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Abstract

This paper introduces the Lambert W function and its properties, particularly its bivalued nature
when the domain is (-1/e, 0). The Lambert W function is required for solving blackbody radiation,
but in physical calculations, its bivalued nature is often overlooked, resulting in only one solution
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when two solutions are actually found. In the blackbody radiation calculation, the Lambert W func-
tion was applied four times, and in each case, one function value was less than -1: -2, -3, -4, and
-5. The properties of the Lambert W function have been neglected in blackbody radiation calcula-
tions.
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1. Lambert W R

1758 £F, Lambert ZAARFEIRN x 1) ¢ KB IATREBRIT, ML T =0T x=g+x" o K, fi
Rz 7 R 28 x 2R 3 UCRE[ 1] [2]0 AESCHR[3]H,  BREBLRE 22 AR RS 5 R A e sl E X AR KT 3
xa—xﬂz(a—ﬁ)vx“'ﬁ (L.1)

Hx/"R#&x, m=a/p Hqg=(a-B)v. BRARRARRZMRHEBEWT

x" :l+nv+ln(n+a+ﬂ)v2 +ln(n+a+2ﬂ)(n+2a+ﬁ)v3
2 6 (1.2)
+in(n+a+3,B)(n+2a+2,8)(n+3a+ﬁ)v4 N

PR EUG, BREJT I RS IRIE DL, Bk a = AT BFERR =00 P8 30 &
ITRADER (a-B), REL poa, 155

logx =wx”. (1.3)

RRRLVERH], WORIATREMTTRE(1.3) T o =1 KM, B A TN TR BEAHE R o 0 IR . O T IERIX — K4,
BHREA3) L a , K alogxtb Nlogx*, &z=x*, Hu=av. EMN1E2Hlogz=uz, i a=1017
FE(13).

N T FHAQ2)RMZITHE, BB EELa=4=1, ﬁii)ﬁ%(ll)iﬁﬁg%(x” —l)/n 8. 7 1K,
4 n=0, BELID A logx, AR NEEFER:

]0gx=v+—v2+—v3+—v4+—vs+'-'. (14)
2! 3! 4! 5!

GRBAE v <1/e WIS X —MERET(v), FOAWRE4]. EFT -w(-v), Hhw(z)E e
W(z)eW(Z) =z,

W(z)=ze'.
KA VFZ N B, REARBIMER[4]-[8]s KB HITHSE[9]: LK Polya FT Szego S
[ 10, o) 111.209, % 146 U]. Wright {FH W 152 #5055 SO EE — i) Fa5 2 T  AR SR i 2t
RBGEIETTRE[11]. #E[12]H, Fritsch, Shafer M1 Crowley $#&H 7 —F &k, HTX x>0 i w (x) KI—4
oy SCREAT L E RS LB THRNUREUR St Maple 2 4Fk — BN W AN SEHUE 70 SR BT SO 2 S,

(1.5)
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It H M Release 2 FF4a Xt T 40 SR AT SRS B SBR[ 13]
¥ AR AL S Tk, w6,
W (x)=xe", (1.6)
W(x)eW(X) =x.
R x SR, W —1fe<x i, w(x) AP ATRERISEEECLIE 1) T2 -1<w (x) I, AT

BIARRW, (x) REEEAER W (x) SRR SIS ORI, W (x) <1 ASTIEA W, (x) .
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Figure 1. The two real branches of W(x). ——, Wo(x); — ——, W-1(x)
L Wx)BIRN T X y Wo(x); ———, Wi(x)

2. BEEHMERTER

IR B, 38 B 6 AR SR AN TG T BTN B IR RS T OB ER, A E IR
R TREETIBS, HRRGREEEE TRy FHREE TN —MRIER . 0 eim e
TERARY R 22 DL SRR AR B AR Hh B A B H =1 B 2 S

R UL, AT B R S 2 52 BRSO RIS S G Rk, AR S R REAE G SO A4 (R 58
SRR, Rk, AiHGE SRR AR S . 19 AR, PR SONRE], SRR B A S S B
TERAE e EH— Lo K I AR RR IR T T, ZFUE R H 5 LR BGR ST, A2 52 BUTAT S 5148
ST G

BREBATE—/NMREN T ARESREAR IR TERN T B, AR ARG D R R R
NI F AL F) e(T)  ALBMELIR T, o(T)- A TR BE L THAUA A FRIFLIMER RS2 I 1] B

FitHe(T) HIRE T KRR, HARNTERD €5 HEN P REFIREE L u(T) 2K R,
— IR A — N AR LR B o &, BOAPTA AN T 28 i TR AL ZR L 9 < /2 i sh e, #5
S AR LT R EE 7 B v () = ccos(9) o BT BRI T FFR T F-F 2B v, AT AL E A
VAEAQ=2nsr (0<p<2n, 0<9<n/2) %f ccos HUFH41H::

C 2n n/2 . C
V:EJ‘O d(pj.O d1951n1900519:z 2.1

S EJT LA R BN A S S M RE R, [ RTIZ B I Bk
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u(T) c c
o =ull)y 2.2)
FERSTA] ¢ BATE], —EEMREE
E=u(T)§tA 23)
2Lk . BB TR IR E/(14) = e(T) N
e(T)zu(T)%. 2.4)
AT, TR SO o (1. T) B %, FiE ST
o (T)=[] re(1.7) 2.5)
M f, < f< fo WA AR S DI . BIAT S, SRS ENR
e(T)=¢q.,(T) :j:dfe(f,T). (2.6)

MERAE BV, SRR SRR £<0 < f+Af RESHIPALIARTY R, JF oS (6] k& i 96 B2 AF 3547
A1k,

0./+4f 0, (T) a
e(f.T)=1 lim Yo.s f]Af[ /] 5 o1 (T)

JEUE N e (f,T) AT LA ot L T AR AT Ak B AR D, BB RUBE B (DI Y A6
WRER T L u(f,7) HE X T7 A R IATIEIARAE £ £+ Af 2 18] 1) 5 1) e B 2

.7)

Uy oy () TS AR B A S A i BRI R i i i 1) A
_ [/[+Af]() 8
RS SRR
T)=["dfu(f.T). 2.9)
Titte(T)=u(T)/4 B HUER T REABEEIRG [ £, £+ AF ], P A0 F TS A 1 o
e(f,T)zu(f,T)Z. (2.10)
FEEBITE 1900 R MBI FE 2R, AATTHE S HIE BLR 95k,
o ZMHMIPFXDCE MM L e(f,7) GA - SHUEED TR R, Shs ERA G
o HHTE o(T) W A2 ks i 1 (Stefan, 1879; Boltzmann, 1884)
e(T)=0T", (2.11)
HoA el - BRI B H A
0 =5.6704x10" ZW - (2.12)
‘K
o BAHREDEEIITR (A T)=e(£.T)|,_ , ¢/2 (BB LR B 3 R A R Bl R
1
A - T =2.898x107 m-K = 2898 um - K (2.13)
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XY A E .

HERAE TR B TR e(£,T) » AL ZR ST 2 N T R B PRI T SR RE R T w (£, T)
KT IR A5 WEH e(f.T) -

W5 u(f,T) BRBAAETWRE w(f,T) FTEL NPT T RSN ERE [ £, £ +df ] X470
PRI TR AR RE R S g =u(f,T)df s IRATMTATLAE B A O, EXAIRX R, AL
MNAZ DDA R EBEIRG N o (f)/df « B RGBS RERE S LTk — e (E)(f.T) »
Kb (E)(f,7T) RWRFE T FHFRN £ ARG R 1,

u(£,T)df =o(f)df (E)(f.T). (2.14)

PRIt G RERE T u(f,T) 7T A5 BB T 5

1 THE AL AR B AR IR G B o (f) ( “IRGIETHEL ).

2. IR T AN fHIRG P RE R (E)(£.T) -

RJE R UG SRR IR R R E L u (f.T)=o(f)(E)S.T) -

BN AR AR AR ) IR G A AR & 7 i h i — AN E R, 55008

Q(f)ZSZJ: : 2.15)
WA R R i QA 8 2 B A
Q(f)=9(f)|f:c/4‘%=i—f. (2.16)

GEUHYIRLSA T, FEWEEN THIRSGT, R E KAERG MR P (E) NiZ 256840,

PT(E):kLexp(kET). 2.17)

TEL PR, E TR A Z IR, FTRAE 0< E <oo Z [ABELEAAL . Bhn, Xb AR5 [l € £ 1)
2R, IRIBAAEIE N2 SEEER BN, R, RELRMAT%, BN TR T 2RE
BH

* E
<E>|classical :IO dEEP 0 dEk Texp[ k T] k T (218)

Pl ARPEZ ST o7, BRARAR S PP ) S B R MU L (R D Hh A R Ry

u(f.T)=0(f)k,T = 8"{2 kT, e(f,T)zu(f,T)%z 2“{ kyT, (2.19)
C C

HX BARZ TR W BTN PEHR L% AE S R B T AN A IR R RE R XA B A - &
HrE AR AR AL

L yedr « HHITAE 1900 FEWEE R, A RABBLINR Y (1 L (0 e B DASIUR [ B AL, At
REAFHH — D S RJOLIE e SRIL IR TT 12,

E =nhf =n%, neN. (2.20)
i REAR AR B
B o« _nhf
P.(E)="P.(n) exp[ kBT} (2.21)
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BT RET A B, A— RIS
P.(E)=P.(n)= {1 - exp(—%ﬂ exp(—%j = exp(—n k};j;j - exp[—(n +1) klszj , (2.22)

B

FE Y P (n)=
I AR B AR

(E)z:gonhﬂ}( n)= Znhfexp(

] Znhfexp( (n+1)k}:§]

"= (2.23)
-5 ho _ S _ hf
_gnhfexp[ kBT] ;(n-i-l)hfexp[ (n+1)kBTJ+hf§exp( (n+1)kBTj
RIS FARYE, o — DS il B T BHAEN I ik i i Re s, R
exp(_k{;j )
(E)f.T)=hf = J— (2.24)
hf hf
1-exp exp| — -1
45 =l
H5IREQ15) I o f) &5, 132G S oGl g B FEADEIE B 5 R A M e A 5,
_ 8nhf? 1 . 2nhf 1
u(faT)_ P [ hfj (f T) 2 (hfj (2.25)
exp| — -1 exp -1
k,T k,T

S R B S B 52500 4 1 2 R 3 4 T T= 5780 K A I o £, T) AUBLASIR A £ IR
Hih% e, (7).
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Figure 2. The spectral emissivity e(f,7) ofa heatsource

at temperature 7= 5780 K
B 2. JRE A T=5780 K BRARHIEIEL ST R o(f.7)
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Figure 3. The emissivity €o.1] (T) = IO df e(fT) of a heat source at

temperature 7 = 5780 K (i.e., the radiant power per unit area with a
maximum frequency of f). As f approaches infinity f — oo, the as-

ymptotic value is ¢, (T)=e(T)=0T"=633x10"W/m*, at tem-
perature 7= 5780 K

3. R 7= 5780 K AIRRIZSI% o, ((T)=]/ d'e(/T) (B)
R B KA VRS PR ERNZHINER). = [ > of, #i
BRe,. (T)=e(T)=0T" =633x10’ W/m?, iBE T=5780K

3. BirKESATEE

EAHE ABOCHERE S BRI RNV EASRASRG B RR[ 2. Bt ABITE
RSB RGBS, JRARRE 6 vh i S R B AR R E L R T 1 AR B (B s ) AT R A (n
RE R B B0 TIEE) B RAlE, AR FERRIRNTRR R A, ~ 500 nm AL B A 5 KRS .

S ARG RORER B IR e, ELBCA RN R R 5 4 6 N AR A i A S A A
5] [ e KR I AR AR, IR 2K PP ik S b AR AR R BAT IR S UL . BATRAE T CHER], EidPRE
DS TR 5 ALK K R Th 3 S, R SR BATE ] — A S A, R K Al 20 D9 S5 KR 1 X 1)
dA=c|df|f?, BLBMIEAE Ay, ~ 500 nm BT X0 PR LEBCK R4 H o 48T, BATES R, Wi
A VE A, IR Ah 4 B RS KEIIIX 0] dA = c|df| /2, IBATRMISTE £, ~340 THz PRI X 1]
WA R T2, AN R N ¢f £ ~ 880 nm o WTRFRATIE SR 12 B K FiH Bmi JE sk
ThaRfity, R PR A HAt AR

WA B 5 8 5 5 (2. 25) 5 LI B 1) SR A T 58 SR LIS, AR A B b ARAT 1 ks N R AN 4k L
o WS LR AT BUZ LR T NEEHE SR . AL AR A Dh RN

kg,T4 Iw x3
0

e(T)=[ dfe(f.T)=] die(4,T)=2n i ()T 3.1

c

Bl kiE
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I:dx—3)—j dxx’ Zexp[ n+1 xJ —i;—;f:dxexp(nx)

exp(x o

®© d31 )
nldnn n=1 N

20k
e( ): IShSCB2 ’

n=1
4

Z =6¢(4)="5

RIS T2 - BURE R H RS EWTCHELE R R, 1M h ATELE

ﬂéﬁﬁm,
_ 21k, '
15h°c?

Sk E AR RS R e(f,T)=6.33x10" W/m? , 7EHWERIUIE AL =25 (] A b BHE By
Hrr, R, =6.955x10" m & KFHIIEAR, 7, =1.496x10" m & ERHUE Y

e(T)x( O/1*(19)2: 37kW/m? . H

(3.2)

(3.3)

NP B A E (Y Ry

(3.4)

P42,
ATHESgER R, BA1%E
_ e W (3.5)
Ak, T k,T
RIGBAE e(AT)=e(f.T)|,,, /4,
ox he
B 2the? 1 o TP aT) s
(’1 T) 5 2 -
A 2 [ he | FRT [ he )| 4 e
Plak,T Pk, T (3.6)
onhe® 1 exp(x)
= X 51,
A exp(x)—l exp(x) 1
oe(A,T
SRR OGS T, A fe e 26T) e( )_
5
exp(x) P
o = AR AR:
5-x
(5 x)e’ =5
(x—S)e 5
(x S)e"e 5¢™
(x=5)e ==5¢7
PIA R B (x) BR 2
W[(x S)eX’SJ:W( 5e*5)
x—5=W(—56’5)
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x=5+ W(—Se’s)
—5e ~—0.03369>-0.36788 = —¢ '

VLW (-5e ) A, —AR9-5, — A4 0.0349. F 4 x MR P, —A4 0, — 21 4.965.
x=04AAI 36, HINEEN O ML, ARER LA AER WHESCES, W x =0, £:03.6F

RFE ﬂkBTﬁ‘joo o
BESRAHAF ) x = 4.965. I, BRAOGHE RS (A, T) B 2

ﬂ’max : = hc
4.965k,

KRN T=5780 K (IHGR, WORBHZRE, X274

=2898 um K. 3.7)

A =501nm, AL =598 THz, (3.8)

max

Wik 4 Fis.
80
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Figure 4. Spectral emissivity e(1,T ) of a heat source with a

temperature of 7= 5780 K
4. JBEEA T=5780 K BIFURHIEIE R E e(A,T)

AT B U1 B e T RO R 3 o £.T) BB £, K. TATE

9 bt 1 o OF (xlijJ
ge(f,T)z o hf 3_kBT he
TS
:2Tthf2 1 (3—x exp(x J
@ exp(x)-1 exp(x)-1)
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TR LM RN, A e gf) 0 B

3
exp(x) :E,

e =2 HRRIIRIE
3—x

P R L () B
W[ (x=3)e |=w(-3¢7)
x=3=W(-3¢")
x=3+W(-3¢")
-3¢~ ~-0.14936 > -0.36788 = —¢ '

U (=3¢ ) AP, —R-3, —R-0.19, W4 x EFAMEL, — MR o, —AN2.819. Y
B R, W x=0, £X 3.9 PREUK,T Howo.
R x = 281 B, IO R e f,T) BISR A I 2
S ky GHZ

=2.821-2=58.79 (3.10)
h K
w2 s, XEHATEEAN T=5780 K FI#HGR
£ =340 THz, ¢ _g82nm (3.11)

max

PR DGyl B R R @&, 2ahidoh j(A,7) M j(f,T), &L BAZERFDY
RIS e(A,T) SR B KB R E TilE din £ =df / f =-dIn A =—dA/2 HEAMAK. FATRH
(LA H TR BB A5 RR, AUFRR

S T)=hfi (f.T)= ffJ[O/( )=h (7)

0 .
own(//fy) 0" (3.12)
=hj(In(f/f,),T)=hAj(AT)=hi(In(2/%).T).
B, AT 45 MR F o AR AL IR R B B2 LT AE B IR 58 0r ) £ = |4/ ] K04 P F AR AL
HeFEE.
MRS T AR B AR 8 G TSR 56 A R T4
/1 2mnc 1

2 hc .
exp -1
Ak, T

DOI: 10.12677/aam.2026.151043 468 N H it e

J(AT)=e(AT)= (3.13)



https://doi.org/10.12677/aam.2026.151043

SV

BN A
%j(z,T)=(’1;1T)(xe§;F(ﬁl—4]:0 (3.14)
LIPS
exp()::4fx.
o = IR
(4-x)e" =4
(x—4)e* =—4
(x—4)e'e™ =—4e™
(x—4)e™ = —4e™
PRI B (x) B

W (x—-4)e™ | =W (-4e)
x—4=W(-44)
x =4+ (-4e)
—4e™* 007326 > -0.36788 = —¢ !

VLW (~4e™ ) TR, — R4, —A8-0079. W4 x HAPAME, — 0, —Ay3.921. #F
BCEY, W x=0, £X3.13 PRE T N o
RARREZ N x = 3,921, Bt BORIGHOE Il j(4,T) ROBK 2.
hc

A T=—"C _3670 um-K. 3.15
T3 000k, " (3-15)

HHFUREE N T= 5780 K FIHGR, X2 r= A A0 B 1) 45 3
A =635nm, ——— =472 THz (3.16)

max l

max

w5 PR
PR LTIl j(4,7) 58 Bs KSR M R R R E R A%, B
dinA=di/A=—-dInf=-df/f .
. A 1 1
](A,T)=h—ce(/1,T)=%e(ln(/1//10),T)=ie(f,T)=%e(ln(f/fo),T) (3.17)
PRIk, O T [ A 5 dA e TIE R AL AL, S5 R TX T AR 58 dA/ A =|df/ /| M REIE R AL AL .
B, RN T IHEARERD . AR AL TR S R I KD T AR

e(f,T) _2nf7 1

H ¢ exp (hfj -1 |
k,T

J(f.T)= (3.18)
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Figure 5. Spectral photon flux j(A,T) of a heat source

with a temperature of 7= 5780 K
5. BBEA T=5780 K BRRIEIEL FIBE j(A.7)

TR
2 -1 )(z—x%&l]:o (3.19)
i
exp(x)zzfx
" =2 IR
(2-x)e =2
(x—2)e" =2
(x—2)e'e? =-2¢”
(1-2)e" =—2¢>
PR Y (x) %
w[(x=2)e” |=w(-2¢7)
x-2=W(-2¢7)
x=2+W(-2¢7)

—2e¢? ~—0.27067 >—-0.36788 = —¢'
i W(—2e’2)7ﬁﬂ7§/l\ﬁ, —ANA-2, —AN-0.496. B4 x WHEFHME, — NN, —NHN 1594, P
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BB, R x=0, X318 HRE LT Howo .
BEORAFAR x = 1.594 I . BIL, EHRRE L, SOl j(f,7) KR 2

S -1 504 K8 _ 33,917
T h K

SFIRE N T=5780 K #HE, Xor=A4 M N 1 4h )

f. =192 THz, ——=1.56 um, (3.20)
Snax
WK 6 Frs.
6.x 1020
= 5.x10%07
S
SE
§.N§ 4.%x10%0 7
Bl
<< 3 1020
N
I
n.[: 2.x1020
?-,\’
1.x 1020
0 I Z(I)O I 4(I)0 I 6(I)0 I 8(I)0 IlOIOO
f [ THZz]
Figure 6. Spectral photon flux j(f,T) of a heat source
with a temperature of 7= 5780 K
B 6. :\REA T=>5780 K BURIREVLIENFIEE /(/.7)
KT HIEE R
o ET? e x?
i(T)=| dfj(f,T)=2n-2 dx 3.21
J( ) IO f](f ) nh302 IO exp(x)—l ( )
RS THE
- x2 w 5 o o d2 w
dx——————=| dxx") exp|—(n+1)x|=) —| drexp(—nx
.[0 exp(x)—l Io ; p[ ( ) ] ;an Io p( )
, (3.22)
sd 1 &2
o~ dn2 n ;rf é’( )
R
4n§'(3)k§ 5 s T
i(T)=—=—=+—T"=1.5205x10" —— 3.23
]( ) e m? s K° (3:23)
471 82 FH B it e
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ESREEIE

BB AP TR FE 7= 5780 K, WIAPHZR ML TR 2,94 < 10 m s, HERBUEI I TIEEN 635
X107 ms, P RER o(T)/j(T) =135 eV, (L T4 SMEL.

4. &g

454 Labert W BREUITHE, R IAE BARE S BTH B, TR RE A — W(xeX)zxﬁzitE@
fift, EASCH, x A HIELT -2, =3, —4, =5, HR¥E R BT, W(xe")zx, SAFENVRAR TR —A 0 fif,
EAMER R k, T Noo, FEEH fINANT, B f=0. TAELURTOCT BRGS0, #7258
ZWEIXA 0 fRIITELE .

Labert W R 37E H AL & € IBA(—1/e, O)FVEEIR, RECRAUE R, AFET PR AL, b eR Hoh i
TE FEARKR T B VTSR A AN R 2

E&WE

WHSER: TAREERIBE; BH AR REHASCEN mEE T REI: BHHN S
X220011TN220.
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