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Abstract

In the analysis of competing risks data, the Fine-Gray proportional hazards model combined with
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Inverse Probability of Censoring Weighting (IPCW) is a commonly used method. However, traditional
IPCW weights may lead to unstable estimates when handling censoring. To overcome this limitation,
this paper introduces a machine learning-enhanced inverse probability weighting method, which
incorporates the target event probability predicted by machine learning as the numerator into
weight construction and embeds the resulting weights into the estimating equations of IPCW. Fi-
nally, the Sandwich variance estimator is adopted for statistical inference. To verify the feasibility
and robustness of the proposed method, several mainstream machine learning algorithms are se-
lected to generate the predicted probabilities in the weights, and a case analysis is conducted based
on public data from R packages. Compared with traditional IPCW and DML, the proposed method
yields valid and stable estimates. Moreover, sensitivity analysis confirms the robustness of the re-
sults. The findings indicate that this method exhibits certain application potential in the analysis of
competing risks data.
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1. 51§

TEBE Y AR SRR BT, B E K2 R A 1. Wl
S5 R A B R A RS B AR T o SR, AESERRRBE DT I RE A, BFFU0 RATAT: (RN R BR AE 2 Fh B R (1Y)
ZEREAE RSN, BIAMATTRRZ ) 2 PR B (S, H—Fh S 00 R A 2 K ABRAG AR A R A . Bk
B = AR T Gt b R — N R e BB ) . “SE 4 X7 (Competing Risks). #1401, 7EH S8R AEIGTT
BE U HEE R MEAR ORIE T 7S A B 1 BRI SR I 5 A o G SR R A% 4 14 43 17 J7 (U Kaplan-
Meier VEEUFRHE Cox 15AY), H43E H AR M 2 (Censoring) Rt BAAEMER, o &l H iR R
BURAER, IR a B2 HIa T . KL, A 7 AR300 B RA 5 3 XS, MisZER R
.58 3 56 4 RS HE 1 20 M 7 i

Fine fl Gray (1999)#& i T ¥ 4317 L )X\ 578 (Subdistribution Proportional Hazards Model), 8 # #
PN Fine-Gray #MY[1]. Jf HAZJTWEE IRAETE S WIGAEZE N RGETIN 1 R AL (IPCW) i) A8 .
FETE S BB 1, WFFE 0 B (%048 hr /2 R 1H R A4 B3 (Cumulative Incidence Function, CIF), RIZER}
] 35 ¢ Z B0 R A k ke M, WA F, (1)=P(T<t,6=k). N T CIF H#EM, Fine fl Gray
(1999)5] N\ 1 14> i A B8 $(Subdistribution Hazard Function) {2, ‘& 248 ¢ IF % & A H R34 1 5 st
PR o R AR T 7 Y,.*(t)zl{lj >t 1(7; <1, ¢k)} s BIFE RSB i BRI AEBE VT A4S, s R A
S FAFAME . Fine-Gray 1Y BLEEXT 140 A1 WU EAT @8, HE T

2 (BZ,)= 2, (t)exp(ﬂTZ,.) )
Hrf 2y, (1) RFEGT A WK AR P LA R B Ak T AR B CIF AR, EL A B0 A i R S
M Fine-Gray BALTE Mt 40 A KU 9 T B IEAT IS FTRE A SR A . BRASRA T IPCW 7,
"2 FEL M 9 ) ). Kaplan-Meier {1 G (¢) K A XU 42 P9 OO PRIt T AL TR, et G (¢) 2 M 2 2 A o
(Censoring Survival Function). BT 7 FEU0 T -
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U (B) = gj'(:wi(t){Zi —Z(l,ﬂ)}dN[(k)(l‘) =0,

Hrp
z;:le (t)Z./ eXp(ﬂTZf)Y; (1)
3w (exe(82,)Y; (1)

AR BN f RIFRHEIR R sandwich 7593575, RAERASEHL. T IHLEg M s &g S E
Wi, Fine-Gray #2745 W0 A 3 4 UG BUHE 0 IT ATk ) “ e hnitE” o« ASOK Fine-Gray BERY 4 1145 B A
REBATHEH B ML-IPCW HEZEREAT ELEE I 274

IS5, Robins, Hernan 5 Brumback (2000)7F A SRAEWT (1) bras i RIMESE T, E—B 5% 7 IPCW
FIFRRBEAT[2] 0 (FIXEE T RO T — /N oSt . F T U SR A e A 2R A Z5 i IR R . B 3K
PN, AL 58771k B R ) N, LR 27 > A & R0 A 55 v R L AR 1 DI B F) ol 12
AR T — MR R AT ST T ) R AR 2 S ORI R ) 5 IPCW JTiEAHES & .

HHT, Z MR ER RS AR PR EE . H—, RIS IR FBCEMS T Fa et 4
U1, Lee, Lessler 5 Stuart (2010) Rt LLAR 1B 0105 2 FPbLES 2% ) FIEAEAG THIT 43 20 5 TH IR I3 ]
AR, AL B RER SRR T E B E D R 2 . X — %O AR e IPCW X A
MR U ) R AL 7 OCEE R . L, ¥ IPCW TR R IR ANLES 22 ST B, (S HRe i A
KA s . Kvamme, Borgan 5 Scheel (2019)% IPCW AU -5 g4 22 I 2 U451 K e 25, BDRF IPCW A E 3¢
DAREANFEARBIRS, ARAER T N 2% Re i BLFE AT AEAE T (4], 28 =, TES— MRS HUELR N T &
B ASRRL A X  2 iT R) SR DR S Ry P AN RV R 2 B Y 2, AL 28 2% 2] (Double Machine Learning,
DML) AL i) ¢ KALSR i 1 (Targeted Maximum Likelihood Estimation, TMLE) A3 /772% . H /1, Chernozhu-
kov 55 N (2018)F2 Hif¥) DML HEAL ik B0 508T, JA7E R SRHEWT 22 A Af FAT B R AR LA 7 S AU 42
BTG RER(S]. FEAWETTH, ATR DML HEZEN A T 384 XS s, 5 /Ei@id 5 ML-IPCW X Fine-
Gray fARRGEXSEE, PRk AN E VAL w0 A 7570 B 28 & TR AR A5 BSOS Al TH RS v . k4L,
Stensrud &F A (2022)7E 56 MBS IREE R, 58 ) Bz K ALSR A7 7 (Targeted Maximum Likelihood Estimation,
TMLE) 5 L& % 21 456 UMliTh “RI 0B R08 7 o« TMLE B Ao fd B g2 5] 3 (— A 2 L as 22 SISk v
BBV RAIEEAL THEE R A RATL, SR 5 85— A3 T 52 i ok B A (m) P R AT — 20 08, DA BIRR
i ESHEURMEEE[6]. XF AR RE NG ET, LAY ] IPCW MESHIE0
RO MEZRN, R TR R &SR

REDAW AN E]E IPCW 4G ER FOFREdR, EXEEPF TR —=2&F
ML A IPCW AR “RTERE” , BISOEMIRMER M1t ZRAEE RN S — 4 T 7%
o [HIRDHW A ERI N2 3 45 5ok Fa e IPCW T AR B (7 Z 0 . Kk, ASCRFEAE IPCW
T AR BB AL IR Y S ANLES 5 S TRE =S, DGR B 73 A AR e . R T X — g, $2H—MHL
A S BB ) IR R S AL (ML-IPCW) St —HEZE . IZAEZEHIAZ O AE T WG BENLARMR . AR PR A P $E 7t
XRFIENLS 2 R R AL TR E LA 2 S EE AT B AR SRR N o TR, R
PR IPCW 77 e ARSI T R A8 1 BE A A8 A 15 204 (EBMT4A)idE A7 S22 A, DLEGHIE T2
R VAR S 3 4 XU B3 T A A S S P A

2. AF AR EEAFRNSFEIGFENS
2.1. ML-IPCW L E 5 kit 518
L4510 IPCW A EE 5 M RN R B B T IR, F DMB IE M A7 SR B o SRT, 27 VEEE A

ZIPCW (t,ﬂ) —
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BRI T 0 A3 BRI, IR 0 il v 28 SRl £ DR — 8 70 RO AR S AL B i 2R A
PE[7] 35T 1, A SCHR A LR 2% SRR RAT 21— AN P 1 Lt 2 1 19 9 1) IPCW AL (ML-Enhanced
IPCW Weight):

’

ML )4
G2
K8 G (4| Z,) = P(C>1,| Z,) B4 Cox LU RSB E], FITAEIEM % 5T p, BAFRA T H
(RIHLAS 2 ST E Fo ERAMA T R HAR AR p, =P (S, =1]Z,) « SR T A iy 3
LA s, FHULRIRE, ffilaTr 2.
ASCHEE RS B R AR BT B bR R R AR AR (EA5 % Cox A7 1) (i fBUSR FEAR IR
Fine-Gray B8Rk M SE A FRATER ) ML B4 E f5, 45 H APl 1175 #£(Weighted Estimating
Equation)> R #Iff tHE . X F HArFM, HAGTH 7R

UM (B)= z [Tw) ()){z,~ 2" (1.8)} aNY (1)

X (0)Z,e0(8°2,) Y, (1)
> i (t)exp(B'Z,)Y; ()
BT %05 PRI A AT IR, A SO I B AR SR B B B B MR, AE R hiHE B . ST
R LS HO M S EME, A SCEA Sandwich 77 &t EHE AR, HERN: A*IE(A*l)T, I
180U (B) 1

¢2=—n§ o ,B=;§U%(ﬁﬁW%ﬁfo

ZML (t,,B)

p=p
2.2. AT EMENINSRZEIFZENR

AHE TR —FBr A AR TT 58, A ORI IR 2 SRR 0 (1 H bm A BER AR BUE IR 73
To NRIRIZIT RGN, FATER T 4 FhE R 2 Bl i 2GR R I 0 SR AT Se LS L
PR BT F AR 0 i R RAERFEE(O=1).

2.2.1. FEHLFR#A(Random Forest, RF)

BENLARAR A — Mo R AR B ) B, BB M R B i IE 2R & LTl 45 5k T . Jhdid i
ABEHLAL (Bagging) MURFAEBELACICHA DR Bk PR 0 AT 22 S, AT A 28500 4 405 (8] [9]0 % T4 B AE 55,
S5 2R TRUIIABE 2 b I AR P TR0 &85 SR P 3 15 30

BARSHL b, BRI A R ) randomForest fLIEE T — N or AL . 12452 1y g 7 AR B4 78 SUN
HARFA R ARES, NPT L AR SRR TN 7. iR B A e WS, JATTRE DR S 1
BV E N 300, [FIE 25 S 25 AR SRR AR, @i classwt ZHCNE R EGNIR T 7 IIAL
R PE BRSSP ECR AR A RE T BIALIZRTE e, @IS R BT R R S 45 S R A B R T
o Bl Ty A ARFAF RIS p(x) AR A B ARV BT 45 Fi 5 i 5P 2 (B R L
(Z)EEER
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Ht 7, (x) FoR 8 b MBS REAS x TR, 1(T, (x) =1) 2 — MRS, 258 b BRI FZE 8 H
PR IUE Y 1, S EUE N 0.

2.2.2. HBREEERFA (Extreme Gradient Boosting, XGBoost)

XGBoost & —Ff =y RS BT TH LS S . el I AR B R — R AR, B R 2 )
H ARER 2 AZ I /T — BN BT =22 5% % - XGBoost [R% O A E T HAE B Ar ek B0b 2 Ui o 7 1= 04650,
Itig F I Ze 8 R P AT AT bk, AT E ORUEAR Y 52 0% P2 11 R S 1 SEAR e S5O B2 [ 10]. #2568 ¢ AR
i, HAr s/ MG IEI4E H bR ek £

£0= X033+ (x))+ (),

Hob ARG PR~ VR ITIAE, £ R R, Q R ST S A B IE LT, A T
LA, XGBoost 1 —Fir 28 8 e T4 H AR s B0 «

n

=3 f () 3 hf7 () [+

i=1
el g, =0 (v 37 ) W By = 0203, 370 ) A BB G BRHL —B R —BBE

AICHIH xgboost B, FHRHLFEFEAIFRZE RGP R G50 . B BE 9 — 7 KB AR ImIH, IR
PR RS B AT U ZR: 4250 0.05, KRR 4, BEFLRAER 0.8, B2 300 #ikAUR,

St AN E T B F (x) = Y £, (x) . Fob £, AR 1 3R, 200 MBI Sigmoid B Mk
B BRSO BURER p(x) -

2.2.3. XHEEEWL (Support Vector Machine, SVM)
SCRFIAEAL(SVM) & — ML T Gi i 27 S BRI 5K 70 2R 4%, Hoaz O JB AR S — BRI 2R A i
Moo B IR, FR B KA 7 SRR, I B RIFRVZACRE I [11] [12]0 X T EAEA AT - 1] 3, SVM
BBV AT K(x[,xj) = ¢(xl,)T ¢(xj) W A N B30 B i i 3] s 4 AR AR S (8], AT A 12 25 ) o A 5 — A
K ) BRI o b, AR SO Y AR R 2R A% pR 2 K(x,.,xj) = exp(—y"x,. _xj"2) PR i K S 90U BE D
M) ZfEH . SVM LA IR AT AR IR A
%géuw"%cg; sty (We(x)+b)21-8,620,i=1n,

Hoh, CRIENIZE, AT T KARS )RR, & RINIDER,
AT 1071 QLI SVM TR . 2% 5& 3 B AR F AR R AT Be o5 bu b, FATIE 17 2RI

EH%%&@%&@%%%&E«%@%W%&,%ﬁﬁ@%ﬁ%cemiuAﬁm@{bié}E%ﬁ

B, LURE 4 L0 AUC MR U biite, SRR LB M4 . S, I Platt 00245 SVM (054 vk

TR £ (x) BN R R A i

N _ B N 1

bx)=Ply=1]x)= 1+exp(A-f(x)+B) '

Hrh 24 A M B BRI IESE i/ MEAE OB IR
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2.2.4. ZEBHIYL (Multilayer Perceptron, MLP)
% 2 BFIHL(MLP) 2 IR BE 5 =) Sl s LAt U i i 2 I 4 158 . Jl T 2 2 AR 2R PR, MLP REf% DL
A RS P8 AT R S ek B, BT I R I I e RS K I RFAE R T J[13] — M FR#ER) MLP HH N JZ
/b —ANEEZ G E R S SFT R SRR, S5 E R B T
a = ()= o (W0 45

w O F1 Y 43 5 9 iZ 2 R AR R A B R, o) g AR gk v MO B B B I 1 A 4
(backpropagation) 54 & T P (gradient descent)fi/IMEA 2% bR B (4058 SUR), DA% ) et 240
TEARSCIISEIL A, FATTEH nnet BAGEE T — /N FREEGEUZ 19 MLP. WS E5 65 6 MRGBUZ T A, IF
KH Sigmoid Wod B . NP IE, FATRE T IEZRRECN Se—4, XML TAESKREHIMA
TL EDW&@?%"W"Z o it ZFIFEE A Sigmoid Wod s, (R EEEN T 0 2 1 2, fENHR
FHE T p(x) o HIFHEALR:
. _ 1
px)=olz) =
Forpz 2t 29 s B N o AR AL Y e RIE A E 500 BEATIIZR, AR R 78 73 U8
2.3. WMHLEEE S (DML)IESR

5 AIE ML-IPCW HE S AE DS S HE W 7 T i A g P , ASBIF 7 [R] i R F UL 2% 2 ] (DML)E 9 BRI 0] E
DML & —FiEE T2 S50 R SR AW v, A% O fE T8 58 XA (cross-fitting) 55 Neyman 1EZZ L
FOR, HIEXRT S — i BOWLAS 22 SRR T H R ZE A R Al vH &, AT SRS 5 AG a0 T 25 1 1) R SR AR RE A o
IR A RN BAE X A

TEARFFERISSET AT b, X TR 20 A B AR B R (I TR PR I6 9T . B ARy SEle = A I
FCAE L), FRATH Hogfid A —oab A& D, OB E N X, 4iREEY NEREMHERLE. ok
FEABENL 288 K iy, W TRE— 8l b, SR K -1 0 B IR BEPLARRAR Y 4b PRASE Y
g (X)=E[D| X| 54 Rt ™ (X)=E[Y| X], 755 k t9 ¥ EiHIERR SR %: D, =D, -¢"(X,) 5
Y=Y-m™(X,). Odiig/h=3RET T =0D+¢ 35, BIA K GEIRFHETHETY, RAE54
BN AT B 0, M7 2. BATH 6 A1 BN 2 il 5 R AR, 73305 A M R B8l -

IR RBEAE T HAIE IS0 By = (W;50,n) » FHWIMESE w =(Y,D, X)), nuisance 23
n=(g.m). HIEEEBH(6,,n,) L IELZHKME: 0,E[w=(W:6,1,)]=0, IARME R HflitisoE
PR, UARTT LASE] 6 (1 n — MAATE, IFHWEAAMENE BE XN, 2R W E R . R
2o 5 my PHE—MEEFE, O TP s EA S B X2 R E, 24K DML S, FATT6E
8 S A ARG IR 36 S (R 57 T A VR 2% i R SR AR 1, ANTTT S ML-IPCW & Fine-Gray 154 (1) 25 SL % i
ARG ZUAELIIRTEL, RNV AN [F) 7 V5L 76 5 KU B8 v () R I S

3. LIS
3.1. BIBRKBRENBESZXERE

AW 5K F I BEE 4R R 8L mstate TP EBMT4 $ii4E, 2 ¥0EE0 G2 IR B BB
BEMBEVT 7R, S BERETRAREERE, BREAYNSITEE L 2279 ], HhERFEL 370 4
(16.8%), FET-HAF 533 11(24.2%), M2k 1376 51(59.0%). W& BOLBEM AMEEE R, T NESE
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o FRIBHIRBT IR (1x) BEMLAE MY (year)s 48 71 2 (agecl) A 3 VL RCHE Ol (match) Ty B AR & . HARHT
FARARZE WAL 1. AYGUEFTHE H RIHLAS 2 ) 45 A MRS I O IR 7 V2 0 R, RS ke T B L
FRMR(RF-IPCW). A3 B2 3 FH(XGBoost-IPCW) . SCFF [ EAL(SVM-IPCW) F1 2 2 B EIHL(MLP-IPCW) /Y
FhbLES 2 IR, I LIAE S Fine-Gray #5851 A 5 S 1E NS AT LR 9 HT -

Table 1. Variable definitions and meanings

F1 EEBENEEX

W7 As & 5E X kK
time FAH T [a] Bifi 17 i) [B] (Months/Days/ Y ears)
1: HIsFHMHEKR)
status AR 2: mHHMGED)
0: %
x i no (E&LSIR)
yes
<1990 (FLLZ17)
year M Ay 1990~1994
1995~1998

<20 H(RLSI)

agecl R 20-40
>40 %
2R R
match i LR 0 full match (ZE£2 2 if)

gender mismatch

32. FEHER

%2 R T B OTERIENA R BT R T ML-IPCW {5759, TG IT (rxyes) 3 Eos H &
F PRI RN, HXUSE EE(HR)PE 1.733~2.331 2 (8], X RNAHAT T X HRAL, #2352 Fills 76 7 1 52 R AR 24
NREEZFE I 1.7~2.3 £, RITRT PGS 5 R KBS T 29 71%~131%. X —& RIEG T2 Lm 8 B
(p <0.001). %%t Fine-Gray BAG v+ 10 B MG ST BB AN BN HR = 1.277, p = 0.047),  HIHAR AL &
WAL . W I RN AL TH S LA 22 S TR AE W R 22 e o HLES % 2 J7 v — BB AR B IR A% AELAE 4
(1990~1994. 1995~1998) 145 &1 FHI4EHY (20~40 % . >40 )58 K XG4 N5, Fine-Gray #% KA H i
FHRUL, T RE T MR AL G AR R T BAG TR T, T ML-IPCW Jl e 5] A\ Fe 8 (R 224 1
W, DML 15 3 {0 T35 98 77 28 At HHEL(HR = 1.039, p = 0.050)453 RN H AL T G it ¢ B E v 7,
A A EE I B RS, X ATAER T DML it 1E2e 4k i R o AT Rt das i) 1l e 1 75 0 R 4 1)
R E, Wb 7R E ik .

N B AR IRAIE £ 2 h &AL (45 Fine-Gray ) [ SE PR IXK 70 2 RE 11, ASBFFCHEAT T
AIRALESAIE o R T8 — BB AY, FRATT S o8 55 L Dy e 6 B8 T £ XU 23 B (ML-IPCW 1) 7748
S RMES p(x)» Fine-Gray BB LM TG X B). WRIGHRAE LB i %, K B BA N “
PR ZHAD “ARARS: ” 4H., FE e SR XS 4N, SR A Aalen-Johansen EZE 5 vk Al i R UK AR bR
H(CIF). oo mlEr v s, IR S84 KRR B TH B H bR AR (R E RO M B R A R 3L 95% 8
fF X[,
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Table 2. Comparison of effect estimates of recurrence risk factors across different methods

2. MR AN E L KK E = AR T

BE A HR 95% CI (HR) p1H
T I 16 7 (yes vs no) 2.310 (1.762~3.029) <0.001
FEAEAE17(1990~1994 vs <1990) 5.492 (2.127~14.182) <0.001
\ FAEENT(1995~1998 vs <1990) 4.810 (1.843~12.551) 0.001
LA FER T E(20~40 B vs <20 %) 6.754 (1.358~33.598) 0.020
FEREE40 & vs <20 B) 5.861 (1.177~29.196) 0.031
fit % LA (gender mismatch vs full match) 1.726 (1.321~2.255) <0.001
TR PEIRT (yes vs no) 1.714 (1.315~2.234) <0.001
B A (1990~1994 vs <1990) 5.517 (2.155~14.125) <0.001
IR 4 FER AN (1995~1998 vs <1990) 5.839 (2.251~15.146) <0.001
FER D E20~40 B vs <20 %) 8.261 (1.651~41.340) 0.010
R E40 B vs <20 B) 6.542 (1.308~32.728) 0.022
it VT2 (gender mismatch vs full match) 1.580 (1.206~2.072) <0.001
THBA MG FT (yes vs no) 2.278 (1.738~2.986) <0.001
FERAEA(1990~1994 vs <1990) 6.104 (2.362~15.778) <0.001
— FER AN (1995~1998 vs <1990) 4.993 (1.919~12.993) <0.001
FER D E20~40 B vs <20 %) 6.458 (1.298~32.135) 0.023
R E40 B vs <20 B) 5.125 (1.028~25.549) 0.046
it VT e (gender mismatch vs full match) 1.534 (1.175~2.002) 0.002
TR 1 ¥R T (yes vs no) 1.718 (1.316~2.243) <0.001
FEREAEA(1990~1994 vs <1990) 5.466 (2.135~13.994) <0.001
& AL FAELENT(1995~1998 vs <1990) 5.883 (2.265~15.280) <0.001
FER Y E(20~40 % vs <20 %) 8.325 (1.663~41.672) 0.010
FERNEE40 % vs <20 ) 6.509 (1.302~32.543) 0.023
it 2 VL FC (gender mismatch vs full match) 1.598 (1.218~2.097) <0.001
B P67 (yes vs no) 1.277 (1.003~1.626) 0.047
FAEENT(1990~1994 vs <1990) 1.153 (0.887~1.499) 0.290
Fine-Gray Hi! FEAEEAT(1995~1998 vs <1990) 1.051 (0.790~1.398) 0.730
R4 2 (20~40 % vs <20 %) 0.892 (0.697~1.141) 0.360
FWTE40 B vs <20 %) 0.845 (0.623~1.146) 0.280
fit % LA (gender mismatch vs full match) 1.037 (0.817~1.315) 0.770
TR 4R T (ves vs no) 1.035 (0.996~1.076) 0.080
FERAEA(1990~1994 vs <1990) 1.023 (0.982~1.064) 0.273
—— FEAELENY(1995~1998 vs <1990) 0.978 (0.939~1.019) 0.286
WY E(20~40 B vs <20 %) 0.985 (0.949~1.023) 0.442
FEW R0 & vs <20 B) 0.967 (0.924~1.011) 0.141
it LA (gender mismatch vs full match) 1.003 (0.968~1.039) 0.886
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B 1R T &ET B B8 M CIF thek. Z5R 8RR, fERWLE I (DML) 7k, XK H 51K
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Figure 1. Comparison of CIF curves stratified by the median risk of each model
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Table 3. Logistic regression results of the propensity score model
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Figure 2. Distribution of propensity scores in the treatment and control groups
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Table 4. Comparison of effect estimates after propensity score adjustment across different methods
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