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Abstract

This study utilizes the Bohai Sea, a shallow inland sea in China, as the study area to conduct pollu-
tant spatial distribution modeling and impact assessment studies for the environmental risks posed
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by petroleum hydrocarbon pollutants discharged into the marine ecosystem. Based on the 2018 com-
prehensive monitoring dataset of petroleum hydrocarbon concentrations, the study systematically
compared error-related metrics of spatial interpolation methods and successfully reconstructed
the spatial variation patterns of petroleum hydrocarbon concentrations throughout the year in the
study area. The method reconstructed the spatial variation of petroleum hydrocarbon concentra-
tions in the study area in all seasons. The findings of the study indicated that the Chebyshev fitting
method (CPF) exhibited superior statistical performance in ten-fold cross-validation, with a mean
absolute error (MAE = 0.0094 mg/L) and root mean square error (RMSE = 0.0160 mg/L) that were
reduced by about 4%~37% compared with the traditional method.
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1. 51§

FHEAE S o [ B3 A i, DRIRE VRS i I R A e IR ik, IR T IG
Ha RS Ay Horr, fihis SR H R 2 A S S RS AN AR ) AR I, OO B v AR
BRGNS o U RIEEE Bon, REENE R Z KA IR SRR S QKI5 &
FRUED (GB3097-1997) I-11 ZEFRAE(0.05 mg/L), {HIL AR\ SRV S UK X IR S8 H 11 20K o b 4 R4
TE RS PR PRI o B P A RRAE (1] SEABAR IR R, TE VAT E B 8 E A o, His g
ARBUEE IR . Wang Yebao SIS HEAHR A KM, EHRFDURRY) A0 & & R I3 1R (R
#, %4518 5 Zhou 5 (2014) I 7L 45 RAHW) & ——HALBNEE R ZVTR A A Mk E okl (F
PTG &) (GB18668-2002)K15E Y FRAE 2] [3]0 1XFh5 G QT b L] 5 B4 h it X % B 1) A i O
R (IUA 1 G R 2000 1) BT 1M FATIE R ADE AT S 10 75 88) DS AR S (1 v i S 0% DA
K4 FEUE ST, TFRENEAM R AT T, AMUAE R SR R kR, 3R THE
BB HLRE PR (1 B R R SR [5]

RO AR OFE 2 2 BUE AU 2 N, AR L R R, A i — 20 R R St iy =
[E][6][7]. HHRRMEEIE: Em AT . SMEREEEE N AL SR P KRB R
SAE TPERCEREAL, BARBHAL T PR A R SRR E IR Z BR8] B, TATHELEM ORI EHEE
(P IE S, 7RIS MR AR, B RRERNSHIR R SIS R, 1245, BETUIHE R R
[ IEARZ 2 LA (CPR) AR B M TR e BUGMEHE ., iRl A55 2 SRR, %7 IR S
FAMORIIN . EE 2R F R U AR BE R 5 1) LE 55 R 3E R 8 CPF BORMISE & 1038 i, B Em
SE VR R B TR K X D A B R . T TR CPF 783 K X LA M & 20 E R, A3 BT A B RS i 1)
W91, ZE5FFH CPF ihiiin 1 E Hr I PM2.5 (RS 25 43 A AE[10]. %71k LRk RS . B
ERVE . AT RE R B R R, RN AT A A R B ) L A

A A R B ARV RHE, S ECT I BARRE W HAA BE S R, BT EN RS

gi)

PO W ZE[ 1] R, A0 ZEET AR SE A B B AR AL, S8 A2 AR IE AN ISR PR SE T2
B, EEPAEBR AR, A S0dE M T i TS R E O RSB AR &R [12] [13] R, AHFTT
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B AT, WEEIEE ., BEE Nk KRS 2 Y FE AT o0 Al LB R I S A R D7
AbFRA AR LS Hy, T 38 UE A VO AL ER I ARAL T ), AR AR A i ) o A R DS
AR T VIS RIL R CPF ik, 0 R i X oA R FE AT . ISR 3—
53 B IR TS 55 DXCIURRAE s B8 80 0 VER IR I FE DX SRS 2 s 58 =30 0 WP iE S 5 AT IR N
fifetTs ERPURAN 28 TR T A
2. MRXESHES
W58 X3 AL A0 A 265 /N W Pl 5o AR YRAIF 58 R FH 1 550 v R 27 $i 4 w0 (https:/mds.nmdis.org.cn/)
2018 A IR FEBR A, 1R BR A T FE A A B 5 A AT S SCRE . 14 1 JBR T 2018 AFEHFFLIX 265 A~
A0Sy () VR A YA AR B A A, % M D P R R M S B T A B A TR R . SR DY T v
GYHT T R XA e A P () 3 A o
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Figure 1. Annual average concentrations of petroleum hydrocarbons at 265 monitoring stations in the Bohai Sea, 2018

1. 2018 FEi#hiE 265 NSNS A HFEIIKRE S E

3. tRFAFESEW
3.1. ARFGE

(1) VIS RZIAINAIE(CPR)RETERLAFE B 5 5 2 B 2 M AU P47, AT TE #5280 3% 5 sl
P E RO . BT U R R A IR 1EAE 2 0= & (CPF) /7 [ 14]:
7:)(xi)zl
7 (xi) =x,—a, T, (TO (x[))
TZ(x[):xiz —a,,1, (To (xi))_az,oTo (xi)

T, (xi) = xik —a a1, (xi ) —a,0T, (xi ) —ay o1y (xi)
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R FREAR T, x, FHhi=12-n RE— R x ABREL k FoR x J7 1) L2 TS D - T (x;)
kBT E RZ W, HARBIC N e, 1R ZEEE I R28D, HETTT:
EnlxiTi(xf)

i

X7 (x)

i

a.; =

2(x, ) BRI AG, ATHA

E(xi’yi)zzzAk,sTk ('xi)Sx(yi)

k=0 5=0

(2) = A2 T EE(TPF) T AR PR A 2dE S e G 1 2 DU 4. ¥ TPF MIREURE7E 0 & 8
2 I8 TPF LU F[14]:

max

Ei = (CCk,s > CSk,s s SCk,S H SS]\',S ) ' F}c,x (xi’ yl)
k=0 s=0
cos(27kx, /T)-cos(27sy,/T)
cos(27kx, /T)-sin(27sy, /T)
F;{,S (xi’yt ) = .
sin(27zkx, /T)- cos(27sy, /T)
sin(27zkx, /T)-sin(27sy, /T)

CC,,.CS, ,SC, ,SS, &= HHARE, s/ A E .
3.2. W&

(1) o s ) R 26 A T VP A5 A 0 & PP E B & ORI RE . BRATHE R A 28 XRHIE 72
BARTE, A8 XIUE T E M AR 7 A n 585y, Horb n— 18050 F T A 23 (Al i) I 2588, AR AR
IAE NG IRUE IS UEEE[15]. ABFFCRA T 4738 X iR

(2) ¥ MAE 5 RMSE Z5&E NPl fa bR, A7 0 0 45 S i Ak PR E AT 58 A T B PPl [ 16] [17]:

MAE 18245

MAE :%ibji —f(xl.)|

b m ATAREAE S (=12 ,m) sy AR, S (x) A AR A .
RMSE 5 AR N:

owe-[L510-r0 ]

i=1
Hortm IR EAR S H (1=12-,m), y, AIE,  f () A TR .
3.3. LI
TR 10 EBEHLAE IR IEVER 2 CPF A1 TPF AR MG M FH A (K, =1,2,,8 X
S =1,2,-,8)c {81 CPF 1 TPF J1 &M & A MBS AR AR, RHRHBENLA & HEATIRUE
(Ko =1,2,,8 v S =1,2,---,8), @47 10 MEH, Il vh 5 A 28 SRR 0L G 45 R 1) T35 5 225k
PEASTLE S . NAULE A AT 17 10 IRBEHLAE SCIAIE VA, 8 B se YR UuE & 45 11

max
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YR ZE RGP T I BRI, U R A P50 v P05 777 9 S S M X 0 A Ak FEE s 1) A
4. RS

IS LLER AT 28 X UE HP AR AE LA 45 IR 1P 3502 R VRS B AL iR I HERA M, JRIE BRI MR
T PRI UL B 77 ¥ R L s b X 1 Vi e A g = 8137

ARHFFEXT CPF J5iE & W B & #EAT 20, v 55 oG 82 40 & 1R SF 3 4655 1% 22 (MAE) A5 J7 AR 1 22
(RMSE), AR W7 1 Fid 2. Bk, fERLEIEHE T, CPF vk 2 Wi 5 650 58 X5
WEPHiR 2245 R EL0, A 2BUR IS, R 3 808 2 R 22 G . RIS T HdE 7 A A2
MGG, 7 REMBIRENZECHEE, A ZEeT A0 CPF AR ML AR . fEATA CPF YU A v, iR
ZFRPR L MR B CPF 52 P e flRiR 2248, R o g SR S B0 I B A AL

Table 1. MAEs of CPF method (unit: mg/L)
5% 1. CPF 753589 MAE {E(#4I: mg/L)

Smax
Kmax
1 2 3 4 5 6 7 8
1 0.0111 0.0106 0.0105 0.0105 0.0106 0.0107 0.0108 0.0108
2 0.0102 0.0100 0.0095 0.0100 0.0103 0.0101 0.0101 0.0100
3 0.0104 0.0098 0.0098 0.0095 0.0098 0.0100 0.0100 0.0100
4 0.0101 0.0097 0.0096 0.0096 0.0100 0.0100 0.0101 0.0101
5 0.0100 0.0094 0.0095 0.0096 0.0099 0.0100 0.0100 0.0099
6 0.0100 0.0096 0.0097 0.0099 0.0102 0.0102 0.0103 0.0104
7 0.0100 0.0097 0.0098 0.0100 0.0103 0.0103 0.0106 0.0106
8 0.0098 0.0100 0.0098 0.0101 0.0104 0.0102 0.0106 0.0106
b s e .
Table 2. RMSEs of CPF method (unit: mg/L)
5% 2. CPF 753%89 RMSE {E(84I: mg/L)
Smax
Kmax
1 2 3 4 5 6 7 8
1 0.0176 0.0167 0.0168 0.0169 0.0171 0.0172 0.0173 0.0173
2 0.0169 0.0163 0.0161 0.0163 0.0166 0.0164 0.0164 0.0164
3 0.0167 0.0163 0.0163 0.0163 0.0163 0.0164 0.0164 0.0164
4 0.0164 0.0162 0.0161 0.0162 0.0166 0.0166 0.0165 0.0166
5 0.0164 0.0160 0.0162 0.0164 0.0167 0.0168 0.0167 0.0166
6 0.0164 0.0161 0.0163 0.0167 0.0171 0.0170 0.0171 0.0171
7 0.0165 0.0163 0.0166 0.0169 0.0173 0.0172 0.0176 0.0176
8 0.0164 0.0165 0.0166 0.0171 0.0172 0.0173 0.0176 0.0175

R oy R E A -
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X TPF 7579, KA 10 HrBENLAS SRR VL & S LA W B S A RG24 R 3 3 FIak 4. 4G
45 E , MAE #1 RMSE FMEFRIIBER HOE £ 00 E A& . TH N K, S =78, MAE 5 RMSE
EREW K. Z BRI T 2 TR AR & fEE[ 14 76 TPF (04 HA2 SEG T, Sk e s e
fERF, TPF51 ) MAE B3I AGME. MAL, % 4 R 1E 10 FrbENLE XEiEd, FramEea&m
RMSE i 5 MAE HEA—3, Xib—BAFsE T TPFS1 78 15 2235 1 77 T i A e MR O eR i, W &8
S A 48— KA TPF51 A4,

Table 3. MAEs of TPF method (unit: mg/L)
52 3. TPF /53580 MAE (3 mg/L)

Smax
Kmax
1 2 3 4 5 6 7 8
1 0.0105 0.0103 0.0100 0.0100 0.0102 0.0106 0.0109 0.0111
2 0.0100 0.0101 0.0099 0.0101 0.0106 0.0109 0.0114 0.0123
3 0.0100 0.0099 0.0103 0.0107 0.0112 0.0127 0.0152 0.0202
4 0.0100 0.0101 0.0110 0.0117 0.0136 0.0172 0.0281 0.0647
5 0.0098 0.0113 0.0124 0.0146 0.0184 0.0386 0.0836 0.2891
6 0.0101 0.0114 0.0123 0.0164 0.0285 0.0801 0.3860 100.2814
7 0.0103 0.0126 0.0153 0.0273 0.0512 0.4106 421.0813 51.5078
8 0.0109 0.0130 0.0177 0.0361 0.2288 167.3617 131.6728 36.3915
R b H o AR ZE MR
Table 4. RMSEs of TPF method (unit: mg/L)
5% 4. TPF 75380 RMSEs (8 4I: mg/L)
Smax
Kmax
1 2 3 4 5 6 7 8
1 0.0168 0.0167 0.0162 0.0164 0.0165 0.0168 0.0171 0.0173
2 0.0164 0.0165 0.0162 0.0167 0.0174 0.0182 0.0190 0.0210
3 0.0163 0.0165 0.0171 0.0181 0.0192 0.0227 0.0285 0.0380
4 0.0163 0.0169 0.0181 0.0203 0.0240 0.0307 0.0595 0.1500
5 0.0166 0.0182 0.0208 0.0256 0.0331 0.0839 0.2650 0.8804
6 0.0168 0.0192 0.0212 0.0310 0.0596 0.1903 1.1319 252.4707
7 0.0171 0.0218 0.0283 0.0596 0.1073 1.1965 1502.0080 142.1318
8 0.0179 0.0229 0.0335 0.0731 0.6624 502.7002 356.8144 74.6917

R e oy (R 2 A -

%5 BR T WML A R X IAFRY T iRES R . WRHE 7515 CPFS2 5 TPFS1 K45 B AN
3T, A8 XIGAIE 9256 A 1 5 1% 25 (MAE) 5 2 5 #5% 25 (RMSE) i 2 S 2 AN 0.0023 mg/L. 28 X EGIESL 5
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GERL 14 iR . FEERAE XIRUESLE4H(CV3. CV4. CVS8. CV9)H, CPF52 I T TPF51; HAsk
U6 A0 A R VR ZE RN FEFTA A XRAIESER . CPFS2 5 TPF52 35431 RMSE {Hita$h & din, H
CPF52 [1J°F¥) RMSE {& & T TPF51. H: RMSE 1Bt TPF51 fi 0.0006 mg/L, /) RMSE {EZ1°4 0.0085
mg/L.

Table 5. The mean values of MAE and RMSE of each method in the ten-fold cross-validation
5. TR XWIEF & 7535 MAE 5 RMSE HIH1E

CPF52 TPF51
MAE 0.0094 0.0098
RMSE 0.0160 0.0166

Ak, 12 BoR THE 10 5538 R AAE T, ATHES I A MR E 2XTHOCR . A B 2RI E
Z2/NT0.03 mg/L (A TG . CPF52 Jikas R, HASE A MIKE S WIE V)&, 96.54%1H
AT IRZE/NT 0.03 mg/L WG, 78 00E B 50 A iR AL S B kg S ST 5. Mtz
T, TPF51 4558 95.00%, S Wt 7E Ayt 5277 TH 5 CPFS2 VAAFAE—E 2 8E, Xit—2™ME T CPF52 vk
TEAT T RIS R AME, G CH IT 5 S b 1) 7 e 3 gt 1k #s o
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0.057 /7 / 0.057 7 /
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Figure 2. Scatterplot of the match between estimated and observed oil concentrations. The black
line is the 1:1 line and the red dashed line is the cut-off line for deviations less than 0.03 mg/L. ((a)
CPF52, and (b) Tri51) (Percentage of deviation: CPF52: 96.54%; TPF51: 95.00%)

2. AHIREMITESINENSSE. Bkl 11 kL, AE%&ARE/NT 0.03 mgL
BIEMIZ . ((a) CPF52, (b) Tri51) (REBFEL: CPF52: 96.54%; TPF51: 95.00%)

T I 0] 2% (8] 73 A 45 IR AW 9T, TPFS1 B RIFIRZR I, (HLE S GRS (1~ B
AN J CPF52 (K 3(a)), LI AEEDIE X 38, TPFS1 75 A7 JH A< P 25 (8] 23 A o S 50 BH S 1 S0 "I R (B 3(b))s
TCIE W A A 1) 25 (R ) AR RRAE o 33— 2B BGAE T CPFS2 7Eh i i ik B 2% (8] A A AT 25 b 4% 3%
MRS, Wi 3 Fim. BT RO, CPTS2 RAMF T i @A IR B AR (B 7%, 28 XE
GER SRR
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Figure 3. Petroleum hydrocarbon concentrations in the experiment calculated using (a) CPF52 and (b) TPF51

[ 3. 3%F(a) CPF52 #(b) TPF51 #EINAHRE 5%
5. I1ig

T2 XIGAF 5256 5 25 (8] 0 A AR GE B, CPFS2 J7 V2 AE i $E i v A e oA B8 4 1) A S 1k Tl B (3%
Ao it — B IRARZ A A SO PR AR T T T R AT N[18], ARFFTIEE 2018 43 H 1 HE S A
29 H(FHZ). 201846 H 9 HE 8 H 31 H(EZ). 10 H2 HE 11 H 22 HKZE) X 2018 4F 1 H(ZXZ)M
TEHE, KA CPFS52 J7 il 2018 SFiEhife Ak V8025 . AR A CPF52 JiibA LT 2018 H-3)
AR B AT A A, B TR 23 BT X I35 IR 2 5 i vl A e R P58 2 B) 43 A RIS, DR i i i 5 e v
TR ERPE AT A B M R B SRS R AR T .
5.1. W 7TE

AHFFRA BB KRB R B AR E(GB3097-1997)) w1 28(11 28)i /K 5 B bR uEAE ik
YN R UE,  FFi2 FH R R 75 G BOPAM VR i I A R P AT VA, TH A R [19]:
R=C/C,
P XA, NI AR BEAE, C, %3 B S KK AR E(GB3097-1997) 1 5E I V1T 24 7 FRAE(0.05 mg/L).
i P>1.0, RPZEEAEEATFE X RIIIRE > X I H s, R (GB3097-1997 ¥ /K 45 )i &
FRUED T 2R(11 28)h5HE

5.2. THY4&ER

R FARIE CRKIAET T EARAE) (GB3097-1997) K2 (175 Jeta$iyd:, btk 2 K il ik 5 2t
17T RHEVPG . 22 6 FIH T 2018 SR iE I K — K B B R Z KR B (A FE A T . R
P AR TG dea B, 2018 AF )R AR R R K I 2R B DY 2=~ J41{E 9 0.0256 mg/L~0.1458
mg/L, &ZMSIREE R, TR 0.1458 mg/L, AR 36.87%; H UK, I 0.1377 mg/L,
HEFREE 25.12%; BN L, “FHIEE 0.0435 mg/L, #BFRZ 16.46%; B ZRIRE A, “FIKREE 0.0256 mg/L,
FEARAE 9.59% . Ml T 3535 et Blifi &, KA JAB500 i1 2.754 1 2.916, it E K — (=K
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bR FEBZETGREEO N 0.870 K1 0.512, Fia E K — (- HKFibrE. SATE, B
M5 Reddy 55(2005) W 745 R — 80, KB CPF52 B AERSH NI A ik FE =1 R (e T A B &
SRR SR, B TE TSI S I A TR P ) R ARFAE[20] o

Table 6. Seasonal changes in mean petroleum hydrocarbon values in surface seawater

6. IEREEKTFHABENSTHEN

BinE

X £ £ 04 > 2 i
e GRELE 4 FfmgL)  SnTE

F 0.0435 18.46% 0.870
s 117.6°E~122.2°E = 0.0256 9.59% 0.512
i 37°N~41°N

K 0.1377 25.12% 2.754

& 0.1458 36.87% 2.916

4 Y IEREE IR Z R A R At Ol BT HAR =2, & amikEE G, JiHAAR
e DXIREE N 5 2 o B B E R N = INEHE A = RIS K0 IR B A [ K1 2R(IT 2R)ifgE kK
JRbRAE . K, iR R R I (R 5K T (0 20 ACOK bR, e rh b iy 3 2 DX 3 R P X2 2%
e A X AZRIN, IS S IR M A IR B TR, BB R — 2R ()i KK FbR
o RV AT IR B AR AT & [ X — (3 M AR BT ARAE (XL AHEISUAS 7 AL /) Y Tl I S A i
X5k

MR, el B A s G R B b T 2 X . Rt R HEI AT e 2 T Bl s B Rl R R 2
o Yu SERBL, i i g kP S AR AT S LA SN 51 K 2 S R EU - 3L EER,
FRELA 84 73 Mg 2R T5 Yenid il E BRI, 3B KRR [4]. HIFR, Wang 5%
iz I RS B AR GEVPAY 1 i To R, 45 R BN IL RS ST Dy WU DX, R A\ S i
TS G ) B BRI [ 2] -
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Figure 4. Characteristics of the planar distribution of oil in surface seawater by season. CPF51 four-season concentration map:
(a) Spring, (b) Summer, (c) Autumn, (d) Winter
4. FPRIFHREGKPAMTEIHHE. CPF2 UFERESHE: 1) FF, B) BEF, (o) #F, ) £F

37°N

VYR A TS GV B RO SR L R IR 3 (R 2 . B EIAAL TR K, s b N
R, HH TR AR AR, 5 0Pd Biae s, A9 R XA S ek B A 4
BRI, BEARK RS & B R 1M I8 AOK TR HE21]. ERARERIN, 12K MR A%
fift~ AR FE RIRBN Y BUE T DA R iR e i B R s 2 R R I I Iz B AR R, T
FRLAS AT I ORI A IR E P B AR, ARTEATFEE K M1 Hbrifk[22]. BRI FF
4z, [FIR 223 AHE . KB 8 BOREs . PaAbE BRI R B S SO A i 1 3 S5 DR 2R &
TERRAE SBHLEI[2], A s Gl s 48, KO0 B B [ 5K I~10 28hmift, Ao 2 X300 2
. AFZTREMBREBD . KA 55 KRB S A R LA R SEAMAER SN
RIS, DL R AL A 25 U4 25 % 5 R SRR S B[ 23], Ak B B35 s, Vo BT T = S
W O R R I, DAL AR A R o R
6. #Tig

W FEERDT T PR [ 30G J7 VR LE LALLM A e VR B2 2 8] A v (R kv . Jld 23 #r 2018 410 265
AN IS A RS A R B R, R CPFS2 VATE RS X6 E H R I HH I /N 1R 38 7 R iR 22 (MAE) fl4 75 AR
®Z(RMSE), 43714 0.0094 mg/L 1 0.0160 mg/L. XK CPF52 yATEANEEAEYY &) 43 A 1) A i R P A0 4
I LA SR B S s R . S IR IESE IR, % VEAE R 23058 SR v 1 P 3R 22 B T o Ath = Fob
J7i, JUHAE CV3. CV4. CV8 M CV9 A2 X sl R I AR . I6Ah, CPF52 JrikiinzE £ &P E
0~0.03 mg/L [X[f], %X [Ai%Z 5 ik 98.08%. i TPFS1 J5ik BRI RBEL CPFS2, {HAZ Ik
FEPE, TR (K s S 2 7N IR ZE R EIE R, AFAET NG XS o IX KB CPF52 J7VETEMIH 1R 22 K A= ik
TR RIS, 85 RO R K 2 T B B R i R 4 R R, L 96.54% MU 2 /N T 0.03
mg/L, SEMN T HABTT % BuAh, 727 (8] 4p AU TT 1, CPF52 771k 5 B0t B~ 1)k 8 2 [ 23 A A =K
EmaE R —5. FET R — PR T A MR EE B . A ZEm IR (L 0.4988 mg/L)R]
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AHI FEAEAGN I A M L 22 (RN, R824 PR ) B T4 S B TR BN B, BUE LA RS E

BEARG, A B B0 S S WL ZR VS () R R JEE O AT RRAE [ 22] 0 5 SBEIF 5 75 8 it e 2 DR, 0 45 8
HRIFEVAREAR IR ZE o [ LA S8R ROV %, 38 FHBURIE A S Z Bt AR THI & RS E[10]. R
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