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Abstract

Respiratory epidemic transmission is shaped by multiple factors, including population mobility,
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social contact patterns, and intervention measures. However, when observational data are limited,
conventional infectious-disease dynamical models often struggle to accurately capture the underly-
ing transmission mechanisms. To address this issue, this paper develops an integrated framework,
DNN-PINN-SIR, that combines physics-informed neural networks with infectious-disease dynamics.
By embedding the transmission mechanism into the neural network training process in the form of
differential-equation residuals, the proposed approach can reliably reconstruct transmission dy-
namics and accurately identify time-varying transmission parameters from sparse observations. In
an empirical analysis of a regional respiratory infectious-disease outbreak in Nanjing in 2021, the
proposed DNN-PINN-SIR model outperforms the constant-parameter SIR model in both fitting accu-
racy and dynamical interpretability, revealing the stage-wise evolution of key indicators such as the
transmission rate and the effective reproduction number. This work provides a new modeling ap-
proach for quantitative analysis of infectious disease transmission dynamics and for evaluating the
effectiveness of intervention measures.
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Figure 1. Architecture of the DNN-PINN-SIR network.
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Table 1. Hyperparameter values of the DNN-PINN-SIR network architecture
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Table 2. Parameter ranges and initial values for each compartment of the DNN-PINN-SIR model
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Figure 2. Observed data of respiratory infectious diseases in Nanjing from July 20 to August 12, 2021
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Figure 3. Evolution of the loss terms during training of the DNN-PINN-
SIR model as a function of the iteration steps (Total loss denotes the
overall loss; Loss U0, Loss U, and Loss F correspond to the losses of
the initial-condition constraint, the data-fitting term, and the physics-
informed constraint term, respectively)
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Figure 4. Comparison between the observed data and the piecewise least-squares fitting results for daily new and cumulative
confirmed cases. (a) daily new confirmed cases; (b) cumulative confirmed cases
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Figure 5. Comparison between the observed data and the DNN-PINN-SIR model fitting results for daily new and cumulative
confirmed cases. (a) daily new confirmed cases; (b) cumulative confirmed cases
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Figure 6. Time-varying transmission rate f(¢) identified by the
DNN-PINN-SIR model over time
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Figure 7. Temporal evolution of the effective reproduction number,
R, computed from the identified time-varying transmission rate

yij ( t) and the susceptible population size; the dashed line indicates the
critical threshold R, =1
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