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摘  要 

本文研究在齐次Neumann边界条件下的具有奇异敏感性的趋化系统： t xx x
x

uu u v
vα

χ  = −  
 

， 

t xxv v uvβ= − ，其中 0χ > 。在一维情形下，当
1
2

β > 及
10,min 1,

2
β

α
 + ∈     

时，系统存在整体有界的

古典解。 
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Abstract 
This paper deals with a chemotaxis system with singular sensitivity under homogeneous Neumann 

boundary condition: t xx x
x

uu u v
vα

χ  = −  
 

, t xxv v uvβ= −  with 0χ > . Under one-dimensional setting, 

if 1
2

β >  and 
10,min 1,

2
β

α
 + ∈     

, the system admits globally bounded classical solutions. 
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1. 引言 

20 世纪 70 年代，由 Keller 和 Segel 提出的生物趋化模型凭借对生物“信号导向运动”机制的深刻刻

画，现已成为生物数学领域的核心研究焦点之一。该模型既揭示了生命活动(如胚胎发育和伤口愈合等)的
生物学价值，也在医学、生态和工程领域有着重要应用。 

对于齐次 Neumann 边界条件下的具有奇异敏感的趋化–消耗系统： 

 

( ) ( ) ( ) ( )0 0

, , 0,

, , 0,

0, , 0,

,0 , ,0 , ,

t

t

uu u v x t
v

v v uv x t

u v x t
v v

u x u x v x v x x

  = ∆ −∇ ⋅ ∇ ∈Ω >   
 = ∆ − ∈Ω >
∂ ∂ = = ∈∂Ω >
∂ ∂

 = = ∈Ω

  (1.1) 

其中 0χ > ， ( ),u u x t= 表示细胞密度， ( ),v v x t= 表示化学信号浓度， ( )1n nΩ∈ ≥ 为有界光滑区域，
v
∂
∂

 

表示光滑边界 ∂Ω上的单位法向量。Winkler 在文献[1]中得到了二维情况下，(1.1)存在整体广义解，当初

始细胞质量充分小时，该广义解会变得光滑且经典；接着，在文献[2]中得到了二维情况下，小质量解的 

最终正则性与平衡态收敛，当 t →∞时， ( ) ( )0
1, , , 0u x t u v x t

Ω
→ →

Ω ∫ 并且
( )
( )

,
0

,
v x t

v x t
∇

→ ；进一步，在文献

[3]中证明了，在 2n ≥ 和径向对称的情况下，(1.1)对空间和初始数据大小没有了限制，始终存在全局广义解。 
当考虑系统(1.1)非线性机制的趋化–消耗情形： 

 
( )( ) ( ) ,

,

t

t

S u
u D u u v

v
v v uv

χ
  

= ∇ ⋅ ∇ − ∇ ⋅ ⋅∇  
 

 = ∆ −

  (1.2) 

在一维情况下，Zhao 在文献[4]中证明若扩散率满足 ( ) ( ) 1
0 1 mD u D u −≥ + ，( )0 , 0D m > 及密度信号控制

的敏感度 ( ) ( )10 1S u D u M< < + ，( )1, 0D M > ，当 0 1m< ≤ ，
2 5
3 6

mM < + ，或者 1m > ， 1
2
mM < + 时，系

统具有全局有界的经典解。若系统(1.2)的第一个式子变成 ( )( ) ( )( ), ,tu D u u uS x u v v= ∇ ⋅ ∇ −∇ ⋅ ⋅∇ ，Winkler

在文献[5]中证明了在 n 维有界光滑区域中，若 ( ) 1m
DD u k u −≥ ( )0Dk > 和 ( ) ( )0, ,

S v
S x u v

vα
≤ ，当

3 2
2
nm

n
−

>

及 [ )0,1α ∈ 时，该系统存在全局有界的经典解。 

受以上结论启发，本文研究一维情形如下具有奇异敏感的趋化–消耗系统： 
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( ) ( ) ( ) ( )0 0

, , 0,

, , 0,

0, , 0,

,0 , ,0 , ,

t xx x
x

t xx

x x

uu u v x t
v

v v uv x t

u v x t

u x u x v x v x x

α

β

χ  = − ∈Ω >   
 = − ∈Ω >
 = = ∈∂Ω >
 = = ∈Ω

  (1.3) 

其中 , , 0χ α β > 。敏感函数
vα
χ

刻画了细胞受化学信号刺激产生的奇异趋化强度，消耗项 uvβ− 描述了化学

信号接触细胞所产生的消耗效应。Ω∈为有界区间，初始条件满足： 

( )0
0 0u C∈ Ω ≥ 且 ( )1,

0 0v W ∞∈ Ω > 。 

定理 1.1 若 1
2

β > 及
10,min 1,

2
βα  +  ∈     

，系统(1.3)存在整体有界的古典解。 

2. 预备知识 

根据 Banach 不动点理论，可以得到以下解的局部存在性，具体证明参见文献[6]。 
引理 2.1 假设 ( )0

0u C∈ Ω 和 ( )1,
0v W ∞∈ Ω 非负。若 , , 0χ α β > ，则存在 ( ]max 0,T ∈ ∞ 及唯一非负函数

( ) [ )( ) ( )( )( )20 2,1
max max, 0, 0,u v C T C T∈ Ω× Ω× 在古典解意义下满足系统(1.3)。另外，当 maxT < ∞时， 

( )max
lim Lt T

u ∞ Ω→
= ∞。 

令 ( ),u v 是模型(1.3)的局部古典解，我们有关于 ,u v 的先验估计。 
引理 2.2 设 0χ > ，则 

 ( ) ( )0 0 max, d d : , 0,u t x u x m t T
Ω Ω

⋅ = = ∈∫ ∫ ，  (2.1) 

 ( ) ( ) ( ) ( )0 max, , , 0,Lv x t v x t T∞ Ω
≤ ∈Ω× 。  (2.2) 

3. 对于
 
  

1 ,1
2

β ∈ 的情况 

本节将给出当
1 ,1
2

β  ∈  
及

10,
2

βα + ∈  
时古典解整体有界性的证明。 

引理 3.1 设
1 ,1
2

β  ∈  
及

10,
2

βα + ∈  
，对于 1p > 及 2q > ，令 

1d dqp q
xF u x v v x− +

Ω Ω
= +∫ ∫ ， 

则存在 ( ) ( )0 1, ,4ic q i> =  和 ( ), , 0p q χΓ = Γ > ，有 

 

( ) ( ) ( ) ( )

( )

2 2 2 1 2 2 2 2
2 2 2

2

3 max
2

2 1
d d d

3 d d , 0, .

p q q qp q q q
q q

x

q

p

p
F F u x u v x u v x

p

c v x u x t T
c

α β β+ + − + + − + +

Ω Ω Ω

Ω Ω

 −
′ + + ≤ Γ + Γ 

 

 
  + + + ∈    

 

∫ ∫ ∫

∫ ∫

  (3.1) 

证明 首先，根据(1.3)的第一个方程，通过分部积分以及 Young 不等式，令 1p > ，有 
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( ) ( )

( ) ( ) ( )

2 2 1

2 2
2 22

max

d d 1 d 1 d
d

2 1 1
d d , 0, ,

2

p p p
x x x

p
p

x
x

u x p p u u x p p u v u v x
t

p p p
u x u v v x t T

p

α

α

χ

χ

− − −

Ω Ω Ω

−

Ω Ω

= − − + −

 − −
≤ − + ∈ 

 

∫ ∫ ∫

∫ ∫
  (3.2) 

接着，由文献[5]中引理 3.3、3.4、3.5 知，当 2q > ，存在 ( ) ( )0 1, ,4ic q i> =  ，有 

 
( )

21 1 2 1 2
1 2

1 2
3 4 max

d d d d
d

d d , 0, .

qq q q q q
x x xx x

q q
x xx

v v x c v v v x c v v x
t
c v x c uv v v x t Tβ

− + − + − − − +

Ω Ω Ω

− + + −

Ω Ω

+ +

≤ + ∈

∫ ∫ ∫

∫ ∫
 (3.3) 

再根据 Young 不等式，有 

 

( ) ( ) ( ) ( ) ( )
22

2 2 2 2 22 2
2 2

2

212

1 13d d
2 2

d ,
3

q
p q q qqq

p q q
x

qq
x

p p p p
u v v x u v x

c

c v v x

α
αχ χ

+
+ + − +

−

Ω Ω

+− −

Ω

 − − 
≤        

+

∫ ∫

∫

  (3.4) 

和 

 

21 2 1 2 1 22
4 1

22
2 22 44

4 2 2

2 1

d d d
3

3 d ,
4

q q q q q q
x xx x xx x

qq
q q q

cc uv v v x c v v v x v v x

c u v x
c c

β

β β

− + + − − + − − − +

Ω Ω Ω

+−
+ − + +

Ω

≤ +

  
+   
   

∫ ∫ ∫

∫
  (3.5) 

以及 

 ( )
221 12

2

3d d d
3

q

qqq q
x x

cv v x v v x v x
c

+− + − −

Ω Ω Ω

 
≤ +  

 
∫ ∫ ∫ 。  (3.6) 

接下来，令 
1d dqp q

xF u x v v x− +

Ω Ω
= +∫ ∫ ， 

取
( )

2 22 2
2 2 44

4

2 2 1

13 3max ,
2 4

q qq
qq p p c

c c c
χ

+ +− 
 −      Γ =                

 

，结合(3.2)~(3.6)可得(3.1)。 

引理 3.2 设
1 ,1
2

β  ∈  
及

10,
2

βα + ∈  
，对于 1p > 及 2q > ，则存在与 ,p q 有关的常数 5 0c > ，有 

 1
5d dqp q

xu x v v x c− +

Ω Ω
+ <∫ ∫ ， ( )max0,t T∈ 。  (3.7) 

证明 当
1 ,1
2

β  ∈  
和

10,
2

βα + ∈  
时，我们取

2 1 2max 2, , max 2 ,
1 1

p q pα β
α β

 −  < < +   − −   
，则有 

( ) ( )2 1 2 2
0

q q
q

α+ − +
≥ ，

2 0
2

q qβ β− + +
≥ ，

2 4 2 2pq q q
pq q
+ −

<
+

， 2
1

q
p

<
+

成立。 

根据(2.1)，(2.2)，Gagliardo-Nirenberg 不等式和 Young 不等式，首先对(3.1)不等式右侧第一项计算，

有  
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( ) ( ) ( )

( )

( ) ( )

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )( )

( )

( )

( )

( ) ( )

( )

2 2

2 2
2

2

2 2
2 2 1 2 2 2 1 2 2

2
0

2 2 2 2 1 2 2
2 1 2 2

2 2 2
0

2 4 2
2 1 2 2 2 2

2
0 0

d q
q

p p

q
p q q q q q p q

q q q
L

L

q a q a q
q q p p pq q q

q
GN GNL

x L LL

pq p q
q q pq p p pq q

q pq q
GN GNL

x L

u v x v u

v C u u C u

v C m u C

α α

α

α

∞ +

∞

∞

+
+ + − + + − +

ΩΩ
Ω

+ + − +
+ − +

Ω
Ω ΩΩ

+ −
+ − + + +

+
Ω

Ω

Γ ≤ Γ

 
  

≤ Γ +  
  

 

 
≤ Γ + 

 

∫

( )

( )

( )
2

2

0

2

2
6 max

2 1
, 0, ,

3

pq p
q

p

x L

m

p
u c t T

p

+

Ω

 −
≤ + ∈ 

 

  (3.8) 

其中 ( )2 0,1
1

qp
qa

p

−
+= ∈

+
， ( ), , , 0GN GNC C n q σ= Ω > ， 

( )

( ) ( ) ( )
( )

( ) ( )
2

2 1 2 2 2 1 2 22 2 2 2 22 2

6 0 0 0 0
2 1

3

pq qpq p q
q q q qpq p pq p q pq p

q q q pq q
GN GNL L

p
c v C m v C m

p

α α

∞ ∞

++ −
+ − + + − ++ + −−

+
Ω Ω

 − 
 = Γ + Γ      

。 

接下来对(3.1)不等式右侧第二项计算，有 

 

( )
( )

( )
( )

( )

( )

( )( )

( )

( )

( )

( )

2

2 2
2

2

2

2

2
2 2 2

2 2 2 2
0

2 2 1 2
2

2 2 2 2
0

2 2 21
2 2 2 2

0 0

2

2
7

d

2 1
,

3

q
p

p p

q
q q q q q p p

L
L

q b q b q
q q p p pp q p

GN GNL
x L LL

q
p pq p p qp

pq q
GN GN

x L

p

x L

u v x v u

v C u u C u

C m u C m

p
u c t

p

β β β β

β β

∞ +

∞

+
+ − + + − + +

ΩΩ
Ω

+ + − +
− + +

Ω
Ω ΩΩ

+ + ++
+

Ω

Ω

Γ ≤ Γ

 
  

≤ Γ +  
  

 

 
≤ + 

 

 −
≤ + ∈ 

 

∫

( )max0, ,T

  (3.9) 

其中 ( )

2
2 0,1

1

pp
qb

p

−
+= ∈

+
， ( ), , , 0GN GNC C n q σ= Ω > ， 

( ) ( ) ( )

2
2 2

2 22 22 2 22 2
2 22 2 2

7 0 0 0 0
3

2 1

pq
p qp pq pq q q q qp q

pq q
GN GNL L

pc v C m v C m
p

β β β β

∞ ∞

+
+ −+ +− + + + − + ++ −

+
Ω Ω

    = Γ + Γ  −     
。 

再对(3.1)不等式右侧最后一项计算，有 

 
( ) ( )

( )

( )

( )

( )
2

2 2 2

2 1 4 22 1 1
2 2 2 2 2

8
2 1

d ,
3p

p
p p p p pp p

p
GN GN

L x L xL L

p
u x u C u u C u u c

p

−
+ +

Ω
Ω ΩΩ Ω

   −
= ≤ + ≤ +   

   
∫  (3.10) 
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其中 ( ), , , 0GN GNC C n q σ= Ω > ，
( )

1
2

8 0 0
3

2 1

p

p p
GN GN

pc C m C m
p

−

 
= +   − 

。 

接下来，结合(2.2)、(3.1)、(3.8)、(3.9)和(3.10)，存在与 t 无关的常数 9 0c > ，有 

9F F c′+ ≤ ， ( )max0,t T∈ ， 

通过常数变易法，有 

( ){ }1
5 9 0 0 0max , d d

qp q
x

F c c u x v v x− +

Ω Ω
≤ = +∫ ∫ ， ( )max0,t T∈ ， 

得证。 

引理 3.3 设
1 ,1
2

β  ∈  
，

10,
2

βα + ∈  
，则存在与 t 无关的常数 1 0L > ，有 

 ( ) 1Lu L∞ Ω
≤ ， ( )max0,t T∈ 。  (3.11) 

证明 根据(1.3)的第一个方程，通过热半群理论有 

 
( )

( )

( )

( )

( ) ( ) ( )

( )
( )

2 2

2 2

2

0 0

3
40 10 max0

e e d

1 e d , 0, ,

t t stx x
xL

x
L L

t t s
xL

L

uu u v s
v

uu c t s v s t T
v

α

λ
α

χ∞

∞ ∞

∞

∂ ∂
−

∂ ∂
Ω

Ω Ω

− − −
Ω

Ω

 ≤ +  
 

 ≤ + + − ∈  

∫

∫

  (3.12) 

其中 10 0c > 为与 t 无关的常数。 
接下来，对不等式右侧最后一项计算，有 

 
( )

( )
( )

( )

2

1 1 14 8 18 1 82 1 1 10d d 2x xL
L

u v u x v v v x
v

αα α α
α ∞

 + − + + − +− −  −
ΩΩ Ω

Ω

≤ + + Ω∫ ∫ ， ( )max0,t T∈ ，  (3.13) 

将(3.13)代入到(3.12)中，并结合(2.1)、(3.7)可得(3.11)。 

再根据引理 2.1 知 maxT = ∞，定理 1.1 中
1 ,1
2

β  ∈  
的情况得证。 

4. 对于 1β > 的情况 

本节将给出当 ( )1, 0,1β α> ∈ 时的完整证明，首先进行如下变换： 

 ( ) ( )
( ) ( )0

,
, : ln

L

v x t
w x t

v x ∞ Ω

= − ，  (4.1) 

系统(1.3)将被转换为 

 

( )( )
( )( )

( ) ( ) ( ) ( )
( )

1

0

1
2

0

0
0

0

e , , 0,

e , , 0,

0, , 0,

,0 , ,0 ln , .

w
t xx x L

x

w
t xx x L

x x

L

u u uw v x t

w w w u v x t

u w x t
v x

u x u x w x x
v

α

β

χ ∞

∞

∞

−
−

Ω

−
−

Ω

Ω

  = + ∈Ω >   


= − + ∈Ω >


= = ∈∂Ω >

 = = − ∈Ω


  (4.2) 
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引理 4.1 设 1β > ， ( )0,1α ∈ ，则存在与 t 无关的常数 11 0c > ，使得 

 2
11dxw x c

Ω
≤∫ ， ( )max0,t T∈ 。  (4.3) 

证明 根据(4.2)，并结合 w 的齐次 Neumann 边界条件，知 

 
( )( )

( )( ) ( )

1

0

2 1

0 max

d ln d ln e d
d

d e d , 0, ,

w
xx x L

x

wx
xxL

u u x u u uw v x
t

u x u v w x t T
u

α

α

χ

χ

∞

∞

−
−

ΩΩ Ω

−
−

ΩΩ Ω

  = +    

≤ − + ∈

∫ ∫

∫ ∫
  (4.4) 

和 

 
( ) ( )( )

( )( ) ( )

1
2 2 3

0

1
2

0 max

d 4d 2 d d 2 e d
d 3

2 d 2 e d , 0, .

w
x xx x xxLx

w
xx xxL

w x w x w x u v w x
t

w x u v w x t T

β

β

∞

∞

−
−

ΩΩ Ω Ω Ω

−
−

ΩΩ Ω

= − − −

= − − ∈

∫ ∫ ∫ ∫

∫ ∫
  (4.5) 

根据 Poincaré 不等式，我们有 

 2 2
12d dx xxw x c w x

Ω Ω
≤∫ ∫ ，  (4.6) 

其中 12 0c > 。 
接着，令 

 ( ) 2ln d dxG t u u x w x
Ω Ω

= +∫ ∫ ，  (4.7) 

根据(4.4)~(4.7)，和 ( )2ln 0u u u u≤ > ，以及 Young 不等式和(2.2)，有 

 ( ) ( )
5 2
2

13
12

1 d dxuG t G t u x x c
c uΩ Ω

′ ≤ − + − +∫ ∫ ， ( )max0,t T∈ ，  (4.8) 

其中 ( )
( )

( )
( )

54 2
2 1 2 1

13 0 05
12

4 12
25 L Lc v v

c
α βχ

∞ ∞
− −

Ω Ω

 
= + + 

 
。 

通过 Gagliardo-Nirenberg 不等式，Young 不等式和(2.1)，有 

 
( ) ( ) ( )

5
2

2 22

3 7 355 1 1 12 22 4
2 2 2 2

14 0d dx
GN GN GN

x L LL

uu x C u u C u c x C m
uΩ Ω

Ω ΩΩ

   
≤ + ≤ +   

  
∫ ∫ ，  (4.9) 

其中 ( ), , , 0GN GNC C n q σ= Ω > ，

3
74
4

14 0
1
4 GNc C m =  

 
。 

又通过 Young 不等式和(4.9)、(4.10)，有 

 
( ) ( )

( ) ( )

5
2

3
2 24

14 0 13
12

15 max
12

1 d d

1 , 0, ,

x x
GN

u uG t G t c x C m x c
c u u

G t c t T
c

Ω Ω

 
′ ≤ − + + − + 

 

≤ − + ∈

∫ ∫
  (4.10) 

其中
53

4 7 2
15 0 0 134

3
4GN GNc C m C m c= + + 。 

最后，根据 Gronwall’s 不等式，有 
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( ) ( )2
16 0 0 0 12 15ln d d

x
G t c u u x w x c c

Ω Ω
≤ = + +∫ ∫ ， ( )max0,t T∈ ，得证。 

引理 4.2 设 1β > ， ( )0,1α ∈ ，则存在与 t 无关的常数 17 0c > ，使得 

 2 4
17d dxu x w x c

Ω Ω
+ ≤∫ ∫ ， ( )max0,t T∈ 。  (4.11) 

证明 根据(4.2)，已知在 ∂Ω上 0xw = ，通过 Young 不等式，有  

 ( )( )
( )

1
2 2

0

2 2 2 2
18 max

d d 2 d 2 e d
d

d d , 0, ,

w
x x xL

x x

u x u x u v u w x
t

u x c u w x t T

α
χ

χ

∞

−
−

ΩΩ Ω Ω

Ω Ω

= − −

≤ − + ∈

∫ ∫ ∫

∫ ∫
  (4.12) 

和 

 ( )( )
( )

1
4 3 2

0

2 2 2 2
19 max

d d 4 e d
d

6 d 6 d , 0, ,

w
x x xx x L

x

x xx x

w x w w w u v x
t

w w x c u w x t T

β

∞

−
−

ΩΩ Ω

Ω Ω

 = − +  

≤ − + ∈

∫ ∫

∫ ∫
  (4.13) 

其中 ( )
( )2 1

18 0 Lc v α
∞
−

Ω
= ， ( )

( )2 1
19 0 Lc v β

∞
−

Ω
= 。 

令 

 ( ) 2 4d dxH t u x w x
Ω Ω

= +∫ ∫ ，  (4.14) 

结合(4.12)~(4.14)，有 

 ( ) ( ) 2 2 2 2 2 2 4
20d d 6 d d dx x x xx xH t H t u x c u w x w w x u x w x

Ω Ω Ω Ω Ω
′ ≤ − − + − + +∫ ∫ ∫ ∫ ∫ ，  (4.15) 

其中 2
20 18 196c c cχ= + 。 

类似地，通过 Gagliardo-Nirenberg 不等式，Young 不等式和(2.1)，有 

 ( )
14

2 2 233
0 0d dGN x GNu x C m u x C m

Ω Ω
≤ +∫ ∫ ，  (4.16) 

 ( )
11 4

4 2 2 233 3
11 11d 4 dx GN x xx GNw x C c w w x C c

Ω Ω
≤ +∫ ∫ ，  (4.17) 

其中， ( ), , , 0GN GNC C n q σ= Ω > 。 
接着，令 1θ > ，通过 Hölder 不等式，Gagliardo-Nirenberg 不等式和(2.1)、(4.3)，有 

  
( )

( ) ( ) ( )

1
1 2

2 2 2 1

2 1 2 2 1 2 2 2
0 0 11 11

d d d

d 4 d ,

x x

baa b b
GN x GN GN x xx GN

u w x u x w x

C m u x C m C c w w x C c

θ
θ θ

θ θ θ

−

−
Ω Ω Ω

− −

Ω Ω

 
≤   

 
  ≤ + +     

∫ ∫ ∫

∫ ∫

  (4.18) 

其中
2 11 1
3 2

a
θ

 = − < 
 

，
2 1

3
b

θ
= < ，并且

2 1
2 3
ba + = < 。 

接着，结合(4.15)~(4.18)，有 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 14 1 4
2 2 2 2 2 2 23 33 3 3

0 0 11

2 12 2 2 1 2 2 2
11 20 0 0 11 11 max

d 6 d d 4 d

d 4 d , 0, .

x x xx GN x GN GN x xx

baa b b
GN GN x GN GN x xx GN

H t H t u x w w x C m u x C m C c w w x

C c c C m u x C m C c w w x C c t T

Ω Ω Ω Ω

− −

Ω Ω

′ ≤ − − − + + +

  + + + + ∈      

∫ ∫ ∫ ∫

∫ ∫
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通过 Young 不等式，存在与 t 无关的常数 21 0c > ， 

( ) ( ) 21H t H t c′ ≤ − + ， 

通过常数变易法，得到(4.11)。 
引理 4.3 设 1β > ， ( )0,1α ∈ ，则存在与 t 无关的常数 2 0L > ，有 

 ( ) 2x Lw L∞ Ω
≤ ， ( )max0,t T∈ 。  (4.19) 

证明 根据(4.2)的第二个方程，通过(4.11)，Hölder 不等式和热半群理论，有 

( )

( )

( )

( )

( )

( )( )
( )

( ) ( ) ( )
( )

( ) ( )
( )( )

( )
( )

2 2 2

2 2 2

1
2

1

2

1
2

0 00 0

3
240 22 0

3 1
422 0 max0

e e d e e

1 e d

1 e e d , 0, .

t t s t st t wx x x
x xL L

x x LL L

t t s
xL L

t t s w
L

L

w w w s u v

w c t s w s

c t s u v s t T

β

λ

β
λ

∞ ∞

∞∞ ∞

∞

∞

∂ ∂ ∂ −− −
−∂ ∂ ∂

Ω Ω

ΩΩ Ω

− − −
Ω Ω

−− − − −
Ω

Ω

     
     ≤ + +
     
     

 ′≤ + + −  
 + + − ∈  

∫ ∫

∫

∫

 

而且 

( )( )
( )

( ) ( )( )
( )

( )2 2
2

1 1

0 0 23e ew w
L LL L

L L

u v u v c u
β β

∞ ∞
∞

− −
− −

Ω ΩΩ Ω
Ω Ω

≤ ≤ ， ( )max0,t T∈ ， 

其中 22 23, 0c c > 为与 t 无关的常数，进而得到(4.19)。 
引理 4.4 设 1β > ， ( )0,1α ∈ ，则存在与 t 无关的常数 3 0L > ，有 

 ( ) 3Lu L∞ Ω
≤ ， ( )max0,t T∈ 。  (4.20) 

证明 根据(4.2)的第一个方程，通过(2.1)、(4.19)和热半群理论，有 

( )
( )

( )

( )( )
( )

( ) ( ) ( )
( )( )

( )
( )

2 2

2 2

1

1

1

0 00

11
0 24 0 max0

e e e d

1 e e d , 0, ,

t t st wx x
xL L

x
L L

t t s w
xL L

L

u u uw v s

u c t s uw v s t T

β

α
λ

χ

χ

∞ ∞

∞ ∞

∞ ∞

∂ ∂ −−
−∂ ∂

Ω Ω

Ω Ω

−− − − −
Ω Ω

Ω

 ≤ +  
 

 ≤ + + − ∈ 

∫

∫

 

其中 24 0c > 为与 t 无关的常数。并且 

( )( )
( )

( ) ( )( )
( )

( )1
1

1 1

0 0e ew w
x xLL L L

L L

uw v u v w
α α

∞ ∞ ∞
∞

− −
− −

ΩΩ Ω Ω
Ω Ω

≤ ， ( )max0,t T∈ ， 

进而得到(4.20)，根据引理 2.1，知 maxT = ∞，证毕。 

5. 讨论 
本文讨论了具奇异敏感的趋化–消耗模型，在一维情形中，根据消耗项中指标 β 相对于 1 的大小证

明了弱奇异敏感情形古典解的整体有界性。具体的，当
1 ,1
2

β  ∈  
及

10,
2

βα + ∈  
时，根据恰当泛函结构

建立了古典解的整体有界性，当 1β > 及 ( )0,1α ∈ 时，借助恰当的变换及转化后系统的能量估计可以得到

古典解的整体有界性。直观上，消耗作用会导致化学信号会趋于 0，从而消耗效应在指标 β 大时反而减

弱，这与结论中
1
2

β > 吻合。另外，当在化学信号小时，敏感函数在指标α 小时奇异性减弱，这有利于得
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到解的整体有界性，这与
10,min 1,

2
βα  +  ∈     

的条件吻合。由于高维情形很难构造衰减的泛函结构来得

到有效的估计，需精细分析模型结构发展新的分析工具，未来对于解的长时间行为，以及当
1
2

β ≤ 时解的

整体有界性还有待完善。 
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