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摘  要 

2023年，叶和邓[运筹学学报，2023，27(01)：127-137]提出了一种新的求解拟单调变分不等式的压缩

投影算法(简称NPCA)。NPCA结合了向前向后分裂算法(简称FBSA)和压缩投影算法(简称PCA)来减少算

法的迭代步数。在此基础上，本文提出了惯性的NPCA算法，简称为INPCA，并在与NPCA相同的假设条

件下，证明了INPCA的全局收敛性。数值实验结果表明惯性方法能进一步加速NPCA。 
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Abstract 
In 2023, Ye and Deng [Operations Research Transactions, 2023, 27(01): 127-137] introduced a new 
projection and contraction algorithm (NPCA) for solving quasimonotone variational inequalities. 
NPCA combines the forward backward splitting algorithm (FBSA) and the projection and contraction 
algorithm (PCA) to reduce iterations numbers. By incorporating an inertial step, we extend it to the 
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inertial NPCA (INPCA). The global convergence is proven under the original assumptions, and nu-
merical experiments confirm that the inertial step accelerates convergence. 
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1. 引言 

令 n 是 n 维欧式空间，本文考虑经典的变分不等式问题(Variational Inequality Problem，简称 VIP)：
找 *x C∈ 使得 

 ( )* *, 0, ,F x y x y C− ≥ ∀ ∈  (1.1) 

其中C 是 n 中的非空闭凸子集，F 是从C 到 n 的一个连续映射， ,⋅ ⋅ 表示 n 中的内积。我们用 S 来表

示 VIP 的解集。 DS 来表示 VIP 的对偶变分不等式的解集，即 

( ){ }: | , 0, .DS x C F y y x y C= ∈ − ≥ ∀ ∈  

VIP最早由Hartman 和 Stampacchia [1]在 1966 年提出，用于研究偏微分方程的解的存在性和唯一性。

随后，变分不等式逐渐发展成为解决均衡问题，优化问题和不动点问题的有力工具[2]-[4]。 
Goldstein-Levitin-polyak [5] [6]在 1964 年提出了投影算法，其算法具体结构如下： 

( )( )1 ,k k k
Cx P x F xβ+ = −  

其中 ( )CP ⋅ 为投影算子，该算法的收敛性需要 F 在C 上强单调且 Lipschitz 连续。为了削弱 F 的强单调性，

1976 年 Korpelevich [7]和 Khobotov [8]提出了外梯度投影算法(EGA)，其算法具体结构如下： 

( )( ) ( )( )1, .k k k k k k
C Cy P x F x x P x F yβ β+= − = −  

EGA 的收敛性只需要 F 在C 上单调且 L -Lipschitz 连续。但 EGA 的每次迭代需要计算两次向C 的投

影，这导致当向C 的投影不易实施时，EGA 的效率不高。 
为了在每次迭代中减少一次向C 的投影，Solodov 和 Tseng [9]介绍了压缩投影算法(简称 PCA，该类算法

的进展还可参见 He [10]，Ye [11])；Tseng [12]提出了向前向后分裂算法(简称 FBSA)，其算法具体结构如下： 

( )( ) ( ) ( )( )1, ,n C n n n n n ny P x F x x y F x F yλ λ+= − = + −  

并在 F 伪单调且 Lipschitz 连续的条件下证明了算法的全局收敛性。 
最近，Liu 和 Yang [13]介绍了一种自适应的 FBSA (简称 LYA)来求解拟单调变分不等式，其自适应

步长为： 

( ) ( )
( ) ( )

1

min , , 0;

, ,

n n
n n n n

n n n

n n

x y
p F x F y

F x F y

p

µ
λ

λ

λ
+

 − + − ≠ = − 








 +


若

其他
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其中{ }np 是非负实数列，满足 0 nn p∞

=
< +∞∑ 。 

Ye 和 Deng [14]将 FBSA 与 PCA 结合，提出了一种新的求解拟单调变分不等式的压缩投影算法，其

下一个迭代点的形式为： 

( ) ( )( )( )1 .
k

k k k k
H kx P y F x F yλ+ = − −  

在映射 F 在 nR 上连续、拟单调， DS ≠ ∅且 ( ){ }: 0 \ DA z C F z S= ∈ = 是有限集的条件下，证明了算法

的全局收敛性。 
Polyak [15]提出了惯性方法，利用前一个迭代点来加速凸优化算法。此后，惯性方法也被用来加速非

凸优化算法，例如文献[16] [17]。在映射为 Lipschitz 连续条件下的惯性算法得到了广泛的研究，其中求解

伪单调 VIP 的有[18]-[20]；求解拟单调 VIP 的有惯性次梯度外梯度法[21]、惯性 Tseng 方法[22]等。但在

映射仅连续条件下的求解拟单调变分不等式的惯性算法比较少。 
受文献[12]-[15]的启发，本文提出了一种求解拟单调变分不等式的惯性向前向后分裂算法(INPCA)。

在与文献[14]相同的假设条件下，证明了新算法的全局收敛性。数值实验结果表明，与 NPCA 和 LYA 相

比，在低维实例下 INPCA 具有较少的迭代次数；在高维实例下，INPCA 具有较少的迭代次数、投影次数

和 CPU 耗时。 

2. 预备知识 

本节中，我们回顾一些基本的定义、性质和一些引理。 
* 表示正整数， ⋅ 表示 n 中的范数， ( )dist ,x C 表示向量 x 到集合C 的距离，即 

( ) { }dist , : inf : .x C x y y C= − ∈  

( )CP x 表示向量 x 集合C 的正交投影，即 

( ) { }: argmin : .CP x y x y C= − ∈  

从而向量 x 到集合C 的距离等于 ( )Cx P x− 。对 nx∀ ∈ 及 0λ > ，令 ( ),r x λ 为问题(1.1)的自然残差

函数，即 

( ) ( )( ), : .Cr x x P x F xλ λ= − −  

定义 1 设C 是 n 中的集合，映射 : nF C → ， 
(1) 若存在常数 0γ > ，使得 

( ) ( ) 2, , , ,F x F y x y x y x y Cγ− − ≥ − ∀ ∈  

则称 F 在C 上是 γ -强单调的。 
(2) 若 

( ) ( ) , 0, , ,F x F y x y x y C− − ≥ ∀ ∈  

则称 F 在C 上是单调的。 
(3) 若 

( ) ( ), 0 , 0, , ,F x y x F y y x x y C− ≥ ⇒ − ≥ ∀ ∈  

则称 F 在C 上是伪单调的。 
(4) 若 
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( ) ( ), 0 , 0, , ,F x y x F y y x x y C− > ⇒ − ≥ ∀ ∈  

则称 F 在C 上是拟单调的。 
根据上述定义，自然的有：(1)⇒ (2)⇒ (3)⇒ (4)。 
引理 1 [23]设{ } { } { }, ,k k kϕ α δ 为非负序列使得 

( )1 1
1

, ,k k k k k k k
k

ϕ ϕ α ϕ ϕ δ δ
+∞

+ −
=

≤ + − + < +∞∑  

并且存在一个正数α ，使得 *0 1,k kα α≤ ≤ < ∀ ∈ ，则存在 [ )* 0,ϕ ∈ +∞ 使得 

 *lim .kk
ϕ ϕ

→+∞
=  

引理 2 [2] [24]设 nC ⊂  是非空闭凸集，则有以下不等式成立。 
(1) ( ) ( ), 0, ,n

C CP x x y P x x y C− − ≥ ∀ ∈ ∀ ∈ ； 
(2) ( ) ( ) , , n

C CP x P y x y x y− ≤ − ∀ ∈ ； 
(3) ( ) ( )2 22 , ,n

C CP x y x y P x x x y C− ≤ − − − ∀ ∈ ∀ ∈ ； 
(4) ( ) ( ) ( )2 2 2 21 1 1 , , ,ax a y a x a y a a x y a x y C+ − = + − − − − ∀ ∈ ∈ 。 
引理 3 [25]设 x 是 n 中任一向量， : { | , }nH x u x a= ∈ 〈 〉 ≤ 是一个半空间，则 

( ) 2

,
max ,0H

u x a
P x x u

u

 − = −  
  

 

特别地，当 x H∉ 时，可得 

( ) 2

,
.H

u x a
P x x u

u
−

= −  

引理 4 [2]若 0λ > ，则 *x S∈ 的充要条件是 ( )*, 0r x λ = 。 

引理 5 [26]对任意的 nx∈ 及任意的 1 20 λ λ< < ，有 

( ) ( )1 2, , ;r x r xλ λ≤  

( ) ( )1 2

1 2

, ,
.

r x r xλ λ
λ λ

≥  

引理 6 [18]对任意的 nx∈ 及任意的实数 0λ > ，有 

( ) ( ) ( ) ( ) ( )min 1, ,1 , max 1, ,1 .r x r x r xλ λ λ≤ ≤  

引理 7 [27]设 nC ⊂  是非空闭凸集， F 是C 上的映射。若下列条件之一成立： 
F 在C 上是伪单调的，且 S ≠ ∅； 
F 是 f 的梯度，其中 f 是包含C 的开集 K 上的可微拟凸函数，且在C 上可取得其全局最小值； 
F 在C 上是拟单调的， 0F ≠ 且C 有界； 
F 在C 上是拟单调的，F 在C 上不为零，且存在正数 r ，使得对任意 x C∈ ，当 x r> 时，存在 y C∈

满足 y r≤ 且 ( ) , 0F x y x− ≤ ； 
F 在C 上是拟单调的，且 \ TS S ≠ ∅，其中 ( ){ }: : , 0,TS x C F x y x y C= ∈ − = ∀ ∈ ； 

F 在C 上是拟单调的， ( )int C 非空，且存在 *x S∈ 使得 ( )* 0F x ≠ ， 
则 DS 非空。 
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3. 主要内容 

在本节中，首先介绍求解拟单调变分不等式的惯性投影算法 INPCA，再证明算法的合理性和生成序

列的收敛性。 
首先介绍 INPCA，其具体结构如下： 
算法 3.1 
步骤 0 选取初始点 0 1, nx x− ∈ ，选取参数 0 l uα α< < ， ( ), 0,1η θ ∈ 和 ( )0,1σ ∈ ，选取正数列{ }kε 满足

1 kk ε∞

=
< +∞∑ ，设 0k = 。 

步骤 1 计算 

( )1 ,k k k k
kx x xω θ −= + −  

其中 

 
1

21
min , , 0;

:

, .

k kk

k kk

x x
x x

ε θ
θ

θ

−

−

 
  − ≠ = −











 

若

其他

 (3.1) 

步骤 2 (线搜索)选取 [ ]0 ,k l uα α α∈ ，寻找最小的非负整数 km 使得 

 ( ) ( )( )( ) ( )( )0 0 0 .k k km m mk k k k k k
k C k C kF F P F P Fα η ω ω α η ω σ ω ω α η ω− − ≤ − −  (3.2) 

令 0 km
k kλ α η= ， ( )( )k k k

C ky P Fω λ ω= − 并转到下一步。 

步骤 3 计算 ( ),k k k
kr yω λ ω= − ，若 ( ), 0k

kr ω λ = ，停止( kω 解)；否则转到下一步。 

步骤 4 令 ( ){ }| 0n
k kH u h u= ∈ ≤ ，其中 

 ( ) ( ) ( )( ) ,k k k k k
k kh u y F F y u yω λ ω= − − − − . (3.3) 

计算 

 ( ) ( )( )( )1 : .
k

k k k k
H kx P y F y Fλ ω+ = − −  (3.4) 

步骤 5 令 1k k= + ，并返回步骤 1。 
注 1. 由引理 3 可知{ }1kx + 具体形式为： 

1

2

, ;

,
, ,

k k
k

k k kk
k k

k

v v H

u v yx
v u

u

+

∈

−






=
−



如果

其他
 

其中 ( ) ( )( ):k k k k
kv y F y Fλ ω= − − ， ( ) ( )( ):k k k k k

ku y F F yω λ ω= − − − 。 

引理 8 设{ }kθ 由 INPCA 所生成的数列，则对 *k∀ ∈ 都有： 
(1) 0 1kθ θ≤ ≤ < ； 

(2) 
21

1 1

k k
k k

k k
x xθ ε

∞ ∞
−

= =

− ≤ < +∞∑ ∑ ，进而有
21lim 0k k

kk
x xθ −

→∞
− = 。 

证明 (1) 由θ 和 kθ 的定义可知结论成立。 
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(2) 由式(3.1)分类讨论可知: 
21k k

k kx xθ ε−− ≤ 。这结合 kε 的定义可知
21

1 1

k k
k k

k k
x xθ ε

∞ ∞
−

= =

− ≤ < +∞∑ ∑ 成

立。 
我们为了说明 INPCA 的合理性，需要说明 INPCA 中提到的线搜索可以在有限步内停止，并且对于

每个 k ，都有由(3.3)定义的半空间 kH 是非空闭凸集。下面我们先介绍 INPCA 中的线搜索可以在有限步

内停止。 
引理 9 若 F 在 n 上连续，则对任意的 nω∈ ， 0α > 及 ( )0,1η∈ ，存在有限的非负整数m 使得下式

成立： 

 ( ) ( )( )( ) ( )( ) .m m m
C CF F P F P Fαη ω ω αη ω σ ω ω αη ω− − ≤ − −  (3.5) 

证明：因为线搜索(3.5)与文献[28]中的线搜索一致，故由文献[28]的引理 10 知结论成立。 
接着，我们用下面的引理来说明(3.3)中由 ( )kh ⋅ 定义的半空间 kH 非空，从而由(3.4)可以生成点 1kx + 。 
引理 10 若 F 在 n 上连续且 DS ≠ ∅，{ }kx ，{ }ky ，{ }kω 和{ }kλ 是由 INPCA 所生成的无穷序列，

( )kh ⋅ 是由(3.3)所定义的函数，则对任意的 k 都有 

(1) ( )* *0,k Dh x x S≤ ∀ ∈ ； 
(2) ( ) ( ) ( ) 2

1 , 0k k
k kh rω σ ω λ≥ − > 。 

进而对任意的 k 有 D kS H∅ ≠ ⊂  及 k
kHω ∉ 。 

证明：(1) 设 *
Dx S∈ ，由 ( )kh ⋅ 的定义可得 

( ) ( ) ( )( )
( ) ( )
( )

* *

* *

*

,

, ,

, 0,

k k k k k
k k

k k k k k k
k k

k k k k
k

h x y F F y x y

y F x y F y x y

y F x y

ω λ ω

ω λ ω λ

ω λ ω

= − − − −

= − − − + −

≤ − − − ≤

 

其中第一个不等式由 *
Dx S∈ 且 ky C∈ 可得，最后一个不等式由引理 2 (1)， ky 的定义以及 *x C∈ 可得。这

证明了(1)。 
(2) 由 ( )kh ⋅ 的定义可知 

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )

2

2

2 2

2

,

,

,

, ,

1 , 0,

k k k k k k k
k k

k k k k k k
k

k k k k k
k k

k k
k k

k
k

h y F F y y

y F F y y

r F F y y

r r

r

ω ω λ ω ω

ω λ ω ω

ω λ λ ω ω

ω λ σ ω λ

σ ω λ

= − − − −

= − − − −

≥ − − −

≥ −

= − >

 

其中第一个不等式由 Cauchy-Schwartz 不等式可得，第二个不等式由(3.2)式可得，最后一个不等式由

( ), 0k
kr ω λ > 和 ( )0,1σ ∈ 可得。这完成了(2)的证明。 

最后，我们对 INPCA 的收敛性进行分析。 
引理 11 若 F 在 n 上连续且 DS ≠ ∅，{ }kx ，{ }ky ，{ }kω 和{ }kλ 是由 INPCA 所生成的无穷序列，

则对任意的 *
Dx S∈ ，有 

(1) ( )2 2 21 * * 21k k k kx x x yω σ ω+ − ≤ − − − − 成立； 
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(2) *lim k
k x x→∞ − 存在，且 lim lim lim 0k k k k k k

k k k
x y y xω ω

→∞ →∞ →∞
− = − = − = ，进而有{ }kx ，{ }ky ，{ }kω ，

( ){ }kF x 及 ( ){ }kF ω 均有界。 

证明 (1) 由引理 10 (2)知： D kS H∅ ≠ ⊂ ，任取 *
Dx S∈ ，有 

 

( ) ( )( )( ) ( )

( ) ( )( )
( ) ( )( )( )

( ) ( )( )
( ) ( )( )

221 * *

2
*

2
*

2* *

2

2 ,

,

k k

k k k k
H k H

k k k
k

k k k k k
k

k k k k k k
k

k k k k
k

x x P y F y F P x

y x F y F

x y F F y

x x y F F y

y F F y

λ ω

λ ω

ω ω λ ω

ω ω ω λ ω

ω λ ω

+ − = − − −

≤ − − −

= − − − − −

= − − − − − −

+ − − −

 (3.6) 

其中第一个不等式由引理 2(2)可得。 
另一方面，我们有 

( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

*

*

,

, ,

, ,

k k k k k
k

k k k k k k k k k k k
k k

k k k k k k
k

x y F F y

y y F F y y x y F F y

y y F F y

ω ω λ ω

ω ω λ ω ω λ ω

ω ω λ ω

− − − −

= − − − − + − − − −

≥ − − − −

 

其中不等式由 *
kx H∈ 及   kH 的定义可得。这结合(3.6)可知 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

( )

2 21 * *

2

2 2*

2

22 2*

2 2 2* 2

2 2* 2

2 ,

2 ,

2 ,

1 ,

k k k k k k k k
k

k k k k
k

k k k k k k k k k
k

k k k k k k
k k

k k k k k
k

k k k k k

k k k

x x x y y F F y

y F F y

x y y F F y y

y F F y F F y

x y F F y

x y y

x y

ω ω ω λ ω

ω λ ω

ω ω ω λ ω ω

ω λ ω λ ω

ω ω λ ω

ω ω σ ω

ω σ ω

+ − ≤ − − − − − −

+ − − −

= − − − − − − + −

− − − + −

= − − − + −

≤ − − − + −

= − − − −

 

其中第二个不等式由(3.2)可得。这就完成了(1)的证明。 
(2)由(1)， ( )0,1σ ∈ ， kω 的定义和引理 2 (4)可知 

( )( ) ( )
( ) ( )

( ) ( )

22 21 * * * 1 *

2 2 2* 1 * 1

2 2 2 2* * 1 * 1

1

1 1

1 ,

k k k k
k k

k k k k
k k k k

k k k k k
k k

x x x x x x x

x x x x x x

x x x x x x x x

ω θ θ

θ θ θ θ

θ θ θ

+ −

− −

− −

− ≤ − = + − − −

= + − − − + + −

≤ − + − − − + + −

 

其中第二个不等式由 0 kθ θ≤ ≤ 可得。由此，令 
2*k

k x xϕ = − ， k kα θ= ， ( )
211 k k

k k x xδ θ θ −= + − ， 
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则由引理 8 (2)及引理 1 可知 lim kk
ϕ

→∞
存在，即{ }*kx x−‖ ‖ 收敛。进而知{ }kx 有界。 

结合 kω 的定义及引理 8 可知 

 
2 2 22 1 10 0, 0.k k k k k k

k k kx x x x x kω θ θθ θε− −≤ − = − ≤ − ≤ → →  (3.7) 

另一方面，由(1)还可得 

( ) 2 2 22 * 1 *

2 2* 1 *

2 2 2* * 1 *

2 2 2* * 1 *

0 1

2 ,

2 ,

k k k k

k k k k

k k k k k k k

k k k k k k k

y x x x

x x x x x

x x x x x x x x

x x x x x x x x

σ ω ω

ω

ω ω

ω ω

+

+

+

+

≤ − − ≤ − − −

= − + − − −

= − + − − + − − −

≤ − + − − + − − −

 

其中最后一个不等式由Cauchy-Schwartz不等式可得。对上式取极限，结合(3.7)，{ }kx 的有界性，0 1σ< < ，

( )2 2* 1 *lim 0k k

k
x x x x+

→∞
− − − = 可知： 

 ( )lim lim , 0.k k k
kk k

y rω ω λ
→∞ →∞

− = =  (3.8) 

这结合(3.7)可得 

lim 0.k k

k
x y

→∞
− =  

由{ }kx 的有界性，(3.7)以及(3.8)可知{ }kω ，{ }ky 也均有界。这结合 ( )F ⋅ 的连续性还可得 ( ){ }kF x ，

( ){ }kF ω 和 ( ){ }kF y 也均有界。这完成了(2)的证明。 

引理 12 若 F 在 n 上连续且 DS ≠ ∅，{ }kx ，{ }ky ，{ }kω 和{ }kλ 是由 INPCA 所生成的无穷序列，

则有 

 1lim 0.k k

k
x x+

→∞
− =  (3.9) 

证明：由三角不等式可知 

 ( ) ( )( ) ( ) ( )( )1 1 ,k k k k k k k k k k
k kx x x y F F y x y F F yλ ω λ ω+ +− ≤ − + − + − + −  (3.10) 

另一方面，由(3.2)和引理 11(2)可知 

 
( ) ( )( ) ( ) ( )

0, .

k k k k k k k k
k k

k k k k

x y F F y x y F F y

x y y k

λ ω λ ω

σ ω

− + − ≤ − + −

≤ − + − → →∞
 (3.11) 

另一方面，对 *
Dx S∈ ，由 1kx + 的定义及引理 2(3)可得 

 

( ) ( )( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 21 * 1 *

22 2* * 2 1 *

22 2* * 2 1 *

2 2 2* * 2 1 *

2 ,

2

2 ,

k k k k k k k k
k k

k k k k k k k
k k

k k k k k k k
k k

k k k k k k k

x y F F y y F F y x x x

y x y x F F y F F y x x

y x y x F F y F F y x x

y x y x y y x x

λ ω λ ω

λ ω λ ω

λ ω λ ω

σ ω σ ω

+ +

+

+

+

− − − ≤ − − − − −

= − − − − + − − −

≤ − + − − + − − −

≤ − + − − + − − −

 (3.12) 
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最后一个不等式由 ( ) ( )k k k k
k F F y yλ ω σ ω− ≤ − 可得(参见(3.2))。 

此外，还有 
2 2 2 2* 1 * * 1 *

2 2 2* * 1 *

2 2 2* * 1 *

2 ,

2 .

k k k k k k

k k k k k k k

k k k k k k k

y x x x y x x x x x

y x x x y x x x x x

y x y x x x x x x x

+ +

+

+

− − − = − + − − −

= − + − + − − − −

≤ − + − − + − − −

 

将此式代入(3.12)可得 

( ) ( )( )( ) 2 2 21 * 2

2 2* * 1 *

2

2 .

k k k k k k k k k k k
k

k k k k k

x y F F y y x y y y x

y x x x x x x x

λ ω σ ω σ ω+

+

− − − ≤ − − + − + −

+ − − + − − −
 

令 k →∞，结合引理 11(2)以及 ( )2 2* 1 *lim 0k k

k
x x x x+

→∞
− − − = 可得 

( ) ( )( )( ) 2
1 0, .k k k k

kx y F F y kλ ω+ − − − → →∞  

这结合(3.10)和(3.11)可知(3.9)成立。 
定理 1 若 F 在 n 上连续，拟单调且 DS ≠ ∅，{ }kx ，{ }ky ，{ }kω 和{ }kλ 是由 INPCA 所生成的无穷

序列，则对{ }kx 的任意聚点 x 都有 x S∈ 。并且还满足 ( ) 0F x = 或者 Dx S∈ 。 

证明：设 x 为{ }kx 的聚点。则存在子列{ }ikx 满足 

lim .ik

i
x x

→∞
=  

这结合引理 11(2)可得 

 lim , lim .i ik k

i i
y x xω

→∞ →∞
= =  (3.13) 

从而由{ }iky C⊂ 及C 是闭集可知 x C∈ 。利用(3.13)以及文献[14]中的定理 1 (将 ikx 替换为 ikω )可知

结论成立。 
定理 2 若 F 在 n 上连续，拟单调且 DS ≠ ∅且满足 ( ){ }: 0 \ Dz C F z S∈ = 为有限集。设{ }kx 是 INPCA

生成的无穷序列，则{ }kx 收敛到 S 中的一点。 
证明：设 X 为{ }kx 的所有聚点构成的集合，则由定理 1 可知 X S⊂ 。我们按以下情况进行分类讨论。 
情况一 若存在 x X∈ 使得 Dx S∈ 。此时，由引理 11(2)可知 lim k

k
x x

→∞
−  存在。这结合 x为序列{ }kx 的

聚点可知 

lim 0,k

k
x x

→∞
− =  

即{ }kx 收敛到 S 中一点。 

情况二  若对任意的 x X∈ 都有 Dx S∉ ，则由定理 1 可知 ( ) 0F x = 且 Dx S∉ 。因此，我们有

( ){ }: 0 \ DX z C F z S⊂ ∈ = 。这结合题设可知 X 为有限集。因此，文献[13]中的引理 3.5 成立。进而，结合

式(3.9)中 
1lim 0,k k

k
x x+

→∞
− =  
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以及文献[13]中的定理 3.1 可知{ }kx 收敛到 S 中一点。 

综上，定理 2 成立。 

4. 数值实验 

在本节中，我们用数值实验来验证 INPCA 的有效性。我们将 Ye 和 Deng [14]中的算法 1 称为 NPCA，

将 Liu 和 Yang [13]的算法 3.1 称为 LYA。所有实验均在 Intel(R) Core(TM) Ultra 5 125H 3.60 GHz 和内存

为 32.00GB 的笔记本电脑上使用 MATLAB R2023b 进行。 
INPCA 的参数设置为： 0.99σ = ， 0.5η = ， 0.5θ = ， 0

0 1α = ，以及对 1k ≥ 取 

( ) ( ) ( ) ( )

( )

10 10

10 10

21
1 1 4

10 ,10 1 10

110 ,10

, , 10 ;
,

1.6 , .

k k
k k k k

k k k k
k

k

P F F
F F

P

ω ω
ω ω ω ω

ω ω ω ωα

λ

−

−

−
− − −

  − − 

− 
 

  −   − − >  − −=   




若

其他情况

 

其中 0
kα 的选择是对 Ye [29]中的参数调整所得。NPCA 与 LYA 的参数选取分别与文献[14]和[13]中一致，

即 NPCA 为 10α = ， 0.99σ = ， 0.5η = ；LYA 为 0.5µ = ，
( )1.1

100
1

np
n

=
+

， 0 1λ = 。 

例 1 此例被 Ye 和 He [27]及 Ye 和 Deng [14]测试。令
1

: 0, 1, , , , 0
n

n
i i

i
C x x i n x a a

=

 
= ∈ ≥ = = > 
 

∑ ，

且 ( ) ( ) ( )( )T
1 , , nF x F x F x=  ，其中 

( )
2

1 1
2

1

1 1
2 , ,

n n

i i i
i i

i n

i
i

hx x h x
F x i

x

= =

=

−

 
 
 

−
= ∀

∑ ∑

∑
 

h 在 ( )0.1,1.6 内随机生成，则 , ,D
a aS S
n n

  = =   
  


。此例的停止准则如下: 

4dist 10 ,−≤  

其中 dist 表示当前迭代点到解集的距离。对于例 1，我们首先在    5n = 时测试此算例，在表 1 中给出了初

始点 0x ， a ，迭代次数 iter，投影次数 np，CPU 时间(单位：秒)；当 100n ≥ 时，初始点 0x 按文献[14]中
的方式生成，即 

( ) ( ) 0rand ,1 , sum , .azz n bb z x C
bb

= = = ∈  

在表 2 中给出 n ，iter，np 和 CPU 情形( a n= )，其结果为 10 次实验的平均值。 
 

Table 1. Numerical experimental results of example 1 when 5n =  
表 1. 例 1 在 5n = 时的数值实验结果 

0x  a 
iter np CPU 

INPCA NPCA LYA INPCA NPCA LYA INPCA NPCA LYA 

(0, 0, 0, 0, 5) 5 18 29 41 56 99 42 0.02328 0.04841 0.02845 

(0, 0, 5, 0, 0) 5 18 29 41 56 99 42 0.02356 0.03950 0.02452 
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续表 

(0, 2, 0, 2, 1) 5 15 26 36 43 84 37 0.01897 0.03312 0.01985 

(1, 1, 1, 1, 6) 10 23 28 39 68 59 40 0.02824 0.02484 0.02837 

(5, 0, 0, 0, 5) 10 21 37 40 63 78 41 0.02356 0.02397 0.02354 

 
Table 2. Numerical experimental results of example 1 when 100n ≥  
表 2. 例 1 在 100n ≥ 的数值实验结果 

n 
iter np CPU 

INPCA NPCA LYA INPCA NPCA LYA INPCA NPCA LYA 

100 23 121 42 65 243 43 0.05039 0.10313 0.03740 

200 26 254 57 73 510 58 0.10220 0.53385 0.13586 

500 28 671 93 79 1343 94 0.76908 9.86117 1.56018 

1000 29 1388 147 80 2778 148 4.12551 103.61323 12.92367 

 

例 2 此例被 Sun [30]和 Malitsky [31]用于算法测试。令 nC +=  ， ( ) ( ) ( )1 2:F x F x F x= + ，其中

( ) ( ) ( ) ( )( )1 1 2: , , , nF x f x f x f x=  ， ( ) 2 2
1 1 1,i i i i i i if x x x x x x x i− − += + + + ∀ 且 0 1 0nx x += = ； ( )2 :F x Ex c= + ，

( )1, 1, , 1c = − − − ， n nE ×∈ 的元素 ,i je 满足 

,

4, ,
1, 1,

:
2, 1,

0, .

i j

i j
i j

e
i j

=
− =

=
− − = −






 其他情况

 

此例的停止准则为： 

( ) 4, 10 .k
kr m λ −≤  

其中，在 NPCA 和 LYA 中， k km x= ，在 INPCA 中， k km ω= 。我们在表 3 中给出 n ，iter，np 和 CPU，

结果为 10 个随机初始点的平均值。 
 
Table 3. Numerical experimental results of example 2 
表 3. 例 2 的数值实验结果 

n 
iter np CPU 

INPCA NPCA LYA INPCA NPCA LYA INPCA NPCA LYA 

1000 22 31 204 66 266 205 0.00954 0.02860 0.04241 

3000 22 33 235 68 288 236 0.08062 0.32705 0.54946 

5000 23 34 259 71 297 260 0.33722 1.34843 2.37148 

 
注 3 由表 1~3 可知，在低维算例中，INPCA 的迭代次数比 NPCA、LYA 少，投影次数和 CPU 耗时

与 NPCA、LYA 基本相当。在高维算例中，INPCA 的迭代次数，投影次数和 CPU 耗时均少于 NPCA、

LYA。 
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