
Advances in Applied Mathematics 应用数学进展, 2026, 15(2), 34-44 
Published Online February 2026 in Hans. https://www.hanspub.org/journal/aam 
https://doi.org/10.12677/aam.2026.152047 

文章引用: 王序然, 孔旺. 一类时间分数阶电报方程解的初始奇异性[J]. 应用数学进展, 2026, 15(2): 34-44.  
DOI: 10.12677/aam.2026.152047 

 
 

一类时间分数阶电报方程解的初始奇异性 
王序然，孔  旺* 

南京航空航天大学数学学院，江苏 南京 
 
收稿日期：2025年12月27日；录用日期：2026年1月21日；发布日期：2026年1月29日 

 
 

 
摘  要 

时间分数阶电报方程在描述具有遗传与记忆特性的反常扩散过程中具有重要作用。然而，此类方程的解

在初始时刻附近往往存在奇异性，这源于分数阶微分算子的非局部性质，并且会显著影响传统数值方法

的精度。本文主要研究一类时间分数阶电报方程的解在初始时刻的奇异性，通过运用Laplace变换法，将

方程的解进行分解，构造出关键的积分算子，通过分析这些积分算子及其各阶时间导数在 t 0+→ 时的渐

近行为，最终严格证明了解本身及其直至三阶时间导数在初始时刻的奇异性质，并给出了其奇异强度的

精确估计。该正则性分析为后续设计能够有效处理此类奇异性、基于非均匀时间网格的高效数值格式提

供了理论依据。 
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Abstract 
The time-fractional telegraph equations play a crucial role in describing anomalous diffusion pro-
cesses with hereditary and memory properties. However, the solutions of such equations often ex-
hibit singularities near the initial time, which stems from the non-local nature of fractional differ-
ential operators and can significantly affect the accuracy of traditional numerical methods. This pa-
per focuses on studying the singularity of solutions to a class of time-fractional telegraph equations 
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at the initial moment. By employing the Laplace transform method, the solution of the equation is 
decomposed, and key integral operators are constructed. Through analyzing the asymptotic behav-
ior of these integral operators and their time derivatives of various orders as t 0+→ , it is rigorously 
proven that the solution itself and its time derivatives up to the third order possess singular prop-
erties at the initial time, with precise estimates of the singularity strength provided. This regularity 
analysis offers a theoretical foundation for the subsequent design of efficient numerical schemes 
based on non-uniform temporal grids that can effectively handle such singularities. 
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1. 引言 

热传导是一类经典的自然过程，对物质扩散与热传导的建模一直是研究的热点领域。自 Cattaneo 对

Fick 定律提出修正模型以来，近年来引入的分数阶导数进一步拓展了 Cattaneo 方程的应用范围。分数阶

Cattaneo 方程适用于描述许多具有遗传与记忆特性的过程与材料，能够捕捉相关的反常现象[1]-[6]。相较

于传统的整数阶微分方程，其在描述实际过程方面更具优势，因此已成为解决科学与工程中一些应用问

题的关键工具。 
本文考虑如下在有限区域 [ ] ( ]1,1 0,T TΩ = − × 上的时间分数阶电报方程的数值解[3]： 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]
( ) ( ]

1
0 , , , , , , ,

,0 , ,0 , 1,1 ,

1, 0, 0, ,

t t x
C

x T

t

D u x t u x t u x t f x t x t

u x x u x x x

u t t T

α

ϕ ψ

+ + = + ∈Ω

=



 = ∈ −

± = ∈


 (1) 

其中 ( )1
0
C

tD w tα+
表示阶数为1 α+ 的 Caputo 分数阶导数，定义为且 0 1α< < 。 

分数阶电报方程在描述反常扩散现象方面展现出巨大潜力，因此其求解备受关注。尽管已有同伦分

析法[7]、分离变量法[8]、Laplace 变换法及 Fourier 变换分析[6] [9] [10]等方法被应用于时间分数阶方程的

解析求解，但所得解析解往往过于复杂，难以投入实际应用。因此，通常需要借助数值算法对时间分数

阶电报方程进行数值求解[6] [11]-[22]。 
在数值求解之前，需要考虑到方程的解在初始时刻附近可能存在的奇异性。这种奇异性源于分数阶

微分算子的非局部性质，它使得解在 t = 0 附近的光滑性降低，从而影响传统数值格式的精度与收敛阶。

若依旧使用均匀时间网格，即使采用高阶格式，也可能无法获得理想的收敛速率。 
针对这一问题，非均匀时间网格的引入被证明是一种有效的策略[23] [24]。通过在初始时刻附近加密

网格，可以更好地捕捉解的奇异行为，从而恢复数值格式的预期收敛阶。对于时间分数阶电报方程，其

解在初始时刻的奇异性分析是设计高效稳健数值格式的重要理论基础。 
因此，本文的核心工作是深入分析时间分数阶电报方程的解在初始时刻的奇异性。我们将运用Laplace

变换工具，对方程的解进行分解，并通过分析解算子的渐近性质，严格证明解及其时间导数在 0t +→ 时

的奇异性，为后续构造非均匀时间网格的 L1 有限元格式提供了理论依据。 
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2. 时间分数阶电报方程解的正则性 

本章深入研究了时间分数阶电报方程的解在初始时刻的奇异性。首先，通过基函数展开和 Laplace 变

换法将原方程分解，并利用 Laplace 逆变换得到了解的显式表达式。另外，通过对核函数 ( )k t 和 ( )k t 的

高阶导数进行严格估计，揭示了解在 0t = 附近存在弱奇异性的本质特征。理论分析表明，即使初值和源

项光滑，解的高阶时间导数在初始时刻仍可能无界，这一结论为后续设计非均匀时间网格提供了理论依据。 

2.1. 方程的分解转化 

2.1.1. 基函数展开法 

设 ( ){ } 0k k
xφ

+∞

=
是 ( )2 ΩL 中的一个标准正交基，则对于任意一个函数 ( ) ( )2 Ωw x L∈ ，存在唯一的数列

{ } 0k k
a ∞+

=
使得函数 ( )w x 可以展开为 

( ) ( )
1

,k k
k

w x a xφ
+∞

=

= ∑  

函数 ( )w x 范数的平方表示为 

( ) 2 2
2

1
.k

k
w x a

+∞

=

= ∑  

由于 ( ) ( ) [ ]( ) [ ]( )2 1
0, 1,1 1,1x x H Hφ ψ ∈ − ∩ − ，并且 ( ) [ ] [ ]( )( )3 1

0, 0, , 1,1f x t C T H∈ − ，于是方程中的 ( )xφ 、

( )xψ 、 ( ),f x t 可按上述方法展开 

 ( ) ( )
1

,k k
k

x a xφ φ
+∞

=

= ∑  (2) 

 ( ) ( )
1

,k k
k

x b xψ φ
+∞

=

= ∑  (3) 

 ( ) ( ) ( )
1

, .k k
k

f x t f t xφ
+∞

=

= ∑  (4) 

此外，假设解 ( ),u x t 可以展开为 

 ( ) ( ) ( )
1

, ,k k
k

u x t u t xφ
+∞

=

= ∑  (5) 

将(2)~(5)式代入方程(1)，对于每个 k ，都能得到一个方程 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , 1, 2, , .t k k t k k k k k kD u t x D u t x u t x f t x kα φ φ φ φ+ ′′+ = + = +∞  (6) 

2.1.2. 分解方程 
由分离变量法，展开后的第 k 个方程可以拆分成只含时间变量 t 和只含空间变量 x 的两个方程 

( ) ( ) ( ) ( )
( ) ( )

1 ,
.

t k t k k k k

k k k

D u t D u t u t f t
x x

α λ
φ λ φ

+ + + =
′′ = −

 

把(2)~(5)代入方程(1)的边界条件，得到相应第 k 个方程的边界条件 

( )
( )

0 ,

0 ,
k k

t k k

u a

D u b

=

=
 

于是可以得到分解方程 
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 ( ) ( ) ( ) ( ) ( ]
( ) ( )

1
0 , 0, , 1, 2, , ,

0 , 0 .

C
t k t k k k k

k k t k k

D u t D u t u t f t t T k
u a D u b

α λ+ + + = ∈ = +∞


= =



 (7) 

2.2. Laplace 变换求解过程 

2.2.1. 解的拆分与方程齐次化 
注意到方程(7)的初始条件都是非齐次的，直接进行 Laplace 变换较为复杂，可以把解 ( )ku t 拆分成 

 ( ) ( ) ,k k k ku t v t a tb= + +  (8) 

其中 ( )kv t 是使初始条件为 0 的解。将(8)式代入方程(7)，并令 ( ) ( )k k k kF t f t t bλ= − ，方程转化为 

 ( ) ( ) ( ) ( ) ( ) ( ]
( ) ( )

1
0 , 0, ,

0 0, 0 0,

C
t k t k k k k k k k

k t k

D v t D v t v t F t b a t T
v D v

α λ λ+ + + = − + ∈


= =
 (9) 

这样就得到了可用于 Laplace 变换的方程。 

2.2.2. 方程的 Laplace 变换和逆变换 
对整个方程进行 Laplace 变换，由变换的线性性质和导数的变换公式 

 ( ) ( ) ( ) ( ) ( )1 1 ,k k k k k k k ks v s sv s v s F s s a bα λ λ+ −+ + = − +

    (10) 

其中 

( ) ( ) ( )
0

e d .stw s w t w t t
+∞ −= =   ∫   

整理得到 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1

1 11 1 1 .

k k k k k k

k k k k k k

v s s s F s s a b

s s F s s s S a b

α

α α

λ λ

λ λ λ

−+ −

− −+ + −

 = + + − + 

= + + − + + +







 (11) 

先对(11)式的第一部分进行 Laplace 逆变换，若设 

( ) ( ) 11 ,k kt s sα λ
−+   = + +   

则有 

( ) ( ) ( ) ( )
11 1

0
d .

t
k ks s k F s t s F s sα λ

−− + 
 

+ + =


−∫   

再对第二部分进行 Laplace 逆变换，设 

( ) ( ) 11 1,k kt s s sα λ
−+ −   = + +   

由于常数 ( )k k ka bλ + 不改变 Laplace 逆变换的值，即 

( ) ( ) ( )( )
11 1 1 ,k k k k k k k ks s s a b t a bα λ λ λ
−− + − + + ⋅ + = +  

   

于是得到了解 ( )kv t 的表达式 

( ) ( ) ( ) ( ) ( )
0

d .
t

k k k k k kv t a b t t s F s sλ= − − + −∫   

解 ( )ku t 只需在解 ( )kv t 前面加上初值条件，即 

 ( ) ( ) ( ) ( ) ( )
0

d .
t

k k k k k k k ku t a tb a b t t s F s sλ= + + − − + −∫   (12) 
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将(12)式代入(5)式，可以得到 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1 1

0
1

,

d ,

k k
k

k k k k k k k k k
k k k

t
k k k

k

u x t u t x

a x t b x a b t x

t s F s x s

φ

φ φ λ φ

φ

∞

=

∞ ∞ ∞

= = =

∞

=

=

= + − +

+ −

∑

∑ ∑ ∑

∑∫





 

再代入(2)~(4)式，即可得到解 ( ),u x t 的一个表达式 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

1 1 1
, d ,

t
k k k k k k k k k k

k k k
u x t x t x a t x b t x t s F s x sφ ψ λ φ φ φ

+∞ +∞ +∞

= = =

= + − − + −∫∑ ∑ ∑    (13) 

其中 

( ) ( ) ( )

( ) ( ) ( )
,

,

1 11 1 1 1 1
Γ

1 11 1 1
Γ

1 e d ,
2

1 e d ,
2

st
k k k

st
k k k

t s s s s s s s
i

t s s s s s
i

θ δ

θ δ

α α

α α

λ λ

λ λ

− −− + − + −

− −− + +

= + + = + +
π

= + + =

 
  

 
  + +

π 

∫

∫

 

 
 

积分区域为 

{ } { },Γ : , arg : e , , , , 0.
2 1

is s s s s θ
θ δ δ θ ρ ρ δ θ δ

α
± π π = ∈ = ≤ ∈ = ≥ ∈ > + 

   

2.3. 奇异性定量估计 

2.3.1. 核函数上界的估计 
(13)式中较难处理的是 ( )k t 和 ( )k t 这两项，所以需要先对这两项值的上界进行估计。 
引理 2.1：对于 ( )k t 和 ( )k t ，下面的估计对所有的 ( ]0, , 0t T m∈ ≥ 成立 

 
( ) 1d

,
d

m
k m
m

t
Ct

t
α+ −≤


 (14) 

 
( )d

,
d

m
k m
m

t
Ct

t
α−≤


 (15) 

其中 C 是与 t 和 k 均无关的正常数。 
证明：先处理 ( )k t 和 ( )k t 共有的部分，通过因式分解可以得到 

 ( ) ( ) ( ) 11 1 11 1 ,k ks s s s sα αα αλ λ
−− − + − ++ −+ + = + +  (16) 

根据积分区域 θ的值，复数 s 主幅角的绝对值为 

( )arg , .
2 1

s
α

π π ∈ + 
 

由复数主幅角的运算法则 

( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )1

arg arg arg , ,
2 1

arg 1 arg 1 1 , .
2

s s s

s s

α

α

αα α αθ α
α

α α θ α

−

− +

π π = − = = ∈ + 
π = + = + ∈ + π 

 

 

复数的加减与向量类似，角度介于二者的最大最小值之间 
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( ) ( )( ){ } ( )( ) ( ) ( )( ){ }1 1 1min arg , arg arg max arg , arg ,ks s s s s sα α αα α αλ− + − + − +− − −≤ + ≤  

代入二者主幅角的范围可以得到 

( )( ) ( )1arg 1 .
2 ks s ααα αθ λ α θ− +−π
< ≤ + ≤ + < π  

令
( )11 1ks s zαα λ − +−+ + = + ，其中复数 e cos siniz r r irφ φ φ= = + ，求1 z+ 模长的平方，并令结果为 ( )f r ，

即 

( ) ( ) ( )2 2 2 21 1 cos sin 1 2 cos ,z r r r r f rφ φ φ+ = + + = + + =  

对 ( )f r 求导，令其导数为 0，找到使模长最小的 r 

( ) 2cos 2 0,f r rφ= + =′  

求得 cosr φ= − ，带回 ( )f r 可得 

( ) 22 2 2 2
mincos 1 2cos cos 1 cos sin 1 ,f zφ φ φ φ φ− = − + = − = = +  

即最小模长为
min1 sinz φ+ = 。复数 z 的主幅角为φ ，它的范围为 

( ) ( )( ) ( )1arg arg , 0, .
2kz s s αα λ φ α− +− π = + = ∈ π ⊆ π 

 
 

由于 0 1α< < ，无论α 取何值，只要给定α 的值，一定能取到 sinφ的最小值，令其为 ( )minsin Cθφ = ，

则有 
( ) ( )

( )

1
minmin min

11

1 1 sin ,

11 ,

k

k

z s s C

s s C
C

αα
θ

αα

θ

λ φ

λ

− +−

−− +−

+ = + + ≥ =

+ + ≤ =
 

于是得到(16)式的上限估计 

 ( ) ( )1 11 .ks s C s αα λ
− − ++ + + ≤  (17) 

接下来估计 ( )k t 和 ( )k t 导数的值，由 Laplace 变换的导数公式 

( ) ( ) 11 1 1d
,

d

m
k m
m

t
s s s k

t
α λ

−− + − = ⋅ + +  



  

再由 Laplace 逆变换公式 

 
( ) ( )

,

11 1
Γ

d 1 e d ,
2d

m
k st m

km

t
s s s s

it θ δ

α λ
−+ −= + +

π ∫


 (18) 

令 s x yi= + ，则 ( )e e e ex yi tst xt iyt+= = ⋅ ，其模长为 

( )e e e e e e e ,Re s tst xt iyt xt iyt xt= ⋅ = ⋅ = =  

由三角不等式 

( ) ( ) ( ) ( )
, ,

1 21
Γ Γ

d
e d e d ,

d

m
mRe s t Re s tk m

m

t
C s s s C s s

t θ δ θ δ

α α− + − −−≤ =∫ ∫

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积分路径 ,Γθ δ 要避开 ( ) 11 1m
ks s sα λ

−+ −+ + 的奇点，可以分为圆弧和射线两部分来计算。其中圆弧部分

角度 ( )arg s θ≤ ，令 ( )1 1e cos sinizs z i z
t t

= = + ， s 的模长固定为
1s
t

δ= = ，则该部分的积分为 

 

( )
,

21cos2

Γ

1 cos

1

1 1e d e cos sin d

e

,

d

m
t zmRe s t t

m z

m

C s s zC i z z
t t

Ct z

Ct

θ δ

α
θα

θ

θα
θ

α

− −
− −

+ −

−

+ −

−
= +

=

=

∫

∫ ∫

 (19) 

射线部分取 ( )( )e cos sinis iθρ ρ θ θ±= = + ± ，其中
1s
t

ρ ≥ = ，则该部分积分为 

 ( )
,

2 cos 2
Γ 1/

e d e d ,mRe s t t m
t

C s s C
θ δ

α ρ θ αρ ρ
+∞− − − −=∫ ∫  (20) 

在(20)式中令 ( )1,x tρ= ∈ +∞ ，积分转化为 

 

2
cos 2 cos

1/

1 c

1

os 2
1

1

1e d d

,

e

e d

m
t m x

t

m x m

m

xC x
t t

t x x

Ct

α
ρ θ α θ

α θ α

α

ρ ρ
+∞

− −
+∞ − −

+ − − −

+ −

+∞

 
 
 

=

=

= ∫

∫

∫

 (21) 

综合(19)和(21)两式积分的上限估算结果，可以得到 ( )k t 导数的上限估计 

( ) 1d
,

d

m
k m
m

t
Ct

t
α+ −≤


 

再由 ( )k t 和 ( )k t 的特殊关系 

( ) ( )1

1

d d
,

d d

m m
k k m
m m

t t
Ct

t t
α

+
−

+= ≤
 

 

其中 C 是与 t 和 k 无关的正常数。 

2.3.2. 解的时间导数估计 
根据引理 2.1 的证明结果，可以证明解 ( ),u x t 在初始时刻的奇异性。 
定理 2.1 设 ( ) ( ) [ ]( ) [ ]( )2 1

0, 1,1 1,1x x H Hφ ψ ∈ − − ，且 ( ) [ ] [ ]( )( )3 1
0, 0, , 1,1f x t C T H∈ − ，则存在一个正的

常数 C，使得 

 
( ) ( ) ( ]1

2

,
1 , 0,1, 2,3, 0, .

m
m

m

u x t
C t m t T

t
α+ −∂

≤ + = ∈
∂

 (22) 

证明：根据三角不等式，当 0m = 时，(13)式的范数估计为 

( ) ( ) ( ) ( )( )2
2 2 2

22 2 0
1 1 1

d ,
t

k k k k k
k k k

u t t a t b t s F s sφ ψ λ
+∞ +∞ +∞

= = =

≤ + + + + −∑ ∫∑ ∑    

前两项可由简单的估计得到 

( )
2

2 2

2

1
2

,

1 ,
H

H Ht t t α

φ φ

ψ ψ ψ+

≤

≤ ≤ +
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第三和第四项可由展开式和分离变量法计算得到，由引理 2.1 可得 

( ) 1 ,k t Ct α+≤  

再由分离变量法和(2)式 

( ) ( )

( ) ( ) ( )
1 1

,

,

k k k

k k k k k
k k

x x

x a x a x

φ λ φ

φ φ λ φ
∞ ∞

= =

′′ = −

′′ ′′= = −∑ ∑
 

得到第三项的估计 

( ) ( ) ( ) 2
2 2 1 1

2
1

,k k H
k

t a Ct x Ct xα αλ φ φ
+∞

+ +

=

≤ ′ ′′≤′∑  

同理，第四项的估计为 

( ) ( ) ( ) 2
2 1 1

2
1

.k H
k

t b Ct x Ct xα αψ ψ
+∞

+ +

=

≤ ≤∑  

第五项可由三角不等式拆成两部分来计算 

 ( ) ( )( ) ( )( ) ( ) ( )( )2 2 2
2 2

0 0 0
1 1 1

d d d ,
t t t

k k k k k k k
k k k

t s F s s t s s s b t s f s sλ
+∞ +∞ +∞

= = =

− ≤ − + −∑ ∫∑∫∑∫     

其中，第一部分由引理 2.1 可知 ( ) ( )k t s C t s α− ≤ − ，再令 t s x− = ，对积分使用区间再现公式 

 

( )( ) ( )( )
( )( )

2 2
2 2 2 2

0 0
1 1

2
2 2

0
1

2 2 2

1

d d

d

,

t t
k k k k k

k k

t
k k

k

k k
k

t s s s b

C

C

C t s s s b

x t x x b

t b

α

α

α

λ λ

λ

λ

+∞ +∞

= =

+∞

=

+∞
+

=

−

= −

=

≤ −∫ ∫

∫

∑ ∑

∑

∑



 (23) 

由(3)式和分离变量法 

( ) ( ) ( )
1 1

,k k k k k
k k

x b x b xψ ψ λψ
∞ ∞

= =

′′ ′′= = −∑ ∑  

代入(23)式可得 

( )( ) ( ) 2

2
2 2 2

0
1

d .
t

k k k H
k

t s s s b Ct xαλ ψ
+∞

+

=

− ≤∑ ∫   

第二部分可由 Holder 不等式得到 

( ) ( )( ) ( ) ( )( )2
2 2

0 0 0
1 1

d d d ,
t t t

k k k k
k k

t s f s s t s s f s s
+∞ +∞

= =

− ≤ −∫ ∫ ∫∑ ∑   

由引理 2.1 和(4)式 

( ) ( )( ) ( ) ( )( )
( )

( ) ( ] ( )( )1
0

222 2
20 0 0 0

1
1

22
20

1
0, , Ω

d d d , d
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, .

t t t t
k k

k

t

C T H

t s s f s s C t s s f x s s
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α

α

α
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最终得到 0m = 时的估计值 

 ( ) ( ) ( ) ( ] ( )( )2 2 1
0

1
2 Ω Ω 0, , Ω1 .H H C T Hu C t fα φ ψ+  ≤ + + +  

 (24) 

接下来再证明 1m = 时的情况，对 ( ),u x t 求导得 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

0 0
1 1

, 0

d d ,

k k k k k k k k k k
k k k

t t
k k k k k k k

k k

u x t x a t x b t x t f x
t

s f t s x s b s x s

ψ λ φ φ φ

φ λ φ

+∞ +∞ +∞

= = =

+∞ +∞

= =

∂ ′ ′= − − +
∂

′+ − −

∑ ∑ ∑

∑∫ ∑∫

  

 
 

与 0m = 时同理，前几项可由引理 2.1 和(2) (3)式得到 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2
1 2

2
1 2

2
1 2

,

,
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k k k k xx
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k k k
k

k k k
k
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α
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=
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=
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=
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≤

∑

∑

∑







 

另外，最后两项由范数相关不等式可得 

( ) ( ) ( ) ( )
( ] ( )( )

( ) ( )

1
0

1
0

1 0, , Ω

1
2 20 0

1

2

2
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∑
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最终得到 1m = 时的估计值 

 ( ) ( ) ( ) ( ) ( ] ( )( )2 2 1 1
0Ω Ω 0, , Ω

2

, 1 .H H C T Hu x t C t f
t

α φ ψ ≤ + + + ∂  
∂  (25) 

类似地，可以求得 2m = 和 3m = 时 ( ),u x t 导数的表达式 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2
1 1 1 1

0
1 1
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∂
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  
 

并且可以仿照以上方法分别估算出二者范数的上界 

 ( ) ( ) ( ) ( ) ( ] ( )( )2 2 1
0

3

2
1

2 Ω Ω 0, , Ω
2

, 1 ,H H C T Hu x t C t f
t

α φ ψ−∂  ≤ + + + ∂  
 (26) 

 ( ) ( ) ( ) ( ) ( ] ( )( )2 2 1
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3
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2
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https://doi.org/10.12677/aam.2026.152047


王序然，孔旺 
 

 

DOI: 10.12677/aam.2026.152047 43 应用数学进展 
 

综合(24)~(27)式，可以得到定理 2.1 的结论，即 

( ) ( ) ( ]1

2

,
1 , 0,1, 2,3, 0, .

m
m

m

u x t
C t m t T

t
α+ −∂

≤ + = ∈
∂

 

2.4. 解在初始时刻的奇异性对数值格式的影响 

由定理 2.1 可以看出，解 ( ),u x t 的时间导数被不等号的右端项控制。 
当 2m = 时，有

1
2ttu Ctα−∂ ≤ ，又因为 0 1α< < ，右端项在 0t → 时发散；当 3m = 时，有

2
2tttu Ctα−≤∂ ，

右端项发散速度更快。 
即使初值 ( )xφ ， ( )xψ 和源项 ( ),f x t 光滑，解的高阶时间导数仍在 0t = 处无界，这是由分数阶导数

的非局部性和记忆效应导致的结果，所以需要调整初始时刻的时间网格，以提高数值格式的稳定性。 

3. 结论 

本文运用 Laplace 变换法，深入研究了时间分数阶电报方程的解在初始时刻附近的奇异性。 
首先对方程进行分解和变换求解，将解的表达式表示为一系列积分算子 ( )k t 与 ( )k t 的组合形式。

然后分析这些算子及其各阶时间导数的渐近性质，严格证明了解 ( ),u x t 及其时间导数在 0t +→ 时的奇异

性。此外，本文研究的时间分数阶电报方程在时间方向上包含分数阶导数算子 1
tD α+  与一阶导数项，这区

别于经典的时间分数阶扩散方程。在初始奇异性方面，时间分数阶扩散方程解的奇异性阶次已被证明为
mtα− ，而本文定理 2.1 证明电报方程解的奇异性阶次为 1 mt α+ − 。这一对比表明，方程解的初始奇异性主要

由最高阶时间分数阶导数主导，低阶导数项并不改变奇异性的主导阶次。同时，所获得的精确奇异性估

计为时间网格的划分提供了依据，即通过加密初始时刻附近的时间网格，提升数值格式的收敛速率。 
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