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Abstract

In this paper, the problem of efficient numerical algorithms on high-dimensional time fractional
order diffusion equations is investigated. Two numerical schemes are proposed, one is the improved
L2 numerical scheme, which efficiently solves the problem of decreasing convergence accuracy at
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the initial moment of the ordinary L2 scheme, and discretizes it in the spatial direction by applying
the compact difference operator, so that the convergence accuracy of this scheme reaches the order
in time and the order in space. The other is to improve the L2 scheme by applying the sum of expo-
nentials method to approximate the power function in the fractional order derivatives in time,
which greatly reduces the computational cost and maintains the same high convergence accuracy.
For problems with initial value singularities, we use the graded meshes method to solve them. Fi-
nally, the effectiveness and accuracy of both algorithms are demonstrated through several numeri-
cal results and the computational efficiency of the proposed fastening algorithm is shown.
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Table 1. Comparison of time convergence order calculations between the improved L2 scheme and the fastened L2 scheme
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1/64 2.3328e—6 - 3.02s 1.6940e—6 - 2.30s
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Figure 1. Comparison of CPU computation time for two numerical schemes
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Figure 2. Effect of different error ¢ on CPU computation time
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Table 2. Comparison of spatial convergence order calculations between the improved L2 scheme and the fastened L2 scheme

= 2. B L2 AR ANRIEN L2 18 A = B i B AR xSt

b deor ceustin OREY weer ceunti

1/16 9.6583e—5 - 1.66 s 9.6248e—5 - 1.39 s

1/32 6.0114e—6 4.0060 12.09 s 5.9865¢—6 4.0070 417 s

“m03 1/64 3.7539¢—7 4.0012 92.19 s 3.7360e—7 4.0022 12.79 s

1/128 2.3459e—8 4.0001 746.59 s 2.3281e—8 4.0043 38.78 s

1/16 9.5924e-5 - 293 s 9.5589¢—5 - 1.95s

1/32 5.9687e—6 4.0064 2595 s 5.9456e—6 4.0069 6.57 s

@m0 1/64 3.7267¢—7 4.0014 241.20 s 3.7107¢-7 4.0021 21.99 s

1/128 2.3286e—8 4.0003 235345 s 2.3111e-8 4.0050 73.50 s

1/16 9.5043e—-5 - 7.49 s 9.4819¢—6 - 3.36s

1/32 5.9137e—6 4.0064 79.00 s 5.8989¢—6 4.0067 11.39s

@07 1/64 3.6923e—7 4.0015 799.00 s 3.6821e—7 4.0019 41.52s
1/128 2.3071e—8 4.0003 9322.15 s 2.2944e—8 4.0043 149.30 s

b, RATATEOMEEE], PIASEH R 2 IS A BT A 4, X SRRATMRZE A TR A
B0 FABE T IRATFFHR B S0 A e R
B 2 ROTRE() IR ARSI AR ARAE RIS 2 T 28 e, 2w (x,0) = ¢ sin(x) , "
FHe=1, BARNTTUEEIR) R £ (x.0) Flu, (x) N

f(x.t)= (1"(1+a)+t“ )sin(x), uy(x)=0.
FATERE SR X Q =[0,2n] , M =2', N =2°:2° LMK ZELH] (¥ 1S TSSO, Xof T [ DROs A A% =X,

FATEI SOE ELRZEN 6 =107 o T4 3 HIER TERFR D EH FH a =0.3,0.5,0.7 FIIN RIS
Rate(7), VA BGER L2 M A PLE L L2 4% 300 CPU THEEI A% H

Table 3. Comparison of time convergence order computational results for solving problems with initial value singularities in
the improved L2 scheme and the fastened L2 scheme

3. BOERY L2 s ARIEN L2 BIURERBHME ST =11 07 80 E W T B LR RIS EE

. s N Hedifk L2 .
r EkL2EE KW CPURHH y&i«% Yo CPU I
1/64 3.0470e—2 - 3.06s 3.0469¢—2 - 2225
1/128 2.5865¢—2 0.2363 10.19 s 2.5865¢—2 0.2364 4.65s
a=03
1/256 2.1805¢—2 0.2463 3938 s 2.1806e—2 0.2463 10.01 s
1/512 1.8273e—2 0.2549 156.43 s 1.8273¢—2 0.2550 20.70 s
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1/64 1.7363e—2 - 549s 1.7363e—2 - 2.95s
1/128 1.2712e-2 0.4498 13.38 s 1.2712e-2 0.4498 6.09 s
“=0 1/256 9.2184e-3 0.4637 5245 9.2185e-3 0.4636 10.83 s
1/512 6.6377¢-3 0.4783 199.93 s 6.6377¢-3 0.4784 25.37s
1/64 6.7364e—3 - 3.76 s 6.7368e—3 - 2.13s
1/128 4.2359¢-3 0.6932 11.84 s 4.2361e-3 0.6932 4.51s
@0 1/256 2.6422¢-3 0.6809 40.47 s 2.6423e-3 0.6809 9.09 s
1/512 1.6398e—3 0.6881 144.24 s 1.6399¢—3 0.6882 18.62 s

e 3 JATRT A W, T BAYHET YRR, It 5 b e RO S IR R AR,
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. t%ﬁm%#%ﬁﬁl‘mﬁﬂﬁi%ﬁiiﬁtn=(%) b AR SR, S S H = (3-a)/a
B, DO R B3 — W 76501 STH RN T L2 5 AUBRRE IS s X B R SR 4007, S

S, TR IRAE T 3RATHR R S0 L2 ks AR L2 #63,  wT RATRIAE T DA IR 2 A% 25 il ok A )
HAT SR 32 4 500E T FRATIMEE R .

Table 4. Comparison of time-convergence order computational results for solving problems with initial value singularities on
gradient grids in improved L2 scheme and fastened L2 scheme

T 4. PUHERY L2 ABFOBRIE L2 A& 2006 B A& K AR R B H(E 5 = 1% iB) 2 RO B[R] YST S F HH BAE RS L

e EgkL2m%  KSh  CPUHW 'r’%ﬁ‘fﬁ L2 e cpumim
1/64 9.8170e—-3 - 2.84 s 9.7474e-3 - 6.40 s
1/128 1.5465¢—3 2.6662 9.59s 1.5356e—3 2.6661 14.61 s
@m0 1/256 2.3886e—4 2.6947 36.15 s 2.3718e—4 2.6947 32.34s
1/512 3.6780e—5 2.6991 139.90 s 3.6521e-5 2.6991 71.56 s
1/64 5.4803e—6 - 2.76 s 5.3762e—6 - 431s
1/128 9.9887e—7 2.4558 9.51s 9.8010e—7 2.4555 941s
@m0 1/256 1.7754e—8 2.4921 35.74 s 1.7421e—8 2.4920 20.74 s
1/512 3.1416e—8 2.4986 13942 s 3.0826e—9 2.4985 46.98 s
1/64 2.7165¢—4 - 3.74 s 1.0122¢—4 - 3.46s
1/128 5.5344e—5 2.2952 12.15 s 2.1427¢-5 2.2400 7.57 s
@m0 1/256 1.1245e-5 2.2990 41.83 s 4.4315e—6 2.2735 1645 s
1/512 2.2839¢e—6 2.2998 157.09 s 9.0661e—7 2.2892 3544 s

DOI: 10.12677/aam.2026.151015 154 N H it e


https://doi.org/10.12677/aam.2026.151015

Jrdam 55

L 4, WAVRIURIECH UK CPU I [0 2B o BN A BB, JF Ha Bl
FEDARBUNI,  PEEE A L2 R QS B S8 o T RO BRATTR R, B2 0 4% 2 AL BB 3 S 4 il LI
FATH SO MRTHEAE T N, IR RGN K 7, POEM, BRI IOE SCRT R, 2 o
NI, BEFESHC R, SEERIIRI 210 ¢, 80h, R RANP K o BN, TITA N, B, T
3 RETEMTRIB IA LT -

—%—N, ——N,
—O— cputime 120% —O— cputime | |
100
80
60 -
40
20 .
I I I I 0 I | | 1
-10 -9 -8 -7 -6 -5 -10 -9 -8 -7 -6 -5
log(e) log(e)
(@) a=03 (b)a=05
90
—*—N,
80 —O— cputime b
70 -
60 -
50 [ 3
40 [ 7
30 il
20 1
0 I I I I
-10 9 -8 -7 6 5
log(e)
(c)a=0.7

Figure 3. N, for different o under the graded meshes with &
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Table 5. Comparison of time convergence order calculations for two numerical schemes with \alpha = 0.3, 0.5, 0.7

%% 5. #E\alpha=0.3, 0.5, 0.7 B AT EEE AU BT B S T B &5 RELEL

o EL2®E RS CPURN 'r’%gﬁé L2 o cpumm
1/32 2.5050e—-5 - 0.64 s 1.4449e-5 - 0.75 s
1/64 3.6683e—6 2.7716 2.31s 1.8040e—6 3.0016 2.06s
@m0 1/128 5.6779¢—7 2.6917 16.52 s 2.4388e—7 2.8870 798 s
1/256 8.6113e—8 2.7210 96.86 s 3.3896e—8 2.8469 49.85s
1/32 9.9805e—-5 - 0.48 s 7.4814e-5 - 0.76 s
1/64 1.7699¢e-5 2.4953 224 s 1.2771e-5 2.5504 2.03s
@m0 1/128 3.1530e—6 2.4889 12.68 s 2.2153e—6 2.5273 7.54 s
1/256 5.6136e—7 2.4897 90.67 s 3.8648e—7 2.5190 49.04 s
1/32 3.6625¢—3 - 0.83s 3.2640e—4 - 0.75 s
1/64 7.5372e-5 2.2807 3.02s 6.6443e-5 2.2964 1.97 s
@ 1/128 1.5432e—6 2.2880 1542s 1.3506e—5 2.2984 7.57 s
1/256 3.1491e—7 2.2929 99.57 s 2.7426e—6 2.3000 48.87 s

[FFE, FATEEM =27 25, N= [M]“/‘“‘) SR 7S (] 7 1) B S, T T s g 2, ATk
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Table 6. Comparison of spatial convergence order calculations for two numerical schemes with \alpha = 0.3, 0.5, 0.7

5% 6. 7E\alpha=0.3,0.5,0.7 B A EE AR N B = BIUE RN I B A R EL AR

. NN N Pl 12 N
! EGRL2iR% KW CPURM f*;‘% WS CPU K
1/8 9.8786¢e—4 - 0.27 s 9.6122¢—4 - 0.46 s
1/16 6.1015e—5 4.0170 1.64 s 5.8916e—5 4.0281 1.37s
a=0.3
1/32 3.8088e—6 4.0017 12.37 s 3.6572e—6 4.0098 4.40s
1/64 2.3832e—7 3.9983 100.29 s 2.2716e-7 4.0089 16.03 s
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ik
1/8 9.4555e—4 - 0.33s 9.1152¢—4 - 0.58s
1/16 5.8728e—5 4.0090 292s 5.6148e—5 4.0209 2.00s
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1/64 2.2777e=T 3.9990 895.46 s 2.1838e—7 4.0045 54.19s
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