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Abstract

This paper investigates a class of immiscible two-phase flow models, namely the steady-state solu-
tions and the interface limit of a one-dimensional compressible Navier-Stokes/Allen-Cahn system.
For the associated boundary value problem, the existence of steady-state solutions is established.
By means of matched asymptotic expansions, an approximate solution for the phase-field variable
within the interfacial layer is derived. Furthermore, by combining classical boundary value prob-
lem solvers with physics-informed neural networks (PINNs), an accurate computational framework
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for solving the boundary value problem is developed, and the interface limit of the steady-state so-
lution is numerically validated.
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Figure 1. A PINN-based solution procedure for steady-state ODE boundary value problems
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Figure 2. Profile of y(x) obtained by the PINN under the case of u =0
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Figure 8. Convergence curve of the PINN training loss with respect to the number of iterations
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Table 1. Global I? errors for different interface widths &
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Figure 9. Effect of the number of sampling points on E,
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Figure 10. Spatiotemporal evolution of ;((x t) in the unsteady NSAC system
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Figure 11. Spatiotemporal evolution of u (x,t) in the unsteady NSAC system
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Figure 12. Comparison of relative I” errors and interface trajectories between PINN and FVM ground truth for the unsteady
NSAC system
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