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Abstract

In this paper, a high-order finite difference scheme based on the Adaptive Weighted Essentially Non-
Oscillatory (A-WENO) method is proposed for solving the Ripa equations, which are derived from
the shallow water equations by introducing horizontal temperature gradients. The Ripa system rep-
resents a class of nonhomogeneous hyperbolic conservation laws with source terms, whose steady-
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state solutions exhibit an exact balance between the flux gradients and the source terms. Within the
finite difference framework, the proposed method reformulates the source term, incorporates a
modified Lax-Friedrichs flux splitting and characteristic decomposition, and applies the frozen dis-
crete derivative coefficients obtained from WENO reconstruction to the source term discretization.
This approach achieves strict well-balanced properties while maintaining fifth-order spatial accu-
racy. Compared with conventional high-order WENO schemes, the proposed A-WENO method effec-
tively suppresses numerical oscillations under complex topographies and strong nonlinear condi-
tions, enhancing both stability and accuracy. Numerical experiments demonstrate that the method
exhibits excellent well-balanced behavior, high-order accuracy, and strong capability in resolving
discontinuities.
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Table 1. The total error of the steady-state solution on the slippery surface under different precisions
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RS 2.17¢—07 3.13e-07 3.35¢-07 9.54e-07 1.05e-07 6.12e—07
UK & 8.70e-16 6.34¢-16 2.61e-16 7.11e-15 2.19¢-16 1.07e-16
VU545 5.01e-33 4.32¢-31 9.15¢-32 3.08¢-33 1.42e-31 4.57e-31

Table 2. The total error of the steady-state solution on the discontinuous surface under different precisions
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N 7.15¢—08 2.37¢—07 1.50e—07 9.54e—07 5.01e—07 1.49¢-08
XK & 2.66e—16 2.12¢-16 9.11e-15 3.55¢-15 1.07¢-16 5.27¢-16
VU 1.06e-33 1.46e-31 2.35¢-32 5.16e-33 1.44¢-31 5.33¢-32
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Table 3. The error and convergence order in Section 4.2
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L1 % (i1 L1 % (i1 L1 i#% (i1
25 1.7566E—-02 1.0990E-01 2.0208E-02
50 2.2028E-03 3.00 1.9714E-02 2.48 2.7216E-03 2.89
100 3.3138E—-04 2.73 2.8273E-03 2.80 3.5233E-04 2.95
200 2.3271E-05 3.83 2.0103E-04 3.81 2.3724E-05 3.89
400 9.3899E-07 4.63 8.1350E-06 4.63 9.5787E-07 4.63
800 3.1516E-08 4.90 2.7319E-07 4.90 3.1021E-08 4.95
1600 8.5864E-10 5.20 7.4405E-09 5.20 8.2517E-10 5.23
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Figure 1. Numerical solution of the flat-bottomed Riemann problem in Section 4.3 at t = 0.2 with 200 grid cells. (a) Water
depth; (b) Temperature; (c) Pressure
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Figure 2. Numerical results for the flat-bottomed dam-break problem in the example of Section 4.4. (a) Water depth; (b)
Discharge; (c) Temperature; (d) Pressure
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