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摘  要 

针对当前电动汽车充电站选址规划依赖历史起点–终点(OD)出行数据的局限性，本文提出一种基于充电

需求预测的出行流量生成新方法，并以此驱动充电站布局优化。研究首先构建了融合里程焦虑量化、初

始电量分布与马尔可夫链目的地选择的充电需求生成机制，通过蒙特卡洛模拟得到充电需求的时空分布；

然后将预测的充电需求作为出行流量生成的源头，通过引入广义出行成本(涵盖行驶时间、充电次数与路

径偏差)作为阻抗，改进双约束重力模型，生成出行流量的OD流量矩阵。在此基础上，建立以最大化捕

获流量为目标的充电站选址模型，并设计贪婪–遗传混合启发式算法进行求解。以淄博市张店区为例的

案例研究表明，该方法能够从充电行为机理直接生成出行流量，有效识别需求热点与关键节点，且选址

效益呈现显著边际递减规律，为充电基础设施的精准、分期规划提供了从需求预测到流量生成的一体化

决策框架。 
 
关键词 

充电需求预测，出行流量生成，里程焦虑，充电站选址，重力模型 
 

 

Optimization of Electric Vehicle Charging 
Station Location Based on Charging  
Demand Prediction and OD Flow  
Generation 
Guohai Huang*, Zehan Wang 
School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 
 
Received: December 21, 2025; accepted: January 16, 2026; published: January 23, 2026  

 

 

*通讯作者。 

https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2026.151037
https://doi.org/10.12677/aam.2026.151037
https://www.hanspub.org/


黄国海，王泽晗 
 

 

DOI: 10.12677/aam.2026.151037 380 应用数学进展 
 

 
 

Abstract 
To address the limitations of current Electric Vehicle (EV) charging station location planning that 
relies on historical Origin-Destination (OD) travel data, this paper proposes a novel travel flow gen-
eration method based on charging demand prediction and uses it to drive the optimization of charg-
ing station layout. First, a charging demand generation mechanism integrating range anxiety quan-
tification, initial battery state-of-charge distribution, and Markov chain-based destination selection 
is constructed, and the spatiotemporal distribution of charging demand is obtained through Monte 
Carlo simulation. Then, the predicted charging demand is taken as the source for travel flow gener-
ation. By introducing generalized travel cost (including travel time, charging frequency, and route 
deviation) as impedance, an improved double-constrained gravity model is used to generate an OD 
matrix of travel flow. On this basis, a flow-capturing location model aimed at maximizing captured 
flow is established and solved using a greedy–genetic hybrid heuristic algorithm. A case study of 
Zhangdian District, Zibo City shows that the proposed method can directly generate travel flow from 
charging behavior mechanisms, effectively identify demand hotspots and key nodes, and exhibit a 
clear diminishing marginal benefit in site selection. This provides an integrated decision-making 
framework from demand prediction to flow generation for precise and phased planning of charging 
infrastructure. 
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1. 引言 

随着全球能源结构转型与“双碳”目标的持续推进，电动汽车(Electric Vehicle, EV)作为清洁交通的

重要载体，其市场规模与渗透率逐年攀升。充电基础设施作为电动汽车推广的关键支撑，其科学规划与

合理布局直接影响用户体验、电网负荷及城市交通系统的稳定运行。然而，当前充电站选址规划多依赖

于历史出行数据生成的静态起讫点(Origin-Destination, OD)矩阵，难以准确反映电动汽车用户因续航焦虑、

充电行为随机性等特征而形成的动态出行需求，导致规划方案与实际需求匹配度不足、投资效益低下等

问题日益凸显。 
在充电站选址的理论基础中，流捕获模型(Flow Capturing Location Model, FCLM)开创了以最大化覆

盖流量为核心目标的范式。Hodgson [1]首次将“流量捕获”概念系统引入设施选址问题。随后，为适应

车辆有限续航的特性，Kuby & Lim [2]提出了流加油位置模型(Flow Refueling Location Model, FRLM)，为

电动汽车充电站选址提供了直接的理论框架。为更贴近用户实际选择行为，Kim & Kuby [3]进一步提出偏

差流加油位置模型(Deviation-FRLM)，首次允许用户在可接受的路径偏差内选择充电站，并考虑了流量随

绕行距离衰减的效应。在这一理论基础上，选址模型的复杂性与现实贴合度不断提升。Xu 等人[4]在模型

中引入了非线性弹性需求，以刻画充电便利性对出行需求的激发作用。Huang 等人[5]发展了考虑多偏差

路径的选址模型，允许用户在预设容忍度内选择最优路径上的充电站。针对更复杂的应用场景，Zheng 等

人[6]针对城际出行，构建了融合充电站选址与电动汽车路径规划的混合整数多商品流模型；Li 等人[7]则
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聚焦电动网约车，在模型中创新性地引入了充电拥堵反馈与弹性需求机制。 
随着电动汽车普及，用户心理与行为特征，尤其是“里程焦虑”，已成为影响充电需求与设施布局

的核心因素。Franke 等人[8]从心理学视角系统研究了里程焦虑，提出了“舒适范围”概念。He 等人[9]则
通过数学模型量化了里程焦虑与充电决策的平衡关系，指出优化充电网络比单纯增加单车续航更能有效

缓解焦虑。在此理论指导下，曾学奇[10]研究了在途充电设施选址问题，以最小化用户绕行成本为目标优

化布局。孙磊等人[11]则面向家庭用户提出了旨在减少行程延误的弹性充电策略。近年来，数据驱动与人

工智能方法为精准刻画和预测用户行为提供了新工具。Thorhauge 等人[12]通过自适应选择实验，实证揭

示了长距离出行中充电行为的异质性及里程焦虑的群体差异。Tangi 等人[13]进一步提出一种基于机器学

习的集成框架，用于精确预测电动汽车续航里程并推荐最优驾驶参数，显著提升了能效管理水平。 
综观现有研究，虽已取得了丰硕成果，但其理论框架与实际应用之间仍存在显著鸿沟，主要体现在

以下两个相互关联的层面。第一，多数研究将充电需求预测与出行 OD 流量矩阵生成视为独立环节，或

直接依赖历史燃油车 OD 数据，未能从电动汽车充电行为机理出发，构建从“需求触发”到“流量生成”

的内生闭环，导致需求生成与流量脱节。第二，在路径选择与选址建模中，对用户决策成本的考量多局

限于距离或时间，未能综合集成里程焦虑心理阈值、充电时间成本、路径偏差容忍度等多维因素，难以

精准刻画电动汽车用户的真实选择逻辑。为突破现有研究在“需求–流量”衔接与用户行为刻画方面的

局限，本文提出一种基于充电需求预测的 OD 流量生成方法，并以此驱动充电站选址优化。本研究构建

了一个从行为机理到设施布局的一体化建模框架：首先整合里程焦虑、初始电量分布与马尔可夫链目的

地选择模型，通过蒙特卡洛仿真生成时空动态充电需求；进而创新性地以融合行驶时间、充电次数与路

径偏差的广义出行成本为核心阻抗，构建改进双约束重力模型，实现从充电行为直接生成 OD 流量矩阵。

在此基础上，建立以最大化捕获动态流量为目标的选址模型，并采用随机用户均衡理论进行流量分配，

从而显著提升对用户真实行为响应的精度与规划实效性。 

2. 研究方法与模型构建 

本文在双向交通网络 ( ),G N A= 中建模充电站部署问题，其中 N 为节点集，A 为链路集。起点集和目

的地集分别用 R N∈ 和 S N∈ 表示。一个充电站可位于某一特定节点，所有充电站候选位置组合成一个集，

记作 I N∈ 。充电站建设的总预算用 B 表示。 

2.1. 充电需求预测 

2.1.1. 里程焦虑的量化分析 
精准预测电动汽车的充电需求，关键在于量化表征“里程焦虑”这一影响用户决策的核心因素。里

程焦虑指驾驶员因担忧剩余续航里程不足而产生的谨慎充电行为，它直接决定了充电需求的触发时机与

空间分布。为将其嵌入数学模型，本研究采用了汽车之家大数据平台及中国充电桩行业研究报告的数据

[14]。数据显示，超过 80%的用户倾向于在剩余电量处于 20%至 30%区间时充电，这标识了里程焦虑显

性化的关键阈值区间。基于此，本研究确立充电预警的上下限如下： 
 0.3ul L=  (1) 

 0.2dl L=  (2) 

其中， ul 和 dl 分别表示电动汽车在剩余电量为 30%和 20%时可行驶的里程；L 表示车辆在满电状态下的

最大续航里程。 
在此基础上，建立充电预警触发机制。当车辆在行驶过程中满足以下条件时，系统即向驾驶员发出

充电警告： 
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 r r i mL l SOC L−− ≤  (3) 

其中， rL 为电动汽车的当前剩余续航里程； r il − 表示从车辆当前位置至最近充电站的距离； mSOC 为充电

警告阈值，其取值范围定义为 20%至 30%，代表触发充电需求的电池荷电状态临界值。 

2.1.2. 初始电池电量状态概率分布建模 
电动汽车初始的电池电量状态(SOC)分布描述了驾驶员在出行开始时车辆剩余电量的统计特征。鉴于

电动汽车主要作为乘用车使用，其充电行为多发生于居民区或工作场所等固定地点。同时，考虑到用户

在非工作日与日常通勤中的出行模式差异，本研究假设出行开始时的初始 SOC 值服从正态分布[15]，其

概率密度函数如下： 

 ( ) ( )2
1 exp ,0 1

0.09682
t f

t t
f

s
f s s

µ

σ

 − = ≤


 
π

− ≤


 (4) 

其中，均值 0.48fµ = ，标准差 0.22fσ = 。 
然而，在现实场景中，用户出行伊始即处于极低电量的情况较为罕见。为避免模型产生不切实际的

低初始 SOC 值，本研究采用以充电警告阈值 mSOC 为下界的截断正态分布，从而更准确地反映真实的用

户行为。其概率密度函数修正如下： 

 ( ) ( )2
1 exp , 1

0.09682
t f

t m t
f

s
f s SOC s

µ

σ

 − = − ≤ ≤
 
 

π
 (5) 

2.1.3. 基于马尔可夫链的出行目的地选择 
为模拟电动汽车用户的出行目的地选择行为，本研究依据《2021 年中国城市交通报告》将出行目的

归纳为六类典型区域：住宅区(H)、工作商务区(C)、购物美食区(S)、旅游休闲区(T)、生活服务区(L)以及

教育培训区(E)。在此分类基础上，引入马尔可夫链理论以刻画用户出行目的地的转移规律。该模型以前

往特定类型目的地的出行视为一个状态，将出行目的地的动态选择过程建模为一个状态转移过程。需要

说明的是，出行目的地的选择概率及出行距离分布可能因时段(如工作日/非工作日、高峰/平峰)而异。本

模型使用的转移概率矩阵与对数正态分布参数可视为全时段或典型工作日下的综合表现。在实际应用中，

若可获得分时段的出行调查数据，则可建立多个时变参数集，从而生成不同时段的充电需求分布与 OD
流量矩阵，使模型具备时间分辨率。本研究聚焦于从行为机理生成 OD 流量的核心方法，故采用综合参

数以阐明框架的有效性。假设当前出行目的地状态为 iS ，则下一目的地的状态 jS 由条件概率决定，该概

率关系由以下公式表示： 

 ( ) ( )|i j i j ijP S S P S S P→ = =  (6) 

进而，系统的一步状态转移概率矩阵可定义为： 

 ( ) 11 1m
ij

ml mm

p p
p p

p p
 

= =  
 

 (7) 

其中， ijp 表示从当前目的地类型 i 转移到下一目的地类型 j 的概率，该矩阵元素需满足以下概率约束条

件： 
 1 1; 1,2, ,m

ijj p i m
=

= =∑   (8) 

 0 1, 0; , 1,2, ,ij iip p i j m≤ ≤ = =   (9) 
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其中，m为目的地的类型总数； i 与 j 均为目的地类型的索引，取值范围为1,2, ,m
。 

2.1.4. 出行距离概率分布建模 
在通过马尔可夫链确定出行目的地类型后，需进一步确定每次出行的空间距离。根据城市交通出行

调查数据的统计规律，电动汽车用户的单次出行距离服从对数正态分布[16]。该分布的概率密度函数可表

述为： 

 ( ) ( )2

2

ln1 exp
22

d
s

ds d

d
f d

d
µ

σσ

 −
−
π

=
 


 (10) 

其中期望 6.9dµ = 和标准差 1.2dσ = 。 

2.1.5. 充电需求触发条件判定 
在电动汽车出行过程中，充电需求的产生主要基于两种情景：其一，当驾驶员预判到达下一目的地

所需的电量消耗将超过车辆当前剩余电量时，必须进行充电；其二，当车辆剩余电量低于用户可接受的

心理阈值时，亦会触发充电需求。基于上述情景，构建如下充电需求判定条件： 

 _t l r i mE l SOC Lρ− ⋅ ≤  (11) 

其中， tE 表示电动汽车在前往下一个目的地时 t 时刻的剩余电量； lρ 表示电动汽车单位距离的功耗； _r il
表示电动汽车当前位置到最近的充电站的距离； mSOC 为充电警告阈值；L 表示车辆在满电状态下的最大

续航里程。 

2.1.6. 蒙特卡洛预测模型 
蒙特卡洛方法可以有效解决随机变异等复杂问题，采用蒙特卡洛抽样仿真方法对电动汽车的充电需

求进行精确模拟，主要步骤如下： 
(1) 输入空间位置变量和初始荷电状态的概率密度函数；初始化车辆编号，设 0n = ，确定模拟车辆

总数 N； 
(2) 提取首次出行地点、初始充电状态和最先到达目的地，根据充电需求判断条件判断电动汽车是否

需要中途充电； 
(3) 根据旅行目的地选择概率，提取电动汽车前往的第二个目的地； 
(4) 判断选择的第二个目的地，如果选择的第二个目的地不是旅行的终点，则继续进行后续模拟。如

果选择的第二个目的地是旅行的终点，则电动汽车将完成模拟并记录电动汽车的相关数据； 
(5) 判断模拟 EV 的数量 n 是否等于本仿真任务中的 EV 总数 N，若 n N< ，则返回步骤(2)，处理下

一个 EV 模拟任务；如果 n N= ，则整个模拟过程完成。 
为了简化充电站选址模型的设计和计算，本文在空间分布上对充电需求数据进行了处理，本文将充

电桩布局区域划分为 2 km × 2 km 的规则网格，并确定充电需求点在每个网格中。为了减少充电需求的空

间分布分散，将各网格中的充电需求点按照最近邻原则聚合到道路节点。在对各电网内的充电需求点进

行聚合的过程中，需要计算电网内各充电需求点 i 与道路节点 k 之间的距离，并将充电需求点聚合到距

离最短的道路节点。假设道路节点 k 和充电需求点 i 的经纬度坐标为 ( ),k kα β 和 ( ),i iα β ，任意两点之间的

距离分别显示为： 

 ( ) ( ) ( ) ( ) ( )sin sin cos cos cosk i k i k iD β β β β α α= + −  (12) 

 ( )arccos 180ik id R D P= ⋅ ⋅  (13) 
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其中， R 代表地球的平均半径，取为 6371.004 公里； iP 是圆周率；通过比较充电需求点与各道路节点之

间距离 ikd ，取最短距离对应的节点作为最终聚合目标。此时，将充电需求点 i 聚合到道路节点 k。最终，

将所有充电需求点聚合至相应的道路节点，从而得到每个道路节点上的总充电需求(图 1)。 
 

 
Figure 1. Flowchart of the Monte Carlo simulation for EV charging demand 
图 1. 电动汽车充电需求蒙特卡洛模拟流程图 
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2.2. 充电路径规划与出行流量生成 

2.2.1. 基于电池充电行为的可行路径生成 
为确保电动汽车行驶全程的电量安全，规避里程焦虑导致的行程中断风险，建立充电路径的分段电

量约束机制。让 rs
physicalP 表示 OD 对 ( ),r s 之间的物理路径的集合。任何物理路径 rs

physicalp P∈ 都可以用访问

节点的序列表示，即 1 2 1: l lp v v v v−= → → → → ，其中 l 是路径上的节点数，而 1v r= ， lv s= 并且

, 2,3, , 1iv N i l∈ = − ， 1 2, , ,p p p
jv v v 表示 p 路径上的充电站序列， j 表示充电站个数。对于纯电动汽车来

说，在路径 p 上有 h 个充电动作，表示为 1 2, , ,p p p
hv v v′ ′ ′

 其中 { }1 2, , , , 1,2, ,p p p p
k jv v v v k h′ ∈ = 

。基于单向行

程的假设，车辆行驶过程中需要满足以下电量约束机制： 

 ( )1, p
Ow r v W′ ≤  (14) 

 ( ) ( )1, 1,2, , 1p p
k kw v v W k h+′ ′ ≤ = −

 (15) 

 ( ),p
h Dw v s W′ ≤  (16) 

( )1, pw r v′ 表示从起点到第一个充电站的车辆电量消耗量； OW 表示车辆初始电量； ( )1,p p
k kw v v +′ ′ 表示中间两

充电站之间的电量消耗量；W 为电池总容量； ( ),p
hw v s′ 表示路径上最后一个充电站到目的地的车辆电量

消耗量； DW 表示从最后一个充电站到达目的地的车辆安全消耗电量。公式(14)确保车辆在初始电量下能

够安全到达第一个充电站；公式(15)保证在任意两个连续充电站之间，满电车辆能够完成行驶；公式(16)
确保从最后一个充电站充满电后能够在安全剩余电量内顺利到达目的地，即消耗的电量不超过 DW ，以便

下次车辆启动时有足够的电量支撑其到达第一个充电站。 
基于电池充电动作路径的思想受到 Xu 等人[4]的启发，他们定义了基于电池充电动作的路径(BACP)，

所有电动汽车的 BACP 可根据驾驶员是否采取充电动作，从物理路径中生成。具体来说，通过枚举物理

路径上所有可能的充电组合，具有 L 个充电站的单个物理路径总共可以产生 2l 个 BACP。但这样会因候

选充电站数量增加而面临“组合爆炸”问题，导致计算复杂度呈指数级上升。为解决此问题，本研究提

出必要充电策略生成方法，其中必要充电站识别环节基于实时电量监控与阈值触发机制，核心目标是筛

选出确保行程可行的最低充电需求节点，避免冗余充电组合。 
具体而言，定义路径中节点 nv  (当前行驶节点)处的剩余电量比率为： 

 
( )1

11 ,n
a i ii

n

W w v v
R

W

−
+=

−
= ∑  (17) 

其中 aW 是起点或者上次充电后的电量； ( )1,i iw v v + 为节点 i 到节点 1i + 的电量消耗量。 
当剩余电量比率低于安全阈值时，触发必要充电决策： 

 { }|n n n mS v p R SOC= ∈ ≤  (18) 

nS 为车辆在路径 p 上需要充电的节点集合。 
通过对物理路径施加严格的分段电量安全约束并进行必要充电站的识别，我们为 OD 对 ( ),r s 构建一

个初始候选电池充电动作的路径(BCAP)集合，记为 rs
allP 。该集合中的每一条候选路径 p 都被赋予了明确

充电逻辑的完整行驶方案，即一条候选电池充电动作的路径定义了车辆从起点 r 至终点 s 所访问的节点

顺序，并明确指出了在该序列中必须在哪些节点执行充电动作，以确保持续满足全程的电量安全。 

2.2.2. 基于广义出行成本的双约束重力模型 
为综合评估路径的优劣，引入广义出行成本作为评价指标： 
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 ( )minmax 0,rs
p t p charge tC T s P T T ω= + × + − ×  (19) 

rs
pC 是选择路径 p 产生的广义出行成本； tT 是车辆在道路上的总行驶时间； ps 是充电次数； chargeP 是单次

充电时间惩罚系数，本文中 chargeP 设为固定值，用于表征用户对充电时间成本的平均感知，在更精细的模

型中，该值可扩展为动态变量 ( ),chargeP t i ，基于排队理论，与充电站 i 在时段 t 的预期排队长度相关。这

将使广义出行成本能够反映站点拥堵对路径选择的实时负反馈效应，是模型未来动态化拓展的重要方向；

minT 是 OD 对间最短 BCAP 道路上的行驶时间；ω 是路径偏差惩罚权重。 
考虑用户在实际出行中的灵活性需求，我们进一步假设驾驶员对路径成本偏差有预先指定的容忍度

η，对于路径 rs
allp P∈ ，当且仅当其广义旅行成本相对于该 OD 对之间最小广义出行成本的偏差不大于预

设值时才可能被选择： 

 rs rs
p p

C C η∗≤ +  (20) 

其中 rs
p

C ∗ 是在 OD 对 ( ),r s 之间的最小广义出行成本；η是对路径偏差预先指定的容差。 
传统重力模型通常采用空间直线距离或路网最短路径距离作为阻抗函数的唯一依据，未能充分考虑

电动汽车用户在出行决策过程中对充电时间成本、里程焦虑等多重因素的综合考量。为更精确地刻画电

动汽车用户的出行选择行为，本研究对经典双约束重力模型进行重要改进，将广义出行成本作为核心阻

抗变量，建立符合电动汽车用户决策特征的 OD 流量矩阵生成模型。模型数学表达如下： 

 ( )*exp rs
rs r s r s p

f A B O D Cβ= ⋅ ⋅ ⋅ ⋅ − ⋅  (21) 

rsf 为从起点 r 到终点 s 的预测出行量； rO 为起点 r 的出行产生量(等于起点充电需求量)； sD 为终点 s 的出

行吸引量(等于终点充电需求量)； *
rs
p

C 为从节点 r 到节点 s 的最小广义出行成本； β 为成本衰减系数，反

映用户对广义出行成本的敏感程度； rA ， sB 为平衡因子，确保满足双约束条件。模型必须满足的双约束

条件为： 

 ,rs r
s

f O r= ∀∑  (22) 

 ,rs s
r

f D s= ∀∑  (23) 

迭代平衡算法，初始化为 ( )0 1sB = ； 
更新起点平衡因子第 k 次迭代： 

 ( )
( ) ( )*

1

1

exp
k

r k rs
s ss p

A
B D Cβ−

=
 ⋅ ⋅ − ⋅  ∑

 (24) 

更新终点平衡因子第 k 次迭代： 

 ( )
( ) ( )*

1

exp
k

s k rs
r rr p

B
A O Cβ

=
 ⋅ ⋅ − ⋅  ∑

 (25) 

收敛判断： 

当
( ) ( )

( )

( ) ( )

( )

11

1 1max ,
k kk k

s sr r
k k

r s

B BA A
A B

ε
−−

− −

 −−
<  

 
时停止迭代。 ε 为收敛阈值，本模型迭代计算的收敛标准设定 

为 41 10ε −< × ，该阈值确保了 OD 流量矩阵的预测精度，同时遵循了交通建模领域的通用标准[17]，在计

算成本与结果可靠性之间取得了良好平衡。 
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最终，模型输出一个 n 阶的 OD 流量矩阵 F ，其矩阵元素 rsf 即为修正后的从起点 r 到终点 s 的出行

量。该矩阵作为后续电池充电行动计划生成与流量分配的基础。 

2.3. 充电站选址优化模型与求解 

2.3.1. 流量捕获选址模型构建 
在获得各 OD 对间的可行路径集合及其广义出行成本后，需将出行需求分配至各路径。设集合 rsP 为

OD 对 ( ),r s 之间所有潜在可行路径集合，即 { }*|rs rs rs rs
all p p

P p P C C η= ∈ ≤ + ，基于随机用户均衡理论，路径
rsp P∈ 被选择的概率与其广义出行成本相关，可采用 Logit 模型进行流量分配，其数学表达式如下： 

 
( )

( )
exp

exprs

rs
prs

p rs rs
pp p

C
f f

C

ϕ

ϕ ′′∈

− ×
= ×

− ×∑
 (26) 

rs
pf 是分配到路径 p 上的交通流量； rsf 是 OD 对 ( ),r s 之间的总出行需求；ϕ 是一个大于 0 的参数，代表

用户对成本的敏感程度，ϕ 值越大说明用户对成本越敏感，流量会越集中在成本最低的那条路径上；

( )exprs
rs
pp p Cϕ ′′∈

− ×∑ 是所有可行路径的效用总和。 
在此基础上，以最大化捕获流量为目标，建立充电站选址优化模型。该模型旨在有限的预算 B 约束

下，选择一组充电站建设方案，使得所有出行路径中，所需充电站均被建设并能成功捕获的流量总和最

大。模型表述如下： 

 
1 1

max
rs

R S
rs rs
p p

r s p P

Z f x
= = ∈

= ⋅∑∑ ∑  (27) 

 1, ,rs
px r s≤ ∀  (28) 

 , , ,
rs

rs rs
ip p i

p P

x y r s iδ
∈

⋅ ≤ ∀∑  (29) 

 
1

I

i i
i

c y B
=

⋅ ≤∑  (30) 

{ }0,1rs
px ∈ 表示是否选择路径 p ； { }0,1iy ∈ 表示是否在 i 建站； { }0,1rs

ipδ ∈ 表示 p 是否使用充电站 i 进行充

电； ic 表示 i 点建设充电站成本； B 为总预算。 

2.3.2. 混合启发式求解策略 
本文构建的充电站选址模型属于 NP-hard 组合优化问题，在大规模路网中面临解空间爆炸的挑战。

为在有限时间内获得满意解，本研究设计了一种两阶段混合启发式算法，该算法协同利用了贪婪算法的

高效性与遗传算法的全局搜索能力。算法的第一阶段采用 Hodgson [1]提出的贪婪构造算法，通过独特的

“选择-移除”机制，依次选择当前通过流量最大的节点，并同步移除已被该节点捕获的流量，从而快速

生成一批能有效避免“自食效应”的优质可行解。此过程为后续优化提供了高起点的初始种群，显著提

升了搜索效率。第二阶段则以初始种群为基础，执行标准遗传算法流程。通过适应度评估、锦标赛选择、

均匀交叉和基本位变异等操作，在优质解空间内进行深度搜索。其中，精英保留策略确保了优秀个体不

被丢失，而罚函数机制则保证了解对预算约束的可行性。两个阶段的有机结合，有效克服了贪婪算法易

陷入局部最优的局限，同时规避了遗传算法在初始阶段盲目搜索的效率瓶颈。 

3. 数值实验 

在模型求解前，需设定关键的电动汽车性能参数与出行成本参数。参考中国主流电动汽车车型的技
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术指标(如问界 M7)，设定单车电池容量为 40 kWh，单位里程能耗为 0.3 kWh/km。B 为 30 个充电站，即

总预算为建立 30 个充电站的费用。在广义出行成本函数中，单次充电的时间惩罚 chargeP 设为 30 分钟，路

径偏离惩罚权重ω 设为 0.5，路径偏差预先指定的容差η设为 20 分钟，在双约束重力模型中成本衰减系

数 β 设为 0.15，Logit 分配模型中的成本敏感系数ϕ 设为 0.1.上述参数共同决定了电动汽车的续航能力、

充电决策阈值以及用户路径选择行为。 
本研究选取山东省淄博市张店区作为案例研究对象。淄博市近年来因独特的地方文化与旅游推广而

知名度显著提升，旅游业的快速发展带动了交通出行量的增长，也为电动汽车的跨区域、多场景使用提

供了典型环境，因此适合作为充电需求预测与设施布局优化的实证区域。该区域横向 24 km，纵向 21 km，

包含各类道路 157 条，交通节点 64 个，构建的路网包括区域内的实际路型，可以更全面地反映实际路网。

为了计算不同道路节点的充电需求数量，对选定的区域进行网格化，每个小网格的大小为 2 km × 2 km，

将整个区域划分为 143 个小网格。区域划分如图 2 所示，将路段中产生的充电需求数据通过网格划分，

按照最近距离原则聚合到网格内的所有道路节点。 
从高德开放平台获取淄博市张店区的六类 POI 数据，Guo 等人[15]通过利用车路协同融合平台对电

动汽车出行过程进行仿真，得到该区域内各功能区的位置和规模信息等数据。基于马尔可夫理论得到车

辆空间位置转移概率，其一步转移概率矩阵如下： 

 

0 0.48 0.28 0.04 0.15 0.05
0.47 0 0.33 0.05 0.11 0.04
0.83 0.03 0 0.02 0.09 0.03
0.81 0.

HH HC HS HT HL HE

CH CC CS CT CL CE

SH SC SS ST SL SE

TH TC TS TT TL TE

LH LC LS LT LL LE

EH EC ES ET EL EE

p p p p p p
p p p p p p
p p p p p p

P
p p p p p p
p p p p p p
p p p p p p

 
 
 
 

= = 
 
 
 
  

04 0.05 0 0.06 0.04
0.42 0.21 0.28 0.04 0 0.05
0.40 0.31 0.14 0.04 0.11 0

 
 
 
 
 
 
 
 
  

 (31) 

 

 
Figure 2. Planning area, road nodes, and grid division 
图 2. 规划区域、道路节点和网格划分 
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基于前文构建的充电需求生成机制模型(涵盖里程焦虑量化、SOC 分布及马尔可夫链目的地选择)，
本研究采用蒙特卡洛采样仿真对电动汽车的出行与充电行为进行大规模模拟。通过对 10,000 辆车的出行

链进行随机抽样，我们得到了规划区域内各道路节点上的预测充电需求。为深入分析该需求的分布特征，

我们从“数值比较”与“空间格局”两个维度进行可视化。图 3 以条形图呈现了各节点的具体需求值，

用以识别关键的高需求节点；图 4 则进一步以热力图揭示了这些需求在地理空间上的集聚模式。仿真结

果如下所示： 
 

 
Figure 3. The bar chart of charging demand distribution at different nodes 
图 3. 不同节点的充电需求分布条形图 

 
图 3 的条形图清晰地识别出了充电需求最高的具体节点。为了进一步理解这些高需求节点在地理空

间上的分布规律与集聚特征，我们绘制了充电需求空间分布热力图，如图 4 所示： 
 

 
Figure 4. The heatmap of charging demand distribution across different nodes 
图 4. 不同节点的充电需求分布热力图 
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图 3 清晰揭示了充电需求在不同节点间的数值差异与排序关系。如图所示，节点 46、47、60、63、
64 的需求量显著高于其他节点。图 4 将同一组数据映射到地理空间上，直观展示了充电需求的空间集聚

模式与连续性。可以明显看到，高需求区域并非孤立点状分布，而是在研究区域的东南部及中部形成了

连片的热点带，这与淄博市张店区的商业中心、交通枢纽及大型居住区的实际分布高度吻合，这也说明

了使用蒙特卡洛采样模拟算法获取车辆充电需求数据的准确性。这种“节点高峰 + 空间集聚”的双重特

征表明，充电站选址应兼顾关键节点的覆盖与热点区域的网络化布局。虽然受限于数据可获取性，未能

获得研究区域内充电站的实际运营数据作为“地面真实”进行直接定量校准，但图 3 与图 4 所示的高需

求节点(如 46、47、60、63、64)与淄博市张店区的客流密集区、商业中心高度重合，从地理空间逻辑上初

步验证了本需求预测模型的合理性。该分布模式与城市功能布局常识一致，表明模型能够捕捉到充电需

求产生的关键驱动因素。 
为评估充电站选址方案的逐步优化效果并验证模型的性能，本文使用所提出的两阶段混合启发式算

法生成了完整的充电站建设序列及其流量捕获数据。由于完整数据序列较长(共 30 个建设步骤)，为清晰

展示核心规律，表 1 截取了前 15 个建设步骤的关键结果。该表记录了随着充电站数量 k 的增加，系统总

捕获流量 T_F 及其边际增量 M_I 的变化情况，并列出了每个步骤间站点 built_stations。通过分析此表，

可以清晰地揭示充电站建设的边际效益规律与关键节点的建设优先级。 
 

Table 1. Flow capture and marginal increment of charging station construction sequence 
表 1. 充电站建设序列的流量捕获与边际增量 

k T_F M_I built_stations 

1 117.47 0.78 ['6'] 

2 117.91 0.44 ['6', '10'] 

3 118.28 0.37 ['6', '10', '47'] 

4 118.37 0.09 ['6', '8', '10', '47'] 

5 118.44 0.07 ['17', '10', '47', '6', '8'] 

6 118.49 0.05 ['17', '10', '4', '47', '6', '8'] 

7 118.51 0.02 ['17', '10', '4', '46', '47', '6', '8'] 

8 118.53 0.02 ['17', '10', '4', '46', '7', '47', '8', '6'] 

9 118.54 0.01 ['17', '10', '4', '46', '7', '45', '47', '8', '6'] 

10 118.55 0.01 ['17', '10', '4', '46', '7', '45', '47', '8', '23', '6'] 

11 118.56 0.01 ['17', '10', '4', '46', '7', '45', '47', '8', '23', '6', '60'] 

12 118.56 0.00 ['17', '10', '4', '46', '7', '45', '47', '8', '13', '23', '6', '60'] 

13 118.56 0.00 ['17', '10', '4', '46', '7', '45', '47', '8', '13', '63', '23', '6', '60'] 

14 118.56 0.00 ['17', '10', '4', '46', '7', '45', '47', '8', '13', '63', '23', '6', '64', '60'] 

15 118.56 0.00 ['17', '10', '4', '46', '7', '45', '47', '8', '13', '59', '63', '23', '6', '64', '60'] 

 
如表 1 所示，随着充电站建设数量 k 的增加，系统捕获的总流量(T_F)逐渐提升，但其边际增量(M_I)

迅速衰减，表明投资效益遵循显著的边际递减规律。前期建设的节点，如节点 6、10 与 47，贡献了绝大

部分的流量增长。这一建设次序并非偶然，而是由充电需求的空间异质性所决定。为更直观地揭示这一
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动态演变过程及其多维特征，我们绘制了图 5。 
图 5 从四个维度系统可视化了表 1 所蕴含的选址方案演化规律。图 5(a) (总捕获流量)的增长曲线在

10k > 明显趋于平缓，这与表 1 中 M_I 值的衰减直接对应。图 5(b) (单位站点效率)的下降趋势表明，在

需求总量相对固定时，持续增建新站会降低平均效能。这一现象的根本原因在于子图 5(c) (边际增量)所
展示的急剧递减效应：前 6 个站点的贡献占据了绝对主导。图 5(d) (累计捕获流量增长)直观显示，绝大

部分效益增益由前 10 个站点贡献。 
综合表 1 与图 5 可知，充电站选址存在明确的“关键建设期”(对应 10k ≤ )。在此阶段，投资于表 1

中 built_stations 列表前列的高优先级节点(如节点 6、10、47 等)，能获得极高的边际回报，是快速提升网

络服务能力的最优策略。这一“边际效益递减”的量化规律，为在有限预算下制定分阶段、高效率的充

电基础设施扩建计划提供了核心决策依据。 
 

 
Figure 5. Analysis of benefit evolution for charging station siting schemes 
图 5. 充电站选址方案效益演化分析 

 
进一步凸显本文一体化框架的价值，可将其效益与经典选址逻辑进行对比。传统流量捕获模型通常

假设 OD 流量矩阵为外生给定且固定。本文框架则内生地产生了与充电行为紧密耦合的动态 OD 流量。

从结果看，早期建设的高优先级节点(如 6、10、47)不仅覆盖了物理流量大的路径，更精准捕获了由“里

程焦虑”触发的刚性充电需求。这种从需求机理出发的选址逻辑，相较于仅基于历史流量分布的选址，

在需求捕获的精准性与投资效益的边际回报上可能更具优势，这解释了为何前少数站点能贡献绝大部分

增益。若未来获取到实际 OD 流量数据，可将本文生成的 OD 流量矩阵与之对比，并设置基于该固定 OD
流量矩阵的经典 FRLM 模型作为基准，进行严格的量化效益对比。 
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4. 结论 

本文提出了一种基于充电需求预测生成 OD 出行流量的新方法，并以此驱动电动汽车充电站选址优

化。通过整合里程焦虑量化、随机行为模拟与广义出行成本建模，实现了从充电行为机理直接生成动态

OD 流量矩阵，克服了传统规划对历史静态数据的依赖。案例研究表明，该方法能有效识别充电需求的空

间集聚特征，且选址效益呈现显著边际递减规律。前 10 个关键站点贡献了绝大部分流量捕获增益，这为

充电基础设施的分阶段精准投资提供了明确决策依据。 
本研究为电动汽车充电网络规划提供了从需求预测到流量生成的一体化建模框架，为进一步提升模

型的现实刻画能力与动态适应性，未来研究可从以下方向拓展：一是建立区分工作日/非工作日、高峰/平
峰时段的时变充电需求生成与动态 OD 流量矩阵预测模型，并在广义出行成本中引入基于排队理论的充

电等待时间惩罚，以刻画站点拥堵的反馈效应；二是融合实际充电站运营数据，对需求预测模型进行校

准与验证，并与依赖固定 OD 流量矩阵的经典选址模型进行量化对比，明确本方法的边际增益；三是进

一步探索充电网络与电网负荷、动态电价的协同优化，从而为电动汽车充电基础设施的动态规划、高效

运营与系统协同提供更精细化的决策支持。 
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