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摘  要 

本文研究受布朗运动扰动和阈值分红策略影响的相依风险模型，即盈余低于阈值时不分红，超过阈值时

以恒定速率连续支付分红，同时在模型中引入索赔阈值，规定实际索赔支付为索赔额和索赔阈值的小者。

本文以Gerber-Shiu惩罚函数为研究对象，运用全概率公式、泰勒展开、布朗运动性质及极限转化等方法，

推导了该风险模型的Gerber-Shiu惩罚函数满足的积分–微分方程。研究结果丰富了相依风险模型的理

论体系，为保险业务的风险精确度量、分红策略优化设计提供了重要理论支撑，进一步拓展了相关模型

在保险实务中的应用场景。 
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Abstract 
This paper studies a dependent risk model influenced by Brownian motion perturbations and a 
threshold dividend strategy, where dividends are not paid when surplus is below the threshold and 
continuously paid at a constant rate when surplus exceeds the threshold. Additionally, a claim thresh-
old is introduced into the model, stipulating that the actual claim payment is the lesser of the claim 
amount and the claim threshold. This paper focuses on the Gerber-Shiu penalty function and em-
ploys methods such as the total probability formula, Taylor expansion, properties of Brownian mo-
tion, and limit transformation to derive the integral-differential equations of the Gerber-Shiu penalty 
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function under both dividend-paying and non-dividend-paying conditions. The research results en-
rich the theoretical system of dependent risk models, provide important theoretical support for 
precise risk measurement and optimal design of dividend strategies in insurance business, and fur-
ther expand the application scenarios of related models in insurance practice. 
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1. 引言 

保险风险模型中的分红策略最早由 De Finetti 提出，之后众多学者对分红策略展开了研究，在保险风

险理论及相关领域得到广泛应用(参见文献[1]-[5])。Lin 和 Pavlova 研究了带有阈值分红策略下的经典复

合泊松模型，并推导出了该模型的 Gerber-Shiu 惩罚函数满足的积分–微分方程和方程对应的边界条件

[6]，Wan 将随机扰动与阈值分红策略相结合，推导了破产前期望折现红利支付的两类积分–微分方程和

Gerber-Shiu 惩罚函数的解析表达式[7]，Li 和 Sendova 考虑带有固定阈值和随机扰动的相依模型，得到了

期望贴现惩罚函数满足的积分–微分方程和 Gerber-Shiu 惩罚函数满足的瑕疵更新方程[8]，Sun 和 Zhang
进一步研究了具有两类索赔和阈值分红策略的扰动风险模型，推导了 Gerber-Shiu 惩罚函数满足的矩阵形

式的积分–微分方程及其显式解[9]。  
本文研究基于文献[7]-[8]中受布朗运动扰动的相依风险模型，将固定阈值拓展为随机阈值并引入阈

值分红策略(即盈余低于阈值时不分红、超过阈值时以恒定速率分红)，然后结合 Albrecher 提出的在再保

险应用中的相依模型，即实际索赔支付为索赔额和索赔阈值的小者[10]，得到了具有阈值分红策略、索赔

阈值和随机扰动的相依模型，最后参考文献[9]的研究过程，对于新的风险模型，我们得到了 Gerber-Shiu
惩罚函数满足的积分–微分方程。 

2. 模型介绍 

本文考虑以下盈余过程受布朗运动扰动的风险模型 
 ( ) ( ) ( )1U t u c t S t W tσ= + − +  0t ≥   (2.1) 

其中 0u ≥ 表示初始盈余， 1 0c > 为保险费率， ( ){ }, 0W t t ≥ 是标准布朗运动， 0σ > 是一个常数， 

( ) ( )
( )

1
min ,

N t

i j
j

S t X T
=

= ∑ 表示到达时间 t 的总索赔金额，其中 ( )N t 表示到时刻 t 的索赔次数， iT 为独立同分 

布阈值变量，其累积分布函数为 ( )F ⋅ ，概率密度函数为 ( )f ⋅ ，索赔金额 1 2, ,X X 是独立同分布的随机变

量，其累积分布函数为 ( )B ⋅ ，概率密度函数为 ( )b ⋅ ，均值为 µ ，索赔间隔时间{ }, 1iW i ≥ 是独立同分布的

随机变量序列，若索赔金额 iX 大于某个随机阈值 iT ，则保险公司的赔付金额为 iT ，且到下一次索赔的时

间服从参数为 1λ 的指数分布，此时分布函数为 ( )F ⋅ ，盈余过程被归为第 1 类；若 iX 小于 iT ，保险公司的

赔付金额为 iX ，且到下一次索赔的时间服从参数为 2λ 的指数分布，此时分布函数为 ( )B ⋅ ，盈余过程被归

为第 2类，当盈余低于阈值 b时不分红，超过 b时，以恒定速率 d连续支付分红，此时的保费率为 2 1c c d= − 。 
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本文定义 Gerber-Shiu 函数为 

( ) ( ) ( )( ) ( ) ( ),e , | 0b
b

T
k k b b b b bT J kV u E w U T U T I U uδ− −

<∞ =
 = =   

其中 0δ ≥ 是贴现因子， ( )b bU T − 是破产前盈余， ( )b bU T 是破产后赤字，I 是示性函数， kw 是关于破产前盈

余和破产后赤字的二元函数，为不失一般性，令 ( )0,0 1kw = 。同时为确保破产不是必然事件，设定正安全

负载条件 [ ] 0E cW X− > 恒成立。故当索赔金额 ix T> 时，下一次索赔的时间服从速率为 1λ 的指数分布，此

时若盈余金额 0 u b≤ < ，则其Gerber-Shiu函数为 ( )11V u ，若盈余金额u b> ，则其Gerber-Shiu函数为 ( )12V u ；

当索赔金额 ix T< 时，下一次索赔的时间服从速率为 2λ 的指数分布，此时若盈余金额 0 u b≤ < ，则其 Gerber-
Shiu 函数为 ( )21V u ，若盈余金额u b> ，则其 Gerber-Shiu 函数为 ( )22V u 。由于分红是连续性支付的，故盈

余过程 ( )U t 不会在阈值 b 处发生跳跃，因此盈余过程 ( )U t 在 u b= 处连续，而 Gerber-Shiu 函数是基于盈

余过程的期望函数，其连续性由盈余过程的连续性决定，参考文献[7]中 Gerber-Shiu 函数边界条件的推导

方法可得本文边界条件为： ( ) ( )1 2V b V b− +=
 

， ( ) ( )1 2V b V b− +′ ′=
 

。在后续内容中，我们使用以下符号： 

( )
( )
( )

11
1

21

,0

,0

V u u b
V u

V u u b

≤ <= 
≤ <



， ( )
( )
( )

12
2

22

,

,

V u b u
V u

V u b u

≤ < ∞= 
≤ < ∞



 

3. 积分–微分方程 

命题 3.1 函数 ( )1V u


， ( )2V u


满足以下的积分–微分方程。 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 12 0

2 d
u

V u c V u AV u BV u x x uζ
σ

 ′′ ′= − + + − +  ∫
   

  (3.1) 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 1 12 0

2 d d
u b u

u b
V u c V u AV u BV u x x BV u x x uζ

σ
−

−
 ′′ ′= − + + − + − +  ∫ ∫

    

  (3.2) 

其中 
 ( ) ( ) ( )y B y f yξ =   (3.3) 

 ( ) ( ) ( )y H y b yχ =   (3.4) 

 ( ) ( ) ( ) ( ) ( ), d , d , 0i i iu u
w u w u x u x x w u x u x x uξ χ

∞ ∞
= − + − >∫ ∫   (3.5) 

 
( )

( )
1

2

0
0

A
λ δ

λ δ
− + 

=  − + 
，

( ) ( )
( ) ( )

1 1

2 2

x x
B

x x
λ ξ λ χ
λ ξ λ χ
 

=  
 

  (3.6) 

 ( )
( )
( )

11
1

21

V u
V u

V u

 
=   
 



， ( )
( )
( )

12
2

22

V u
V u

V u

 
=   
 



， ( )
( )
( )

1 1
1

2 2

w u
u

w u

λ
ζ

λ

 
=   
 



  (3.7) 

证明 对于 ( )1 , 1,2iV u i = ，考虑一个长度为 dt 的小时间区间，并以在该区间内可能发生的首次索赔情

况为条件，利用全概率公式，有  

 

( ) ( ) ( )( ){
( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )( ) ( )

( ) ( )

1

1

1

11 1 11 1

1 11 10

21 10

1 1 1

1 1 1

e 1

d

d

, d

,

dt

u c dt W dt

u c dt W dt

u c dt W dt

V u dt E V u c dt W dt

dt P X x V u c dt W dt x f x x

P x T V u c dt W dt x b x x

P X x w u c dt W dt x u c dt W dt f x x

P x T w u c dt W dt x u c dt W

δ

σ

σ

σ

λ σ

λ σ

σ

σ σ

σ σ

−

+ +

+ +

∞

+ +

 = − + + 

+ > + + −
+ < + + − 

+ > + + − − −

+ < + + − − −

∫

∫

∫

( )( )( ) ( ) }
1

d
u c dt W dt

dt b x x
σ

∞

+ +∫

  (3.8) 
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( ) ( ) ( )( ){
( )( ) ( )( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )( ) ( )

( ) ( )

1

1

1

21 2 21 1

2 11 10

21 10

2 1 1

2 1 1

e 1

d

d

, d

,

dt

u c dt W dt

u c dt W dt

u c dt W dt

V u dt E V u c dt W dt

dt P X x V u c dt W dt x f x x

P x T V u c dt W dt x b x x

P X x w u c dt W dt x u c dt W dt f x x

P x T w u c dt W dt x u c dt W

δ

σ

σ

σ

λ σ

λ σ

σ

σ σ

σ σ

−

+ +

+ +

∞

+ +

 = − + + 

+ > + + −
+ < + + − 

+ > + + − − −

+ < + + − − −

∫

∫

∫

( )( )( ) ( ) }
1

d
u c dt W dt

dt b x x
σ

∞

+ +∫

  (3.9) 

令 ( ) ( )P X x B x> = ， ( ) ( )P x T H x< = ，对 ( )( )1 1iE V u c dt w dtσ + +  应用泰勒展开，并利用布朗运动

性质 ( ){ } 0E W dt = 和 ( ){ }2E W dt dt= ，可得 

( )( ) ( ) ( ) ( ) ( )
2

1 1 1 1 1 12i i i iE V u c dt W dt V u c V u dt V u dt o dtσσ  ′ ′′+ + = + + +   

因此，式(3.8)和式(3.9)可简化为 

( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )( ) ( )

( ) ( )

1

1

1

2

11 1 11 1 11 11

1 11 10

21 10

1 1 1

1 1

e 1
2

d

d

, d

,

dt

u c dt W dt

u c dt W dt

u c dt W dt

V u dt V u c V u dt V u dt

dt B x V u c dt W dt x f x x

H x V u c dt W dt x b x x

B x w u c dt W dt x u c dt W dt f x x

H x w u c dt W dt x

δ

σ

σ

σ

σλ

λ σ

σ

σ σ

σ

−

+ +

+ +

∞

+ +

   ′ ′′= − + +  
  
+ + + −

+ + + − 

+ + + − − −

+ + +

∫

∫

∫

( )( )( ) ( )
1

1 d
u c dt W dt

u c dt W dt b x x
σ

σ
∞

+ +


− − − 


∫

 

( ) ( ) ( ) ( ) ( )

( ) ( )( )( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

( ) ( )

1

1

1

2

21 2 21 1 21 21

2 11 10

21 10

1 1 1

1 1

e 1
2

d

d

, d

,

dt

u c dt W dt

u c dt W dt

u c dt W dt

V u dt V u c V u dt V u dt

dt B x V u c dt W dt x f x x

H x V u c dt W dt x b x x

B x w u c dt W dt x u c dt W dt f x x

H x w u c dt W dt x

δ

σ

σ

σ

σλ

λ σ

σ

σ σ

σ

−

+ +

+ +

∞

+ +

   ′ ′′= − + +  
  
+ + + −

+ + + − 

+ + + − − −

+ + +

∫

∫

∫

( )( )( ) ( )
1

1 d
u c dt W dt

u c dt W dt b x x
σ

σ
∞

+ +


− − − 


∫

 

将等式两边同时除以 dt ，并令 0dt → ，可得 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 11 1 11 11 1 110

21 1 10

d
2

d

u

u

V u c V u V u B x V u x f x x

H x V u x b x x w u

σλ δ λ

λ

′ ′′+ = + + −

+ − +

∫

∫
 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 21 1 11 21 2 110

21 2 20

d
2

d

u

u

V u c V u V u B x V u x f x x

H x V u x b x x w u

σλ δ λ

λ

′ ′′+ = + + −

+ − +

∫

∫
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最后将式(3.3)~(3.5)代入上式，可以得到 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 11 1 11 11 1 110

21 1 10

d
2

d

u

u

V u c V u V u V u x x x

V u x x x w u

σλ δ λ ξ

χ λ

′ ′′+ = + + −

+ − +

∫

∫
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 21 1 11 21 2 110

21 2 20

d
2

d

u

u

V u c V u V u V u x x x

V u x x x w u

σλ δ λ ξ

χ λ

′ ′′+ = + + −

+ − +

∫

∫
 

同理，对于 ( )2 , 1,2iV u i = ，考虑一个长度为 dt 的小时间区间，并以在该区间内可能发生的首次索赔

情况为条件，利用全概率公式可以得到 

 

( ) ( ) ( )( ){
( ) ( ( ) ) ( )( )

( ) ( ) ) ( )(( )

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )

2

2

2

2

12 1 12 2

1 12 20

22 20

11 2

21 2

e 1

d

d

d

d

dt

u c dt W dt b

u c dt W dt b

u c dt W dt

u c dt W dt b

u c

V u dt E V u c dt W dt

dt P X x V u c dt W dt x f x x

P x T V u c dt W dt x b x x

P X x V u c dt W dt x f x x

P x T V u c dt W dt x b x x

δ

σ

σ

σ

σ

λ σ

λ σ

σ

σ

σ

−

+ + −

+ + −

+ +

+ + −

+

 = − + + 

+ > + + −

+ < + + −

+ > + + −

+ < + + −

∫

∫

∫

( )
( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) }

2

2

1

1

1 1 1

1 1 1

, d

, d

u c dt W dt

dt W dt b

u c dt W dt

u c dt W dt

P X x w u c dt W dt x u c dt W dt f x x

P x T w u c dt W dt x u c dt W dt b x x

σ

σ

σ

σ

σ σ

σ σ

+ +

+ −

∞

+ +

∞

+ +




+ > + + − − −

+ < + + − − −

∫

∫

∫

  (3.10) 

 

( ) ( ) ( )( ){
( ) ( ( ) ) ( )( )

( ) ( ) ) ( )(( )

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )

2

2

2

2

22 2 22 2

2 12 20

22 20

11 2

21 2

e 1

d

d

d

d

dt

u c dt W dt b

u c dt W dt b

u c dt W dt

u c dt W dt b

u c

V u dt E V u c dt W dt

dt P X x V u c dt W dt x f x x

P x T V u c dt W dt x b x x

P X x V u c dt W dt x f x x

P x T V u c dt W dt x b x x

δ

σ

σ

σ

σ

λ σ

λ σ

σ

σ

σ

−

+ + −

+ + −

+ +

+ + −

+

 = − + + 

+ > + + −

+ < + + −

+ > + + −

+ < + + −

∫

∫

∫

( )
( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) }

2

2

1

1

2 1 1

2 1 1

, d

, d

u c dt W dt

dt W dt b

u c dt W dt

u c dt W dt

P X x w u c dt W dt x u c dt W dt f x x

P x T w u c dt W dt x u c dt W dt b x x

σ

σ

σ

σ

σ σ

σ σ

+ +

+ −

∞

+ +

∞

+ +




+ > + + − − −

+ < + + − − −

∫

∫

∫

  (3.11) 

令 ( ) ( )P X x H x> = ， ( ) ( ) ( )1P x T H x H x< = − = ，对 ( )( )2 1iE V u c dt w dtσ + + 应用泰勒展开，并利

用布朗运动性质 ( ){ } 0E W dt = 和 ( ){ }2E W dt dt= ，可以得到 

( )( ) ( ) ( ) ( ) ( )
2

2 1 2 1 2 22i i i iE V u c dt W dt V u c V u dt V u dt o dtσσ  ′ ′′+ + = + + +   

因此，式(3.10)和式(3.11)可简化为 
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B x V u c dt W dt x f x x

H x V u c dt W dt

δ

σ
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σ
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然后将等式两边除以 dt ，并令 0dt → ，可得 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

1 12 2 12 12 1 120

22 110

21 1 1

d
2

d d

d
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u b u
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u
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σλ δ λ

λ
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−

−

−
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−

−

−

−

′ ′′+ = + + −

+ − + −

+ − +

∫

∫ ∫

∫

 

最后将 ( ) ( )( )1 2, 1,2i iV u V u i′′ ′′ = 移到等号左边，整理可得 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 1 11 1 11 1 112 0

1 21 1 10

2 d

d

u

u

V u c V u V u V u x x

V u x x x w u

λ δ λ ξ
σ

λ χ λ

  ′′ ′= − − + +   
+ − +

∫

∫
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∫ ∫

∫ ∫

 

将式(2.6)和式(2.7)代入以上四个公式，即可得式(2.1)和式(2.2)。 

4. 数值分析 
传统独立模型假设索赔金额大小与下一次索赔间隔完全独立，即索赔间隔服从 ( )Exp λ ，其中

1 2

2
λ λλ +

= ，设其破产概率为 ( )uψ ，在本节中我们考虑不同参数的数值示例来对比独立模型与相依模型。 

假设分红阈值 10b = ，分红速率 0.4d = ，保费率 2.2c = ，布朗运动扩散率 0.7σ = ，索赔额 iX 服从指数分

布 ( )~ Exp 0.25X ，索赔阈值 4iT = ，实际赔付金额为 ( )min ,Z X T= ， 2 0.35λ = 。 
当 1 2λ λ> 时，固定低赔付场景索赔频率 2 0.35λ = ，逐步增大高赔付场景索赔频率 1λ ， 1λ 分别取值为

0.35，0.5，0.65，0.8，0.95，其中 1 0.35λ = 对应独立模型 1 2λ λ λ= = ，设初始盈余 5u = ，则不同 1λ 下相依

模型与独立模型的破产概率对比为下表 1。 
 

Table 1. Table of ruin probabilities for positive dependent model and independent model 
表 1. 正相依模型与独立模型的破产概率表 

1λ  2λ  1 2λ λ−  ( )5V  ( )5ψ  风险偏差 

0.35 0.35 0 0.178 0.178 0 

0.50 0.35 0.15 0.234 0.178 0.056 

0.65 0.35 0.30 0.291 0.178 0.113 

0.80 0.35 0.45 0.348 0.178 0.170 

0.95 0.35 0.60 0.405 0.178 0.227 

 
当 1 2λ λ< 时，固定低赔付场景索赔频率 2 0.35λ = ，逐步减小高赔付场景索赔频率 1λ ， 1λ 分别取值为

0.35，0.25，0.15，0.05，0，其中 1 0.35λ = 对应独立模型 1 2λ λ λ= = ，设初始盈余 5u = ，则不同 1λ 下相依

模型与独立模型的破产概率对比为下表 2。 
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Table 2. Table of ruin probabilities for negative dependent models and independent models 
表 2. 负相依模型与独立模型的破产概率表 

1λ  2λ  1 2λ λ−  ( )5V  ( )5ψ  风险偏差 

0.35 0.35 0 0.178 0.178 0 

0.25 0.35 0.10 0.146 0.178 −0.032 

0.15 0.35 0.20 0.117 0.178 −0.061 

0.05 0.35 0.30 0.092 0.178 −0.086 

0 0.35 0.35 0.071 0.178 −0.107 

 
由以上两表可知，与相依模型相比，独立模型对破产概率存在一定的误差，与正向相依模型对比，

独立模型会低估破产风险，与反向相依模型对比，独立模型会高估破产风险，故相依模型更具符合实际。 

参考文献 
[1] De Finetti, B. (1957) Su Un’impostazione alternativa dell teoria del rischio. Transactions of the XV International Con-

gress of Actuaries, 2, 433-443. 
[2] Lin, S.X., Willmot, E.G. and Drekic, S. (2003) The Classical Risk Model with a Constant Dividend Barrier: Analysis of 

the Gerber-Shiu Discounted Penalty Function. Insurance: Mathematics and Economics, 33, 551-566.  
https://doi.org/10.1016/j.insmatheco.2003.08.004 

[3] Gerber, U.H. and Shiu, W.S.E. (2006) On Optimal Dividend Strategies in the Compound Poisson Model. North American 
Actuarial Journal, 10, 76-93. https://doi.org/10.1080/10920277.2006.10596249 

[4] Yang, H. and Zhang, Z. (2008) Gerber-Shiu Discounted Penalty Function in a Sparre Andersen Model with Multi-Layer 
Dividend Strategy. Insurance: Mathematics and Economics, 42, 984-991.  
https://doi.org/10.1016/j.insmatheco.2007.11.004 

[5] Li, B., Wu, R. and Song, M. (2009) A Renewal Jump-Diffusion Process with Threshold Dividend Strategy. Journal of 
Computational and Applied Mathematics, 228, 41-55. https://doi.org/10.1016/j.cam.2008.08.046 

[6] Lin, X.S. and Pavlova, K.P. (2006) The Compound Poisson Risk Model with a Threshold Dividend Strategy. Insurance: 
Mathematics and Economics, 38, 57-80. https://doi.org/10.1016/j.insmatheco.2005.08.001 

[7] Wan, N. (2007) Dividend Payments with a Threshold Strategy in the Compound Poisson Risk Model Perturbed by Dif-
fusion. Insurance: Mathematics and Economics, 40, 509-523. https://doi.org/10.1016/j.insmatheco.2006.08.002 

[8] Li, S., Lu, Y. and Sendova, K.P. (2019) The Expected Discounted Penalty Function: From Infinite Time to Finite Time. 
Scandinavian Actuarial Journal, 2019, 336-354. https://doi.org/10.1080/03461238.2018.1560955 

[9] 孙国红, 张春生, 季兰朋. Threshold 分红策略下带干扰的两类索赔风险模型的 Geber-Shiu 函数(英文) [J]. 应用

概率统计, 2011, 27(5): 543-560. 
[10] Albrecher, H. and Boxma, O.J. (2004) A Ruin Model with Dependence between Claim Sizes and Claim Intervals. Insur-

ance: Mathematics and Economics, 35, 245-254. https://doi.org/10.1016/j.insmatheco.2003.09.009 

https://doi.org/10.12677/aam.2026.151034
https://doi.org/10.1016/j.insmatheco.2003.08.004
https://doi.org/10.1080/10920277.2006.10596249
https://doi.org/10.1016/j.insmatheco.2007.11.004
https://doi.org/10.1016/j.cam.2008.08.046
https://doi.org/10.1016/j.insmatheco.2005.08.001
https://doi.org/10.1016/j.insmatheco.2006.08.002
https://doi.org/10.1080/03461238.2018.1560955
https://doi.org/10.1016/j.insmatheco.2003.09.009

	一类带扰动和分红策略的相依风险模型
	摘  要
	关键词
	A Class of Dependent Risk Models with Disturbance and Dividend Strategy
	Abstract
	Keywords
	1. 引言
	2. 模型介绍
	3. 积分–微分方程
	4. 数值分析
	参考文献

