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Abstract

PM10 is a highly representative atmospheric pollutant whose surface readily adsorbs toxic substances
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such as polycyclic aromatic hydrocarbons and heavy metals, posing multiple threats to human
health and the ecological environment. Consequently, research in this area has garnered significant
attention. Studies on PM10 pollution not only provide in-depth insights into its transport and dis-
persion patterns but also offer robust scientific support for subsequent pollution prevention and
control efforts. Accurate simulation of PM10’s spatial concentration distribution is central to such
research, playing an irreplaceable role in comprehensively understanding its pollution characteris-
tics. Ground-based monitoring, numerical modeling, and spatial interpolation are the primary tech-
niques currently used to study PM10’s spatial distribution. However, numerical models demand
high data completeness, while traditional interpolation methods struggle to achieve ideal accuracy
in sparsely observed regions. Dynamic Constrained Interpolation Method (DCIM) has been proven
effective in enhancing the utilization of spatiotemporally sparse observational data. Therefore, this
study proposes a dynamic constrained interpolation method based on an adjoint model, which en-
hances the spatial reconstruction capability of PM10 concentrations through algorithm optimiza-
tion. Using observational data from 85 ground monitoring stations in central and southern China
between March 2 and March 5, 2015, systematic validation was conducted through a stepwise ex-
perimental design: First, DCIM'’s effectiveness in PM10 numerical simulation was validated. Results
demonstrated significant improvements in simulation accuracy and optimized outcomes, fully con-
firming its applicability and reliability in this domain. Subsequently, addressing limitations of tra-
ditional interpolation methods in sparse data fields, the higher-order conservation interpolation
(PPM) algorithm was introduced. Experiments revealed that this algorithm possesses distinct ad-
vantages in adapting to sparse data scenarios.

Keywords

PM10, Dynamic Constrained Interpolation (DCIM), Numerical Simulation, High-Order
Conservative Interpolation (PPM)

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 51§

KAFTHR PMI10 [R5 Z4 3 R 1 KO A A BRI R e, KHADUR — B R ARk S
AT FT I EE 55 7 1] o PMI10 R RN TE R N, 35 K BN o 84 BH ZE 1 Ml S5 e R G 1],
F A B (1) 2 34 75 F2(PAHs) MU & R S A B0, 3 rld ik S840 BB L DI O 8345 5 DNA R4
ARE[2]. WATH EVAREE BoR, PMI0 IRFETH i PRIR R G A0 T R BT s [3]. EAESREGZ
T, PMI10 (K HITTRE 2 o0 138 pH B 5T MIREVE 250, RIS PH OISR e & R, s [X 45k
ABRGIINETI R

EX AT 52T R, T ET AR R OEF KX, HEETIH 5N EEX
BRI I 7™ ) PMILO 75 4 a) 8, AU B 1 R DA UbRHE 2~3 R B2 H E 4], %T PM10 4 A1k
BESASHEN L EGE, JFREANFANELEN. 52013 Fi2, FEREATFEHaE 7T2EsS
o 2 M DX 285, 1% DR 28 B /N R AT PMILO 5523 005 Gk BE O , 9 A 20 % TRHIT I H Bl AH S AR &R
AL AT AN R X 3 PM10 WS A0 AHRRAE, AT 728 05 YRt AR ASEADL TN A 77 2 IR 52 1) $ (ot 2 A 40

YT, M B A PR A RS R L IR HE R A, ) R TR T A AU S
5t R AR RV, 9 b [ B SRR W 0 (CNEMO) Sl i 42 [ 1400 43/ ol i i 8 55 339 M
TR, O CRRTGRBRAT SR R STHaFR At T OCHEAE SIS, BUERALE PM10 IR

DOI: 10.12677/aam.2026.151026 253 N He it


https://doi.org/10.12677/aam.2026.151026
http://creativecommons.org/licenses/by/4.0/

FEH

B o AR T R AR AR, AR AR 3 5 B 1) v FE M SR ) 1 L I 6] AR 4875 1]
FHE AU Cressman ffiff . Kriging iff 55 BAE R sU8E 2= AL AR S 02, AEE U0 B30 A e [X 458 5
HH IR Ik P ST PR 1), A AR v s Ly S A 1) B S 23 ) A AT R A

AL AR (DCIM)E L WL AE SEUE R, S BIR i SR AE T R0 7 £, BRI TR
B (R 2. (EHEPE2 45U, Zheng %5 AR ] DCIM 75 4k 5 2 ) VS 005 37, M LUA: e B4 A 732,
B 77 MR ZE(RMSE) SEPLR 3 FEAK[ 7] ERARHEAIE, Li 58 NiBid iz 204 E PM2.5 1 4l [F4x
B [ e T2 S ToK, e I AR RS ey o3 A B g vh 0038 7 (8] 25 (R AE i v 1t 5
R P — B2 AT AT, Cressman i 245 (1 5 Ry 8 R 35, (FLFE Az 5 Ol 00 s s ERSS 5 7
ARRRE, WA GBS 2 — D HI SR ERCR . AR, S SP e E (PPM) RERE CRIIEJ5)
BT IE, Bk SRR B, IS T R AR ) A Li 55 N(2017) 8 F PPM A 24k #h T Cressman
JBLTE R XA () BT (RS B e, SLREOEIE L > BT A SE A SERR I U, BRIV AR K A% 8]
M R UIREARFF I BRSNS S L AR VR R SR SR L T S, X PMILO 3¢ 2 ) L
W B EESEMAE]. Rk, AT S LS M WA S s s E iR E (PPM) AL S, 7t
] R PMI10 % 2 [B) EE R ARG

ARG BENE AT 56 2 TEAEIR T MRS 75k 5 3 W RILSERRSRIG S AR 5 4
ARG THE IR AL .

2. N5/
2.1. ARXBSHE

ITAER,  Fp [E R A it B 0 R 2% B R R S0, AU 2022 4F, CEERGHEIE 1400 N
sk, B 339 AN, TR T BT IZ IS4 . A 70 R A rp B PR R, XN D4
LU R ERGE, FEE WA R b 4R SR AL . A TR IGZ X 85 AN Hb T M G, I8 I 2% € LR
FREL 2015 5 F FIRTT A PMI10 WLMEHE, BREHE R 2015 3 H2 HO S ZE 3 H S H 0 A1 72 /N
o B NEHR RO AR B P EE, T4 2 A Wk i3k s, BUTA ] A e P 3 E
85 AN Wk 1) 2% (B Ay A an B 1 B

40°N

35°N

30°N

latitude(°N)

25°N

- South China Sea

20°N : -
105°E 110°E 115°E 120°E 125°E
longitude(°E)

Figure 1. Spatial distribution of 85 basic monitoring stations in the
central and southern regions
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Table 1. MAE and RMSE of observed versus simulated values at assimilation and verification points (unit: pg/m?®)
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Figure 2. Changes in the cost function across iterations for the four experimental groups in the PE11 quadruple cross experiment
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Figure 3. Daily average PM10 concentrations at 85 monitoring stations in central and southern China (00:00 on March 2, 2015
to 00:00 on March 5, 2015). The intensity of each point’s color indicates its daily average PM10 concentration level
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Figure 5. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of data assimilated using corresponding methods
in the four-fold cross-validation experiment (blue dashed line: dynamic constrained interpolation based on Cressman interpo-
lation; red solid line: dynamic constrained interpolation based on PPM interpolation)
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Figure 6. PM10 concentration distribution obtained from experiments PE21 and PE22 ((a): PE21; (b): PE22)
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