF JiiEBHTIERELLES, H G BRI 2 RN & HI 4 R S
ROI Z N ASCH PP ARG R R 1 2 S MR bR SEIEIIT 7 IS ARR B R FEE T 46
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3 195 =508 LBF BALEAE LI 2145 R 151 3 (058 = F N A SCRRLE AT L B S5 R

30iterations 10iterations

30iterations 10iterations

30iterations 10iterations
IR LBF # AR SCAEAY

Figure 3. Comparison of segmentation results with different initial contours

3. NEFIRI RS BILERITEE

Table 2. Iteration counts and CPU processing time (seconds) of different models

2 2. PRMEELERRE R CPU L IBRTEI(FD)

VI werprmisess SRR rgmiep R CP
RS 1 30 3.031037 10 0.467690
BB 2 30 2.995676 10 0.446348
BER 3 30 2.960719 10 0.498609
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