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Abstract

In 2023, Ye and Deng [Operations Research Transactions, 2023, 27(01): 127-137] introduced a new
projection and contraction algorithm (NPCA) for solving quasimonotone variational inequalities.
NPCA combines the forward backward splitting algorithm (FBSA) and the projection and contraction
algorithm (PCA) to reduce iterations numbers. By incorporating an inertial step, we extend it to the
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inertial NPCA (INPCA). The global convergence is proven under the original assumptions, and nu-
merical experiments confirm that the inertial step accelerates convergence.
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1. 51§
A R" & n YERR ], AR RS AR 7 A5 A R] B (Variational Inequality Problem, fi#iFR VIP):
X eC g
<F(x*),y—x*>zo,vyec, (1.1)

Hp C R AR N T4, FRMC BIR" —NESM, (L) ZaR R PRIN. AT S k&
7N VIP [Rfif%E. S, KFIR VIP HEAL 7 A G X fgse, B
S, ::{xeC\<F(y),y—x>ZO,VyeC}.

VIP i 5-H Hartman 1 Stampacchia [1]7E 1966 =42 H, F T 70 i 73 75 F2 BRI A7 AE MR E— 1
oS, AR ANGE IR R R N R R e /B, AR Ak ) REANAN B o 0] 0 A /) LR [2]-[4].

Goldstein-Levitin-polyak [5] [6]7E 1964 “EH&H T #iv 5k, HEERARLSHWTT:

X! :Pc(x —ﬂF(x )),
Horp B () MR T ZEE ARSI T2 F A2 C bR 50 H. Lipschitz 4508 1 HISS F RI5R SN,
1976 4E Korpelevwh [7]F1 Khobotov [8]F2tH 1AMk EE R HIR(EGA), HARE BRI
V=R (- BF(x)) " = (¥ - BF ().

EGA st RFE F 1 C LA H. L -Lipschitz 7 4E . {H EGA FIERIKIER T B HE PRI C FI#:
5, XFECYE C KA 5 LR, EGA FIREA S .

N T AERRIGEA IR > — IR A C I, Solodov Al Tseng [91/M4H T B4R BIE(TIFR PCA, 1238502
IBEEIE I Z W, He [10], Ye[11]): Tseng[12]32H 1 a1 Hi [ 5 70 E2(fiFR FBSA), HENEBARSEHATT

J’,,:Pc(xn_lF(xn)) Xt yn+/1( ( ) F(yn))’

FAE F D598 H. Lipschitz 22 264F N UEB 1 S0 4 R e sk
I, Liu Al Yang [13]48 T —F HIEMN ) FBSA (fAIFR LY AR A AL, HEEM

BRA
mln —_)}”)A‘ p,, ) %F( n) F(yn) O
ﬂ’n+1 = ||F(xn)_F(yn)
ﬂ’n+pn’ /H\:,ﬂij"
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Hodr{p,} RAFIHHN, WL p, <+o.
Ye 1 Deng [14]# FBSA 5 PCA 4, #&H 7 — MRl s A A8 73 A SR U R g e B,
TANER N

*=p, (yk—ik(F(xk)—F(yk))).

e F 72 R L3S, Wi, S, 2@ H A={zeC:F(z)=0}\S, ZAHMREMFKLE T, IEW T 5%
()4 R W sl

Polyak [15]32 H TR 753, R AT —AMEA AR IE M ENE . b5, 181 J7 vk A Sk s
MRAL S, BRI SCRR[16] [17]. FEMLS A Lipschitz SESE461E T R M SVEE R T Z MW 7T, Hskmg
PR VIP B [18]-[20]; SRARIUAIE VIP F7G 15HE RS B AMES BEVR[21] 15ME Tseng J7¥k[221%% . {HAE
WA S22 A T SRR AR 0 AN A B M S L e b

SOCHR[12]-[1STHIJE R, ARSCERH T — PR AR AR 43 AN S5 AR 7] 817 1) f5 23 R BEVE(INPCA) -
TE5 SCER[141MH R R 26 AF T, UEBH T B Bk A R itk . B seie 45 R, 5 NPCA f1 LYA #H

b, FEARZESZ] N INPCA HA RGBS EmdEsef] ™, INPCA BAERDERIRE. H A
1 CPU #E/7 .

2. MEHEIR

AT, AT BN — LB A 5 L AN — L g
N FZoRIEBEL ||| Fom R iiasl, dist(x,C) R x BI5ES C Ee,

dist(x,C):=inf{||x—y||:yeC}.

P (x) &onla s x e d C WIER Y, A

P.(x)= argmin{”y—x" ‘ye C}.

T [ 8 x BUSE A C IR SE T [ — B (x|« % VxeR" e A>0, % r(x,4) FRIEE(L)INE SR 2
R, R

r(x,ﬂ):zx—PC(x—/lF(x)).
EX 1 BWCRRTHES, WS F:C>R",
(1) HEELy >0, 115

(F(x)=F(y).x=y)zrfe=sf ¥xyeC,
MFR F A2 C LS y -am B 1.
2) #
<F(x)—F(y),x—y>20,Vx,yeC,
MR F 75 C 2.
3) #
(F(x),y—x>20:><F(y),y—x>20,Vx,yeC,

MFR F A2 C LR EIFRT.
) #
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<F(x),y—x>>O:><F(y),y—x>20,Vx,yeC,

MIFR F £ C ERl i,
WRiE LiRE S, BRPAE: HD=>02)=>06)=> @)
SIE 1231 (g, )., ). {6, ) AAEGUTHIER

O SO+ 0oy (¢k _¢k—l)+5k’ Z@f <+,
=1

HAE AT o, 6 0<a, <a<l,VkeN , WAETEQ e[0,+0) {15

Jim o=
512 2 [2] [24]¥ C c R" AR ML, WA LN AR KL,
@) < (x) xy P( )>>O,‘v’xeR”,VyeC;
@ [P (x)=Fe ()] <=3 vy R
& [0 <[l = (x) =+ oreR vy e
4) ||ax+ y" —a"x” 1 a ||y|| —a l a ||x y" VaeR,x,yeC.
513 3 [25]%% x & R" Fi4E— ﬁi, H:={xeR" |{u,x)<a} Z&—" =0, N

x) = x —max (u,x)—a }u
) { W

R, MxeHI, w71
PH(x)=x <u X>_au.
|
BIE 4245 2>0, My e MREFMR |r(+,2)|=0.
BB 5260 MEEM xe R MEEMO<A <A, B
I e 2] < [ (2]
AN |
4 4
FIE 6 [ISFHMEEM xe R MAEZEMISZHA>0, H
min l,ﬂ. ”r x,l "S"r x,ﬂ, "Smax 1,/1 "r x,l)”.

BB 7[271% C c R"ZAEMIMEE, F & C B, 35 ROz —mor:

FAEC s, HS=-D;

F & fWeefE, He £ s CMHE K ERni il %, HAE C ol B H AR e ME

F1EC ERPIBIFAN, F£0HCHI

FAEC FRMEN, FEC ERNE, HAEETE,, EAMER xeC, 4> r I, 71 yeC
iv%E||y||Srﬂ<F(x),y—x>£0:

FPEC ERMAEN, HS\S, #D, HihS, ={xeC:(F(x),y-x)=0,vyeC};

FAEC LRI, int(C) %, BAEY eSEHF(x)#0,
s, 3%
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3. EERNAB

TEARFT R, B e/ R B AN RS B9k INPCA,  FRAIE A B & FE A A B
B UL SE

BN INPCA, HEMAEIT.

B3

BB IEWMAIG A X x " eRY, WS HO0<q <, 1,0e(0,1)Foe(0,1), EBIERT] &} L
Z::ng < +00 , -‘[/&k:() °

i B A
o' =x"+6, (xk —x"’l),
Hrp
0, = min{"xk _81“"2 ’6}’ & "xk _xkil"?& 0 (3.1)
0, HoAth,

SB 2 (REREN o €[a,,a,], FHREDAET S m, 13

o™ F(a)k)—F(PC (a)k —a,?n'"‘F(a)k)))H <ol -P. (a)k —a,?n'"*‘F(a)k)) . (3.2)
& a=ain™ s V=Pt -4 F () IEERI T2,
BB (0 4)=0" )" Hr(of,2)=0, Fik(o 1B); HMERT 5,
BEA S H, ={ueR" [k (u)<0}, Hrh
hk(u):<a)k—yk—xlk(F(a)k)—F(yk)),u—yk>. (3.3)
5
¥ =B, (yk 4 (F()-F (o ))) (3.4)

BBS Sk=k+1, JERFEPE 1,
VE LB 3 A () AR

v, W eH,;
‘ k k&
= y _<”:||:Ty>uk’ o,

st =0t A () F (o) wt eyt (R (o) ()
513 8 B:{6,} th INPCA P45, N vke N #A:
(1) 0<6,<0<1;

) igk "xk —x*! "2 < iek <+o0, HEMAE IELH; 0, "xk —x "2 =0,
k=1 k=1

PR (1) H1 006, HIE LRSS AT .
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(2) ARG DEFHEATE: 6, || X l|| <&, o XGEt e, IE LT AN iak ¢ —xk-‘||2 < igk < +o0 i
k=1 k=1

7.

BATA T UL INPCA A EEM:, FF2E U INPCA TR BB R ITEE RS WF L, FEEXF
Ak, WA HEG3)E LR H 2 AR A . PRI 4 INPCA &R R AT LIFEA R D
M1k

SI# 9 #5 F{ER" 14, MAHEERMweR", a>0Kkne(0,1), FERRMIEGEL m 5153 TR
JRAL s

m

armn

F(a))—F(PC(a)—m] H<a”a) P a) an"F “ (3.5)

UEB: PONZIEZR(3.5) 5 SCHR 28 NS R — B dlh STR[281H9 51 B2 10 K045 18 KL,

B, AT RIS B (3.3) P Ay () & LREE IR H 3RS, AT E (3.4) FTRAAE R x4

BIE 10 % FAER LA S, 22, (¥}, (], {a)k}ﬂl{lk}%EE INPCA FTA I T3 741,
By () B3 ITE SRR EL MIRHE R & A

(1) h(x)<0,Vx €S,

@ h(@')2(1-0)|-(o". 4 )] >0.

M ek D=-S, cH, Ko eH, -

VER: (1) ®x eS,, Hh () EXTH

(€)= {0t =t ()P () )
(ot A (@) oA (F () )
<ot -ar(of)ox )20

Hot—AANERhx" es, By eCHR, BE-ANERHIH20), Y REXULX eCHE. X
WEW T (1)
(2) by (-) F5E AT SN

(o) =(e! =t =au(F (o) -F (2*)) 0t o)
=||w—y||—ﬂ<( )F(k) o' - >

“ " /1)2

_“r a) ,ﬂk

:(I—G)Hr(a)k,lk “2 >0,

ﬁﬂﬁ%*A VAUl Cauchy-Schwartz ANEEXTA G, 25 - AALEHE2)XTE, &E— A% H
‘ >0 F o e (0.1) AT, IXFER T Q)IE.

BeJg, BATE INPCA [l stk 347 4347 o

BIE N FHFAER LESHS, 20, (¥}, ], [} F{4) R INPCA BT RINTESS 41,
MEREM " es,, A

) oo <ot (oo o
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@ tim o = 5 B i = | o '] = i =0t () o'}
(P()) 2 (o)) 31051
ERH (1) HEIE 10Q)[: D=S,cH,, [TBx eS,, A

=+ = (-4

A (F(y
v -x =2, (F (o) a)k)

=" (a)k a)k) F(yk)))

“Jor T - <wk—xtwk—yk—a(F<wk>—F<yk>>>

4 (o)r )

IA

(3.6)

Hrp o — A 51 3 2215
F—Jr, BAA

=<a,'f_yk,wk_yk_/lk(F(wk)—F(
O R A (AT A
R ARl x" e H, J H BIE LT3 . IXE56(3.6) R Al
R I e R A G G )
of == (F(o) - ()]
=l =5 -2 o0t ot A (F (o) - F (54))) ol -
“2(f - a (R (o) =F (04))
A (F(0)-F ("))

2 2 2
k * k k 2 k
<ot~ ot =] +o?o* -]

+

A

%12 2
=l == ot =+

%2 2
=l -+ ~(1-0*)o" -1

HA g = ANAER B G2 . X 5ER T (1) FERH .
@H(1), oe(0,1), o F5E CRGIH 2 (4)nT %

* %2 * _ * 2
<||a)k—x|| :Hl+0 X —x —Qk(xk'—x )”
2
1+¢9 "x —x" -0, ”x —-Xx " + 1+o9 "xk—xH”
R
Wx—ﬂﬁwﬂk-xﬂﬂx-ﬂﬂ)l+9 =

HAHE—AAEAXH0<g, <073, Mk,
gok:"x —x" , o, =6, 6k:(1+6’)0k||xk—xk""2,
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W51 B 8 (2) K51 FE 1 AT lim g AE2E, B {Jlx* I} s il (x| 5
Gitr oot 58 5| 5 8 AT

2 2 2
OS”a)k—xk" =6; "xk—xH” <60, "xk—xH" <bg —0,k—>0.
AT, H(D)IERE

2 2
0<(1-0%)|o’ ' <[’ - -

12 L2

:”a)k—xk+xk—x " — [ —x ”

2 . L2 L2

:”a)k—xk" +2<a)k—xk,xk—x >+||xk—x " X = x "

kP v kllk kx| el P
<llo" —x"|| +2|l@" —x"|||[x" —x | +|x" —x || =[x —x] ,

HA g — M A H Cauchy-Schwartz A543 6 B =R IR, £55(3.7), {xk} HIfa A, 0<o<l,
}%("xk —x*"2 —[x*! —x*"z) =0 A H:

3.7)

2
k+1 *
x*—x"

lim "a)k —yk || =1lim

k—o k—oo

r(a)k,ﬂk)

=0. (3.8)

XA G
fimf -] =o.
h ('} 0 510, GURG)ITE {of ), {0} RIS Rt %854 F () Mg E e (F ()]
[F(o" )} A {F (")} i T KSR T QIIED].

BIE 12 # FAR LESHS, @, (¥}, ], {0} F1{1} R INPCA FrA: L5551,
JUES)

. 1
lim "x"+ —xt " =0.

lim (3.9)
E]: =AU R
R E{ AN (F(a)k)—F(yk)) +xt =y 44, (F(a)k)—F(yk)) : (3.10)
W7, HG.2)MEH 112) 4
dort e (F(o)-F Ol o A (o) - () .
< -+ ofot |0k
F—J7H, X x"esS,, X" HE LG 23) 15
Y A ) I N (O o s I A
= =20 = a (F (@) - F () + 22 [F (@) - F () -t = .
<ot a2y (o) (o 2| () (o) < =T

. |2 * 2
e R e | Sl Ll

2
k+1 *
-y
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Batdh,

R A A 4 [F (o) - F ()

<o’ - | TEZ W(3.2)-

Ah,
I e I e I Sy |
:"y“ —x""2 +||xk —x*”2 +2<yk —xk X —x*>— xF —x*”2
S R e s [ e I e

BN B 12) 715

(o ()P ()

2 . 2 2
<20yt =t -y |+ o ot =+ -

2 2
k k k * k * k+1 *
w2yt =l =t e

Sk—>oo, HLEH 11(2)%&@;("#‘ | —x*||2):oﬁﬁ%':

e _(yk 2 (F(a)k)_F(yk)))
XAEAB.10)RI (3.1 1) AT &1(3.9) KT
FEHFER LS, MBREES, 2@, {x}. [}, {0 {2} R INPCA it T3
FEF1, R () R R AT B X eS . JHEHEF(F)=0mExeS, .
HEWE: BT {2t} IR TIAEEE T (ot ) 2

2
— 0,k — oo

limx" =¥,
XA G H 112) 13
limy" =%, limo" =X. (3.13)

MITTE { '} = C B C MR RIX € C o FIFI3.13)BUESCHR[14] T HIEEE 1 (4 X B o' ) AT AN
LR IKOL

T2 A F R LI, BRI S, =@ Kl {ze C:F(2)=0)\S, AL, & {x'} & INPCA
R GTFEA, T (x| M SE S i A

TE: B X O (x| BT R AR I B, B BT 1 ATRD X < S o JRATTHR LT IS BLEAT 4 i i

Wi — #AEAE T e X (813 Res, . M, HI5IE 1M lim < - 3| fedE. & & 5 P {x i
AN

. k ~
hm”x - x" =0,
k—o

I {xk} W BE S R — .

BRZ HXMEER IeX WA xes,, WhEHE 1 /M F(x)=0Hxes, . Hit, ®MNAH
Xc{zeC:F(z)zO}\SDo XEEG WA X A IRSE. I, SCHER[13)1 R 513 3.5 loar. dbm, 46
x(3.9)F

lim
k—o0

k+1 k
X —x ":0,
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BARSCRR(I3 1R AE B 3.1 AT (ot | Yessesl S i A
gr b, TEPL2 BT
4. WiESH

FEATT R, AT BUA 25K B IE INPCA A Rt AT Ye F1 Deng [14]H1 ()53 1 #RA NPCA,
¥ Liu f1 Yang [13]/575 3.1 FRON LYA. FTA SEIRIITE Intel(R) Core(TM) Ultra 5 125H 3.60 GHz 14 47
4 32.00GB HJZE 1A HL G |- FH MATLAB R2023b #17 .

INPCA HIZHEEN: =099, =05, 0=05, af =1, PARXk>1H

P "a)k_a)k_lnz ;g<a)k_a)k4 F(a)k)_F(a)k—l)>>1074.
o = (1071010 ] <wk _wk—l’F(a)k)_F(wk—l )> ’ ’ >
ITIO’IO,IOIOJ (1'611(_1)’ ﬁf@‘f‘%‘%
Horf o FRE RN Ye 291 IS EOAHATE . NPCA 5 LYA (IS H0EEU5 75 SCHR[14]F1[ 1317 —2K,
EnmmA#wﬁﬂo,a:Q%,zpmngYA%uzos,1%=75%ﬁ,,%zh
n+l1)"

WMJ%%WYeﬁHeDﬂ&YéﬂDmgUﬂWﬁh‘%Cz%éR“yZOJﬂ;gmﬁhzma>%,

i=1

hxl.ixi —%hixf -1
— i=1 i=1

£~

B TE(0.11.6) HBHLA G, WS =S, ={(_£j} 5 19 L 2
n

n

F ()

b vi!

dist<107,
Horb dist FoR 4RSS BIREREEES . T 1, IRATESELE n = SIS ], 25 1 g H 7]
WA XY, o, ERKE iter, FEIRE np, CPU BHEJ(BALI: FD); Hn>100 B, #IUA A x° $%CHR[14]H
7 AR, D

z=rand(n,1), bb=sum(z), xO:%eC.

e 2% n, iter, np M1 CPU 5/(a=n), HEHRN 10 RFELGHIF(E

Table 1. Numerical experimental results of example 1 when n=5

F 1 61 fEn=5 R BESTINER

0 . iter np CPU
INPCA NPCA LYA INPCA NPCA LYA INPCA NPCA LYA
0,0,0,0,5 5 18 29 41 56 99 42 0.02328  0.04841  0.02845
0,0,5,0,0) 5 18 29 41 56 99 42 0.02356 0.03950 0.02452
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0,2,0,2,1) 5 15 26 36 43 84 37 0.01897 0.03312 0.01985
(1,1,1,1,6) 10 23 28 39 68 59 40 0.02824 0.02484 0.02837
(5,0,0,0,5) 10 21 37 40 63 78 41 0.02356 0.02397 0.02354

Table 2. Numerical experimental results of example 1 when 7 2>100

F22. 5 1 £ n 2100 FOBESRIRLER

iter np CPU
" INPCA NPCA LYA INPCA NPCA LYA INPCA NPCA LYA
100 23 121 42 65 243 43 0.05039 0.10313 0.03740
200 26 254 57 73 510 58 0.10220 0.53385 0.13586
500 28 671 93 79 1343 94 0.76908 9.86117 1.56018
1000 29 1388 147 80 2778 148 4.12551 103.61323 12.92367

Bl 2t %Ez Sun [30]F1 Malitsky 311/ THIEME . & C=R], F(x)=F(x)+F(x),
F(x)= (fl(x) ~-,fn(x)) v fi(x)=xl4xt tx x4 xx,, Vi Hox'=x""=0: F(x)=Ex+c ,
c=(-1-1- 1) EGR”X”E@fU%qJ“ Wi 2

4, i=j,

, i-j=1,
W i-j=-1,

0, FHAhIEM

S A8 P 45 L A U Ay <
<107

Hr(mk,/ik)
o, 7E NPCA RILYA H, m" =x*, 7EINPCA H, m* =w" . IAIEL 3% H 0, iter, np Al CPU,
S5 10 DNEENLBILE AT

Table 3. Numerical experimental results of example 2

3. B2 MBESEIREER

iter np CPU
! INPCA NPCA LYA INPCA NPCA LYA INPCA NPCA LYA
1000 22 31 204 66 266 205 0.00954 0.02860 0.04241
3000 22 33 235 68 288 236 0.08062 0.32705 0.54946
5000 23 34 259 71 297 260 0.33722 1.34843 2.37148

V3 BE 13 a 5, ER4EERIF, INPCA PIERIRELE NPCA. LYA /b, #Hs2 BRI CPU FERY
5 NPCA. LYA BEAMY ., EE4EEFIF, INPCA FIERREL, IR EF CPU £ 35/F NPCA.
LYA.
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B oW

PO AR T B R R . ANBSCHREAE TR, BISE iR S0 IR B & FavE €, BB
BATHB B LIRS e IRPADOE, RO S SHL, WA T3, IR RO AT TS L
KARIESE.

EHEWHE

5 @ SR FHA R 41 5 H (No. 11871059),  PHHITiTE K 2255 5 5 H (No. 20A024).

SE 3w
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