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Abstract

Link prediction is a fundamental task for understanding the evolutionary mechanisms of multilayer
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networks. Addressing the issues of overlooking interlayer topological differences and node influ-
ence heterogeneity in multilayer link prediction, this paper proposes a comprehensive prediction
framework based on Modified Multilayer Initial Information Flow (M-IIF) and interlayer relevance.
First, a damping factor 7 is introduced to refine the IIF indicator; by simulating the physical process
of energy dissipation, the node spreading potential is measured with high precision, which effec-
tively suppresses numerical distortions induced by “super-nodes”. Second, an adaptive weighting
mechanism is constructed based on interlayer structural similarity to achieve the robust fusion of
multi-source information. Finally, a linear decoupling model is developed to integrate intra-layer
local and semi-global features for the calculation of final similarity scores. Experimental results on
multiple real-world datasets demonstrate the superiority of the proposed method, particularly in
terms of the Precision metric. The study indicates that the proposed algorithm maintains high pre-
dictive accuracy while possessing low computational complexity and favorable scalability, render-
ing it highly suitable for link prediction tasks in large-scale multilayer networks.
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1. 51§

A ETUHFER, FRMEIIR R 7R B R A2 REFIHAR M H U N k%0 TR E RS
HMEAFRMEEEN, HZRERMANGZDE, EBWHESXEE R RFR I T IEHE S &SN
PIEEBIEFE . T RACTT RUAIC R B —4EJE 1Y, WAL LA YRR EL N, XM EAREIC T
THEE L, Z0% T IS S8 B ) 2 PRI S Bt o P anet e 2 B, FH P [R] IS ZE A(S Ak FE BR
BUEAE A — AP 6 B TAEMB R A FVES AL AC e 1, SEHER R X P 2 4E 2 BArE, 2 R M2 218
I T o 2 )2 N2 A3 AT HLIR AT 55 B TN 2 R 00 I 4% 5 A LA JE N FR AR Z RS A S R3],
T 0 £ ERLGGRAR: (RS S B AR OR N AR A S, XA B HANME, A A USRI REES - & SR LR 4 X
[4], AEWERFARSS G, BRI MEERERZ, A S £ B0 5 K 5 25 Y88 551

Z R M BERR T RE H 2R 2 107, F A, B2 2 RAE T A FR R & 5L = i
6] Lk B E AR LR MO R 2R, IAME M 28 IR 2 s, At s, #HEMRERZZEME
(I, TR R A B E R IS R R 2 S MA— R (TR EZER, Lhhfds s, AR
HEMARERZ DA, FRFBTCNETRAERZEAN TN, ERMERNKERAKRKR, I
TEAD BERA RGN INER MG G ERZ KA, BEEETE ZRAE R, A 6E R TR,
2 RA G I (R TH0) [8], iETRIHERARAK, B4, DAFTE 17 A KN FE bR R B TS
FR[9], BHRENE BAE ML BALFEN 8RR g5 0 L, IXFE “EBT R (1018055 S 40 R s e 5510
HEMERESHMA, BEaANGEE SR EERR il DS BETP. RG-S 2 8 AN
B, RATUIE G BRI B 2 )

EEXT FIRBRER, A SCHEE T —ANRE St 2 I WIIR1E B (M-LIF) 5 J2 R A E I 1 256 T 4244,
E LS ZAGERE RN ST &, EROWAFEZIE b, AL GYII6(E SR febr(IF)#47 1
BT FEM[11], 5N T e EHL#](Damping Propagation Mechanism) [12]. ZAL #4015 S AEAE
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P R ARG 0 SREIR BT I, BERTS SR RRE R, SGE Mg R B e AL
KIEHRF T JREE 5 RHHRE . b, @B 50— WL [F A EAEHI(NCNT) [13], BRI 7 .
PR AR B ARG, AR T R RR B RS FE R 2. R, FERHIERL G @A b, 1A
WFr TS FEUE B 8 S A A, e 7 &M AEFRHESE (Linear Decoupled Framework) [14]. 1% 5%
PIAZOAE T4 s A B S R R B AR R RS AT A RS, X PR B AR TIs BT R, R
T RES ORI BE AL DTRREE 2 5 I A SR, kL 1 OR(E SIS E S E M B . &5, FXE
W T A5 B S e, ATt 73T 2 FMEAUE(CSL) ) B & SN T %6151, %707 ARk
JARCE, T2l TR B AR RS & AR B Z A4 R A S HE, AR oA E B IFIERR M £ CKM.,
TF. Vickers %8 LMY 2 2 N 28 B 4 LSRR, A SCT7VEAE Precision fabr EAMY A THi I | 1%
GrE A, AHECT NSILR [16])55 R0 2 )2 FA R B B35 RS FE AR 35 5 S he k.

AR TEFLZHWT: £ = RIBAHCHEIRIA; =18 M-IIF 5 2[R INBHE S 2 F 40 i3
NMEFEERRE; FITERRLNIE S 2445 WA &5 785 20 A ST S 45 AR Rk 5

2. FEHNA

N T AR R BUIAESE, X — R 2 2 W 2 B B T 8 2 A oW 2 5 R R B iR U AL 52
3G B 2R MR BRI WA . B E B S E B VIA(E S SRR AR

2.1. ZEMGEEE
R —ME LEXRRIZBEM%E XN B={G", .6V . WHERE: MAaaaks

V= {vavy,e vy b e N SRR RS B G = (V,M”) RE—FIREE IR RAERL, LRI
FEMLHRR, Hd Be{l,2, - L} . MR 5F BRI d A 47 ={afy}NxN k.

SRR x R Ry A5 B R AEAEE, WtEK al, =1, HNK 0. ASCEEBF LI LML, B A7 Ny
XFRHER -
RE (9 E) T AT x AR5 B IR MIREE SO T 571 ml x AERI AR E R, Roxh

N
k=3 aj 1)
y=1

2.2. §ERETI Q)RR
BEZEMS B, BR% G REGEHNKERE, H&EE {Gﬂ | B+ a} HNEBE . BATE HARZE R A
BNV, BERBEAM®. 5U AV FErE RS SX 5. SRR TN AT 55 255 AW 22 21
(RIASE U — M© d 43— 3455 (x, ) » TR MRS Sy (%, 0) « 18T S (30 IIEERK,
BT H x My fE B EESERP A getEE . PG H AR Bk 8 ER A HARE B30 5 0 ULE Gl Bh
FERIMERE R, ST ESDED RS T3S T AT ELE 5.
2.3. BERSEREERM

BT MR AT 2T BT B B g, AR S F LA B0, BN “ArE IR 1)
P EL R AT R SR
B 2 (BfE RO T— e x , B HRAERMEA P(x), WHAGEEI(x)E N
I(x)=—logP(x) )
Z0E R RAMZFBICHKFE NG, S S E LTS rE S, TS I 5 AE s
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W5 B IR BER o
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FER ML, X —BRGT AR . 7 ni RO REROR, A BE LI AE U5 ] O vy, 28 o
M5, RTINS, H A IR R S S DR AR )z, BERUINY mAE A 1)
HREEAENTT

24. MIBIERR

W28 R R A — AT R AT DAL — SR 5 B, Hm by B 2R AU T B 5 i
BRI, IESZERTIHPTAL RSB In I At . v 7R UM AR RS RS, AT AMIG(E B
IR . 19 R x IOEEREAI 4615 S I ol AR 1 P S L 5 AT SR I s e, e SN

_ ¢ Ir@or()

IIF(x)—yg(:x) — (kx,ky) k, )

P T (x) AR x AR,k TR R, &, TRy (R, min (k,. &, ) T HUE AT 2 )
JERIEE/IME . IR R BAEAR IR IR P2 TR -

25. RiEgaHaaitE

ZEMKEF TR, FNREZENHINEWITRATEEZEER. N T XoMBERTTEE, A
K ARSZA PR BRI HARZE o 5HBIZ B ZRALWERE N Q,
EX 4 FABIERCE) S TEER EAE o SHBIE B, MAERGE Q% N
>3 alalf
Q. = — -1 y:lz - 4)
) (£

x=1 y=1 x=1 y=1

ZIRREAL AN AL AT EESRE . N T REEL o BUEEREDN[0.1], Q Bk, i
WHBNE B 5 HARZE o MISSHIBATL, fEREATES J2 A5 B Al Ik 2 7 B ey
3. AIIRHBIFE

BUA 71 B A5 AR AR SR IRk SR 1R 25K S R K 1), AR Y 1 — A 2 2 BHE M1 4R 15 12
TLM-IIF) 5 AR AR & I 276 B0 757, XM 700 =AM 0 = A SERARALE 2 TR AR S
B2 25 B G .
3.1. ZEMARHMKRERR

&4 IIF FabRiA 9 S LSRN REREANAR, B 2% B A D0 I 3 A L, AU EE i 5 B4 B AR A5
MOz RE RIS, I AL BT A Sl RmmiME S, SIS . 4 5E 2 R M
fI%E B =, T R x BRI B E SO

M-IIF(x; 8)=n- Y, close(x,y;B)-k/ (6)

yerﬁ(x)
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FLSI Y 28 BLAE EAL FRIN S 2 Be S 2 RN A5 520, M-TDF 55000 7B JE R, 31X A R FH R A
1517 JEL 5 L AL R R B AR I BB AR 55 1 0L, BRJE A BUE TG, 27 1% F 1Y) PageRank B FIAH G
[ BE ML E ALY i (Ref_PageRank) [17], X HAE WA 0.85, MM UL, B2(E B4 —PReA L
B T 1 LE B (Retention Rate) [18],  fE R 11 IS LL B2 50N 751 22 B 2% 15 £ (Super-nodes) [ 101K R 2K 2 45
P {5 S BEUE AN B I oL, LB RS OGRS BB B R RME S, BRI e AL R 1 R
e

3.2. BERS RN

T T RS AR EE B AR T — AN ARG bR, 2 bR RS A Ot
SN . BRI, W R A (x,y) . LRI S7 (x,p) 5 CNBLF = AR
WML, SKEARDINSE o Sy P o

RN S (FLBEAE B S2 .« o i VG B2 AR, ARZE T4 A AL B A
(E B ST, A

Shr (x,y)=M-IIF (x; B) + M-1IF (3; B) (7

M-IIF (x; B) F M-ITF (3 8) 4B 5 x RISy (2 B R0 L
SEX 6 (FUABEHGHR) SL, A AN B0 R ML) AR ROTA0R, M T SR M S R B
XA

SACOE ®

H Ty (x) Wi x AREERA, 2 9 x My KAy, k2 LR E T 8 2 1R

SEX T (BIELIRALEALHN) Sheyy » AT IRANRFEARIVEARYE, ATSINE2REEMER . 5%
GBI ORI, ATREB R TKER 2 3 e, IR Sp, W AT A — AL, LA
LSRN

Spr (x.5)
Y4 , V)= prAT 9
NCNT (x y ) pa%ﬂy H X f 9

we path,w#x,y

Hep, P RORY R x5y ZIEKEEN 2 f 3 ARG S,  w OSBRI R (R0 we path How
AETR x, y), kL PN R w R B R,

SEX 8 (LRI A T715) 8P (x, )« SN SE p Al g, LRSI 1 W 244 2543,
JZ B AT R x ALy BISSRIAR AU E SO

SP(x,y)=p-Shr (x.3)+q-Spy (x,3)+(1- p—q)-Shenr (%, ) (10)
Hep, pEHASESHBERNRE, =6 RBEItELEE B FIBE, F45820 08 FIinbeE4 R sa
EiSH

3.3. BEIHEX MM

2 ZMh, FHAEFTEHBIZ A% B bn Z M T0NAE IEDiEk. N T E44HBZE 3T BicZ o K
KM, FRATTR AR B0 B 1) A% 5% AR ABLREE (CSL) AT I AL o

ESL 9 (LERIAR AR ) B A4 A1 A2 23 5N BAR 2 o FIEEBIE B X N2 FL 51 e AL AR B2 1)
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S T A S T 2 BT PR R R AR 03R40, 2 R R A 6 MR TR0 %2 (3 AT
TRCRA, WIS EL M S 1 2
S X 10 (B EHULLEA 4 EER B A OB, 5 2% (x, ) BRI A S, (x,) SN

Sina (,3) = ZQ S (x,y) (12)

K, LIREFEMBNEEL, Q, ®oRF B IZEGERE CSL 543 H), Y (x,y) BT
My 7255 B RRIE AR . BALGT Sh (x,y) BB, R R x My Z (B A7 AETE (L BRI (BUOR K
AEVERR) AT RETE KR

3.5. BEIERR

N T M IR ARSI R R AT E ], B0E 1 TRAIA 7 AR SR BT SRR
F% 1 FETHIRME BIRS B IRAH S 1) 22 2 00 45 i i Tt

BN ZRMEEES B= {G(l),G(z),---,G(”} s FEF ) B bR G R E S p,g , BRJE TR .
TFE

Wit ERRE R LIRS G A ARSI S, -

1. Wldal: RIAILT RV BB N WA AT HRE Sy, A EHRE.

BrBe—: THEJZ A AL (CSL).
SEHH Fp 2 ABHAE B R P AL [ B A
For f=1 to L do.

FREE B2 P AT B & A

L AREARO DI LRI E: Q, =

wm A W N

A“-A
A(|47]

N

7: End For,
8: H—BE: Q,=Q,/>Q,.
9: MrEt—: EWNFHERIE MRS
10: For f=1 to L do.
11: For & —XHMjik 15 %t (x,y) e U-M* do.
12: PHET AR SY)
M-IIF(x; 8)=n- D, close(x,z;ﬁ)-kf

zel"ﬁ(x)
SY) (x,y) = M-IIF (x; 8) + M-TIF (3 )

\ N - 1
13: WERBEHAESS: SO (ny)= Y

B
serp ()T 5(v) KL
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: g o8 o) Spr (x.)
14: l‘l’ﬁﬂéé)ﬁﬁgféﬁ\ESNCNT’ SNCNT(x’y): Z H I8 °
pathery v

ve path
15: PATE AL S : SV (x,p)=p-SY +q-SY) +(1- p—q)-S¥EL, .

16: End For.

17: ME=: BEERIES.

18: K E vk R &4 5187

Sﬁnal(x9y)=sﬁna1(x’y)+gﬁ'S(ﬂ)(x’y)

19: End For,

20: Return X Sg, (x, v) FEUE B 7 HES G R BERR 511K
3.6. BB E 2 5T

T BGUESRAEAE KB N 2 Ll 4 e, FA 10 b ST (R B2 24 5 o e Mg B N AN i, L2,
W25~ 1I R (k) o VST T s IF R R PR A 1 R, SRERNO(N) . v 2 AR
BO(1 M), Hrh M uilsHe. SEHAY RN SR BT AR RS A, Xt bR, S
WRO(L-(K)) . L KSR O(N-(K), K 5ZM R ON, RAVLFH
—8 2, UERH T AREVELERUERS I F B R H AR
4. KIGSHT

ARATNET LIV BOEE. SR, W ES. SR, I SRR aR /e A Jok R i
& 17-10875H AbH 2R (FEAEANZE 2.3 GHz). 16 GB NA-AH1 64 fif Windows 10 #:1E REEHITHENL 58 Bl
4.1. BIEERHR

T VRS TSR SR A R, BRATTHE N 55 AN (R S0 1 B SRR 4R B EAT T SRS, ISR HUR AR
GuiHs BIC BT % 1. AR ERMd T

CKM: XANEHRERA 7 VUAME EERAEZ I 2 Mt 2 0 &R, BIA S DTSR =A% 2.

Kapferer: 1ZHREE IS 7T — 548N T AN Z EL B ML, FEAE TELIAPIIA

HHAR
Krackhardt: 28805 5 — SR RHECE Ak i B 4, S i, FANACE A AR
CHR=AE.

Viekers: ZHARMAEE TR A4S R L E RS R R, AR5 BIREBLAI A A
OV ENIRR (P

TF: R A KAUBITER I Z 2R, 67 Twiter F& LI IEZA Foursquare F £ L
{4 R

Table 1. Statistical characteristics of the datasets

® 1. BREGIHHER

4 4E (Dataset) RP=E- () BHM) JZH(L) S (k)
CKM 246 1551 3 12.61
Kapferer 39 223 2 11.44
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Krackhardt 21 64 3 3.05
Vickers 29 376 3 25.93
TF 1486 32,258 2 21.71

4.2. B&EZx

BAVEA ST 1L S ERREHT T X . Hirp CNL RAL AA. Jaccard J& T2 $i i) 2 4R 5105
NSILR J&8 T £ Z# 5%, M-GCN fll GATNE J& TR 5L, & Yaifeai iR,

Common Neighbors (CN) [6]: X2 — N5 i [ 5 MBI & M B2 . Bl eit A 15 Al
(A A B B R B L R AR, HR ORI S L EAR R 2, A A AR T AR R
A REMERE R o

Resource Allocation (RA) [19]: ‘&% M AR B H R L 740 fm A2 il Ak fanne 0 B 25, i)
e FEHOTT R AL R B A AR ARV A DT SRS it Al ) e 42 07 =K

Adamic-Adar (AA) [20]: 5 RA Z¥fLl, 302 —ANid e 78 30 i B AR AT Sk et Ties B2 iy nBLF e b -
ANFIHIAE AA SR EOY 200 3L [m 48 J& 1 BE AT IR, A EE RA 457 TR FET ml B8 i R B R A

Jaccard [21]: ZFEAE PN RALEE G E GG, H—ARARLIERE &, TR AT a4
BERZ FHITIAUE, B FA0EAE N S TA A8 ke sk b it el 2 25

NSILR [16]: 1% /2 2 JZ M2 T A R & 7715, V852 18] B A 58 REU(PCC) ML E, 242 RA
FRAMAEAS S AU IN . FR AR BN JZAE B85 B AR AR .

GCN [22]: 77 Bl B AE T 2 S R ARG AR E, (HxX Ry “ G MR EGEHRAE
7 %5} 2 ) S o Mk R o PRI P 8 B 5 0% B ERIRRAIE. < 3ok FE S0 TSR 17 S f) S s P 45 o

GATNE [23]: IX I T0UZ RN [ 24 7 28 S5l i 3 55 WL A AL 248 B Dk, (L 0 25080 2% B )
AR, T BB T B R ) 4 5 R I i DR S BT AR T P NS

4.3. TR

AT FE R B T 3 4 5248 AR AE h 2k T T A (AUC) MU 1 3 (Precision) A IFA F 5 o

AUC 7 8 50E WA X AL (IEREA) A IE L (TREA) I RE ) HWFLR SO Bk
B 2 R P (3L (SR IGETD) AN — R AR NI, 5% Il s 20w T AR AS 0 R 3t
AR

_n'+0.5n"

AUC (13)

n
Hrr, n AHERB R, o ASERIR D KT AL KR, n" AER D ARSER K. AUC
BB R, USRI B AR e E 0B
Precision JJE 2 TN FIR P HEZ 6 L 2 SR . @ XONTERT L /NTRINGE b, SERRfEfE T
DR 3L g e«

Precision = % (14)

Hrp, LRI TINEL R, L RRIX L0 PN ARG FE D%, Precision BB, Ui SREALE K
P HEA T B T A v

DOI: 10.12677/aam.2026.152045 15 N H it e


https://doi.org/10.12677/aam.2026.152045

XM

4.4. KRR

4.4.1. BRMRED T

F 2R T AR MATTF HESR 5 AR 28 772 4E AN B S Ba 45 L RS RE T PE R L . A
ME, SEREE AR T M-IF J7alid G 2 TG B 5 2 B A5 RAE,  1EAS [F) R T 1 1 2% h F 3
AR TGS 7. 5 CNL RA SEEGRMTaAnAHLL, M-IF £ERS i B2 (Precision)fE br FHUS T 13542
Tty XA K 25 p R . BlanrE TF R4 -, RIVEL 0382 /e irRA)H
Precision /¥ 0.6920, 1fii M-IIF 1A 2] [ 0.7494. iX EEHK T B2 8bn 208 748 2RI TAMS S, 1M
AR SCHE SR E L J2 AR G A LG S SR G 7 2 2 S A 23R, AT £ T 75 A 158 v e B R v 1 iR
T FLSERERS . SRUETER A R E b M-TIF 1) AUC $2FHIR B 5 J5 348 R AR Lo Ab TRl — 2= 4%, (RAE SEBrifid
g, AP ESEHEA TSI RE S, Rl M-IIF 7E Precision b (LR BIER T L ELA Ak 42 R fE
J7 R B2 7 2 H A S v 1 S s B R AN B

I H 5B SE ) 2 )2 I 28 B0 NSILR LB e thoA SO v I B PR 35  NSILR £ TF A1 CKM
HARELRIAH, HEMMESVLHERR E SN, 2™ HEKZR T, Krackhardt #0448 FiX 00 58 m
&, NSILR 7EIX M #E4E | AUC FlI Precision 735l /2 0.5604 F10.4795, LUEEAH B2 BEMK, HIL
TEATRE VIR, M-TIF £ Krackhardt 235 5V AR MR £ 4, AUC #1 Precision 43l /2 /2 0.6470 1 0.6065,
SEFHMER T NSILR, 3 1t B AR SCFH (1 26 14 AR AT 22 AN B Je A& SR ML Kb B2 (R R 4S50 22 B /L, 4544
SAREUR TR Z E M B, e B 2 R FRZ AR I AIAR e TR AT .

SHof b ol B PRIV 2 1 535 M-GCN Al GATNE, A 5757E AUC 1 Precision - #RR B T A4
SRR HE . R M-GCN TET fUor AT B3 51 FIE 0 % FER AR 4R CKM ARSI TF 5 A7
A R Te 5 1, (EREHAD/NUEHELE -, M-GCN [ “ITREEF " SHRiNER U™ &,
GREFARMBGhR SR, SEHE N RERIME S ERTURE BATHRE, MITE SR
PEEE R PRI Z AR SIS &2 o T GATNE [ “¥4 8 30 7 T3-S B4 R A E R AE 2% 2] B34,
GATNE 7EA K SEL () Fir Ay Bl 4 IR IR AL, JUHAE Kapferer H', AUC 1 Precision {4 0.4544 #
0.4448, Vickers [] AUC F1 Precision 1N 0.4718 F1 0.4592, HIL T ™ EKFM IR *FE M-GCN 5
GATNE [ AFaEM:, M-IIF W SA5 S nAafd. PR OEIIE | 7EACHE 2 2 M 28 BERR TR, 5] NP3 U
TR BE R A L 5 e VEMEARBHESE 1) 0 2L o IX AR B S5 M e 30 AR I 778, A RBAR B b U8 2 8] 30
HNFERE TR BTN, S REERAR M B IAEE T ORFFAR TR, S T FIUINKS B 5 3w AR
RO B R (1) 1)

Table 2. Performance comparison of different algorithms on the datasets

2. BIRMAEEER

Methods CKM Kapferer Krackhardt Vickers TF
AUC  Precision AUC  Precision AUC Precision AUC  Precision AUC  Precision
CN 0.6552  0.5000  0.6869  0.6209 0.5640 0.5684 0.8100 0.7307 0.8646  0.6524
RA 0.6583 0.5000  0.6992  0.6440 0.5909 0.5926 0.8356  0.7380  0.8720  0.6920

AA 0.6579  0.5000  0.6979  0.6472 0.5808 0.5811  0.8300 0.7311  0.8695  0.6909
Jaccard 0.6543  0.5000  0.6810  0.6321 0.4994 0.5152  0.7804  0.7049  0.8431 0.6753
NSILR 0.7380  0.6429  0.7586  0.6957 0.5604 0.4795  0.8579  0.7750  0.9086  0.8511
M-GCN  0.7512  0.6270  0.6371 0.6058 0.5802 0.5851  0.7627  0.6942  0.9086  0.8452
GATNE  0.5250  0.5628  0.4544  0.4448 0.5767 0.5054  0.4718  0.4592  0.5895  0.5637

M-IIF 0.5936  0.5685  0.6676  0.6336 0.6470 0.6065 0.7766  0.7525  0.8255  0.7494
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Figure 1. Performance comparison of different algorithms on five datasets
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4.4.2. BEHBMED

9T W S AR R A [ 0 PR AE LR I B C LG, AR SOR T A 1 2R SIS TR T p €[0.2,0.4] AN
q€[0.3,0.5] ZFA A, BN AUC HEREXT LI 3. SRg0Z5 R, M-IIF BVEN SHCE LA =
AR MR . B AL S, AR E BB & e — SR 5 LI BUE A, TR N —ANFE
[ PR AR . B R R AT CUR L, BRI SR SRR A BT P RE USRS R 3, (HA4
BRT ik 55 0 2 ) 35 RA b il 5 SO B 7 57 0 A0 PN 45 v s B e 50

TR S EMIREINHE R, AURAKSHEENp=035¢=04, XERFT LMET 4
AR RIS S m M AR 2 R 3:4:3 P FIRERE . FRATTZ BT DU RRIX — A FE LR, 2D 40%11) R
FBUE A OR T BERR IO A ACRE B, T A% 15 30% 7T s ) 5 KRB ARG B R] T B 1)
VER o 5 ) 76 6 31 TF 54 B 00 R R R 28 I, 33 b 3 0 A 28R b T 41 S SR 2k (R Bk, S
T O IE S AR N KA AR E AN o S B UUIR I RIAESRTE T, %0 B AE T SRR S B AUC R
WHARE, SRS REMEZEPRERNRZ 0.01. XFMESHEEEN & E—SEEN, 3:4:3 HFIHMBRIEUE
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Table 3. Effect of parameters p and ¢ on the performance

R 3. BH p Mg HEEMRERFME

P q CKM Kapferer Krackhardt TF Vickers Average
0.2 0.3 0.6224 0.5764 0.6302 0.7970 0.7600 0.6772
0.2 0.4 0.6264 0.5799 0.6254 0.7953 0.7717 0.6797
0.2 0.5 0.6281 0.5903 0.6136 0.7935 0.7795 0.6810
0.3 0.3 0.6151 0.5920 0.6052 0.7928 0.7799 0.6770
0.3 0.4 0.6145 0.5938 0.6052 0.7915 0.7817 0.6773
0.3 0.5 0.6185 0.6007 0.5969 0.7900 0.7860 0.6784
0.4 0.3 0.6105 0.5938 0.6017 0.7904 0.7839 0.6760
0.4 0.4 0.6117 0.6007 0.5945 0.7892 0.7904 0.6773
0.4 0.5 0.6134 0.6059 0.5850 0.7880 0.7921 0.6769

443, BEEREIH

T TS ISR AL K IUBIN Z R mr Je e, FRA T i (8] 5 2 FE AT T BRie 4 3 SR it .
AREE T ET F B HRHE AR RACE TR AR O R AN . SREHER TR, M-
IIF Sk e i B B 2R A O(N~(k>2) o MTHETHIR: 3 4 R T AR S i R A E AR HIE R
I (A SR FEXT L o 5 R IR ER SRR XS L. R HZE R PR CN, RA, AA #RNFHEHE el E, S
FER O(N-(k)z) o AINEBRRGINT ZZRENLH], (A5 T2RVMEMARIES, FRSCRRER R A 5
I, XRRPAARBEIRLESINZEEAME B FER, REF 7 5&E RN RERRE SRS, 5
HZRFEREIEMNZ R R EIEMLL, RSO R T B RN ARG IRIEIEN, bR R BN
WRRE B T NBERGREAIREL, d 7T SR ANFFERIZERE, s AT AU BENLIEE 7515
w NI E, T M-GCN i 25 BB ER,  BLA GATNE B HFE R (1) BEALIEE K AE 5 M
BESHA L, M-IIF KRB T “ %l Z5(Training-Free)” (B 4EIL . IR IE S SIRIUAE TF S5 KB E 4 45
A RERENBAL S THERFE, A S R B U Y I e A R S5 R TR SR EURRAE,
FEVHEITAE ESCIl T BN BRI R4, IXAESCINHERE &5 = A i B 5T B AR B TR AT AT M
S 5 ER AT — BRI, ARFAAE A ERAL EHOUT N AU TF K IUBEE SRR SR S 2%, TERH T AR LRIE
TS BT B R ER, B Ry etk

Table 4. Algorithm time complexity comparison

%= 4. EEREE ZE ST

el HARTT i I 1) 52 2%
RS CN/RA/AA/Jaccard o(N-(k)’)
%R NSILR o(L-N-(k))
FoneE I 1 M-GCN O(T-M-d)
FORFATTH 2 GATNE O(T-(N-s-w-d+M))
ATk M-IIF o(N-(k)’)
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4.4.4. JHFACIS

SEIREE R ande 5 FioR, fE TF. Vickers Ml Krackhardt %52 MR EH, BRI JE R2%(w/o Damping)
JEH AUC 5 Precision ${H 5 5¢ SR S i &0 X — IR WL T BB R FLEBE RS TR i« RRARSF”
Fetk: T BRI n fE N2 R4a T80 155 — 2 N B SR T RS2 AR A7 {BAE CKM 3
R b, BRI SE AUC M 0.5936 %4 0.5951, X RIS B B A ML, HENL
) B e ) R B RE OIS, AR LT B AR PR R, IIEL bR B T & mHET . 2
(] R 75 SRS PRI X LB s 17 & RO L 1] & M-TIF 8 P [ % 00 K5 . 76 Krackhardt F1 CKM £ 4E I,
KSR EFIA (Equal Weight) FEUPERE IR B, H A Krackhardt 1) Precision M 0.6065 JillFF %
0.5117, CKM ffJ Precision M 0.5685 k% 0.5224. XA JJHER] TESG M T ltEiRm 2 24, §H
A AR 2 S E R T E M “ TR T, M-IIF it CSL ARt i Z A A0 e, &8 7“5
BaTuEes” R, B T HIBEE B IE M. BT RS M Y B AR RRE (Local Only) SR8 AT DLV EE
B, AT AR SRR B R 25 I B AT SR R o E TF KBRS, UR B R 3R E S8 AUC
M 0.8255 [A17% % 0.8189. T1fifE Kapferer 44 I, #Fk NCNT J5 Precision M 0.6336 FIF%E 0.6159.
EIERUS /NI Krackhardt 209 4E R ERFIER I — @ B UL, (B4R 28R4 RE, NCONT #2
BER KRR N R BN I AR AL T L B SRR, SRS R A ) TR 1 E BE S L % B TR,
THRSEEGESE T M-IIF R —NMA ) B A AT BRI S A TTER . ShaS IR 67 57 i 8 2 18] e 75 DL
SoF R E RS RS, T LB AR B AR A A R PN R AE . SRR TR R B A R T
W o

Table 5. Performance comparison of the ablation study

5. JHRRASKIR M REXTEE R

CKM Kapferer Krackhardt Vickers TF
Variant
AUC  Precision AUC  Precision AUC Precision AUC Precision AUC Precision

M-IIF (Full) 0.5936  0.5685  0.6676  0.6336 0.6470 0.6065 0.7766  0.7525 0.8255  0.7494
w/o Damping 0.5951  0.5707  0.6761  0.6308 0.6097 0.5950  0.7772  0.7525 0.8221  0.7474
Equal Weight 0.5799  0.5224  0.6738  0.6647 0.5661 0.5117  0.7777 0.7456  0.8077  0.7382

Local Only  0.5909  0.5628  0.6715  0.6159 0.5925 0.6172 0.7835 0.7456  0.8189  0.7453

5. &g
SRR IA 22 52 0 4% T 7 39570 AT 2 IRV AN RS %5 AR R T T JRIR, MR T —A

Rl B0 22 R A6 05 B (M-TIF) 5 J2 [ 90 A G R 258 TN SR A4 o ASHIT ST B o (B AR ILAE LT 8 2 -

F— BARFE TR S AR S G, B S B ah J s 3 I B 4R 5 e, i 51
ANFENUIFIE T M-IIF FERARA . MR DO HEZ ] 119 s A2 2 I Ihh A R3h e, Sl 1
REEAERILA], RRIDREE T R SURRIBME M E, 5 BT R A 5 s it 1S BB AR
MR TB. AR, SAPEMRSEIR RIS, BOR T RN SN IEAE R S AR b a3k, AROERR T
JURTHE . 55—, BRI rh Al B2 5 B R R 35 ATEHR AL, A SOt s 2 HMAELUE(CSL) B
TGN S T EELIER” M. 2L RENS R BO M BNE S B AR R R 2k 3y, fEzhis
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SRR E . U NE B, ﬁ?ﬁg%}géﬁﬁﬁO(ﬂN'(l{)z)%éﬁ, XIS FE 5 2R P AR A
HR B R AR 2 2 g i B S T 9 e itk . JRERSRCR, BATTHIMT 78 7 104 ) BE IR 2 R I 4 B 4
. —J5H, AT ZRITHERSEMIRS], % M-IIF BLgHE 28 F 2 )2 M %5 (Temporal Multilayer
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eI AR B 25 (GNN) PSR AE ML G RE IS & X R “5F'5 + B4 RGBT, HEEL
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