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Abstract

The time-fractional telegraph equations play a crucial role in describing anomalous diffusion pro-
cesses with hereditary and memory properties. However, the solutions of such equations often ex-
hibit singularities near the initial time, which stems from the non-local nature of fractional differ-
ential operators and can significantly affect the accuracy of traditional numerical methods. This pa-
per focuses on studying the singularity of solutions to a class of time-fractional telegraph equations
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at the initial moment. By employing the Laplace transform method, the solution of the equation is
decomposed, and key integral operators are constructed. Through analyzing the asymptotic behav-

ior of these integral operators and their time derivatives of various ordersas ¢— 0", itis rigorously
proven that the solution itself and its time derivatives up to the third order possess singular prop-
erties at the initial time, with precise estimates of the singularity strength provided. This regularity
analysis offers a theoretical foundation for the subsequent design of efficient numerical schemes
based on non-uniform temporal grids that can effectively handle such singularities.
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