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Abstract

At present, the threats posed by national obesity and chronic diseases to public health are becoming
increasingly severe. Traditional weight management models are difficult to maintain users’ long-
term participation due to the lack of personalized guidance. To address this problem, this study con-
structs a personalized weight management model dual-driven by artificial intelligence and behav-
ioral science. A multimodal research questionnaire integrating the Theory of Planned Behavior and
Self-Determination Theory was designed to collect diversified data, including diet images, exercise
texts and psychological states. The ResNet-50 and BERT models were used to extractimage and text
features respectively. On this basis, the sample and feature alignment mechanism and supervised
contrastive learning method were adopted to enhance the model’s ability to distinguish between
healthy and unhealthy behaviors. Finally, a multi-layer perceptron was utilized to generate person-
alized exercise and diet recommendations. In the empirical phase, a total of 712 valid question-
naires were collected. The test results show that the model achieves an accuracy of 85.4% in the
healthy behavior classification task, the mean absolute error of behavior compliance prediction is
0.23, and the overall user acceptance rate reaches 89.2%. The research results confirm that the
model can effectively integrate multi-modal perception information and realize precise behavioral
intervention, which provides a strong theoretical support and practical path for building an intelli-
gent health management system with sustained compliance.
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Figure 1. Design diagram of multi-modal data fusion model
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Figure 2. Multimodal data preprocessing diagram
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Figure 3. Calculate the pixel diameter graph using hamburgers as an example
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Table 2. Analysis of user weight management behaviors and pain points
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Figure 4. The degree of concern regarding the privacy and security of health data
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