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Abstract

Multi-label data usually has high-dimensional feature Spaces and complex label structures. This
high dimensionality and complexity can easily cause varying degrees of incompleteness in the data,
thereby affecting the performance of multi-label learning. To address this issue, this paper proposes
an incomplete multi-label feature selection method based on fuzzy combination entropy. Firstly, in
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the incomplete multi-label fuzzy information system, the fuzzy relationship is constructed by incor-
porating the feature-value missing rate together with a regulating parameter. Based on the defined
fuzzy relationship, fuzzy information granule, fuzzy label granule, and multi-label fuzzy lower and
upper approximation are defined to establish the incomplete multi-label fuzzy rough set. Then, the
information-theoretic concept of combination entropy is introduced on the incomplete multi-label
fuzzy rough set. On this basis, information metrics such as fuzzy combination entropy, fuzzy joint
combination entropy, and fuzzy conditional combination entropy are defined, and their properties
and relationships are studied. Finally, the intra- and extra-feature significances are analyzed based
on fuzzy combination entropy, and a feature selection algorithm suitable for incomplete multi-label
data is presented. The experimental results show that the algorithm proposed in this paper achieves
better classification performance on five multi-label datasets compared with the comparison meth-
ods: The Average Precision (AP) is increased by an average of 3.48%, and the Hamming Loss (HL),
Ranking Loss (RL), Coverage (CV), and One-Error (OE) are reduced by an average of 3.02%, 4.33%,
2.83% and 4.64% respectively. The experimental results verify the effectiveness of the algorithm
proposed in this paper.
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Table 1. Information of multi-label datasets
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G/ FEAL FRIEL PREEH RUECY WEGREAS  MEAEARS
Flags 194 19 7 Images 129 65
Emotions 593 72 6 Music 391 202
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Cal500 502 68 174 Music 251 251
Water quality 1060 16 14 Chemistry 530 530
Virus 207 440 6 Biology 124 83
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Figure 1. The AP index results of multi-label datasets under different values
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Figure 2. The HL index results of multi-label datasets under different values
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Figure 3. The RL index results of multi-label datasets under different values
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RICIE BB AT R AR L BRI SRR R § E N A NS HORE . B L, X
IMFSFCE ik & MRHE A IE U RA R ECE B« Ty, ~ T B 5 p BATX ESEL: . S
LRI 2 R SRS IR, IR E U AT R .

Table 2. Experimental results of different methods on five evaluation metrics for each datasets

2. AEIAFESRERE LNRMTNIERIRER

G/ S ik AP (1) HL () RL () CVv(}) OE (|)
IMFSFCE 0.7596 0.4110 0.2987 4.3231 0.1846

14 F A= BB ARFAT 0.7536 0.4286 0.3179 43846 0.2154

Flags B 0.7536 0.4286 0.3179 4.3846 0.2154
T u, 0.7473 0.4198 0.3185 4.3846 0.2154

T p~ u, 0.7536 0.4286 0.3179 43846 0.2154

IMFSFCE 0.6172 0.4356 0.4110 2.9851 0.5198

18 F 4= FARFALE 0.6047 0.4530 0.4311 3.0149 0.5248

Emotions B 0.6002 0.4513 0.4303 3.0743 0.5297
T u, 0.6123 0.4480 0.4244 3.1436 0.5149

Lpf u, 0.6040 0.4513 0.4323 3.0248 0.5248

IMFSFCE 0.4421 0.1614 0.2208 132.5339 0.1155

{4 F A BB AFAT 0.4421 0.1614 0.2208 132.5339 0.1155

Cal500 B 0.4388 0.1654 0.2217 132.4303 0.1155
T u, 0.4421 0.1614 0.2208 132.5339 0.1155

L~ u, 0.4421 0.1614 0.2208 132.5339 0.1155

IMFSFCE 0.5641 0.4673 0.4000 10.3736 0.4133

187 F 4= FRRAIE 0.5632 0.4704 0.4020 10.3830 0.4152

Water quality B 0.5632 0.4704 0.4020 10.3868 0.4152
T u, 0.5612 0.4714 0.4052 10.4245 0.4152

EL u, 0.5632 0.4704 0.4020 10.3830 0.4152

IMFSFCE 0.4633 0.2932 0.4283 2.2892 0.7831

18 F &= 3R AiE 0.4071 0.3133 0.4802 2.5422 0.8434

Virus B 0.4071 0.3133 0.4802 2.5422 0.8434
T u, 0.4048 0.3173 0.4775 2.5422 0.8554

TP u, 0.4071 0.3133 0.4802 2.5422 0.8434
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Table 3. Feature reduction ratios of each dataset

® 3. BREEHHEA B R

Hihdk JEURRHIEH PRI E DR
Flags 19 4 78.95%
Emotions 72 22 69.44%
Cal500 68 32 52.94%
Water quality 16 11 31.25%
Virus 440 3 99.32%

72 3 A%, IMFSFCE SyATE S 40P 48 LI RE A RS 4E 12, 2T 2N T 31.25%~99.32% 2 [H]
2% |, IMFSFCE 5012 Re W 1A R0 i 0 45 15 1 [R) IR 55 R AT 020 2R PERE, SO0 45 SRIGAIE T AU EVER
BHRME, EHTATEEZHRERIEERES .
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