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摘  要 

本文研究了在轮形拓扑结构中符号图时滞神经网络的分岔动力学问题。首先，我们采用非线性耦合方式，

通过符号连接权重来描述网络的节点间合作与竞争并存的现象。接着，我们以时滞为自由参数，通过分

析特征根的分布，分别推导出网络系统在平衡点处局部渐进稳定与Hopf分岔发生的充分条件。最后使用

DDE-BIFTOOL软件包进行数值仿真，计算了分岔点处的第一李雅普诺夫系数来判断Hopf分岔的方向和

稳定性，以验证理论结果。 
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Abstract 
This paper investigates the bifurcation dynamics of wheel-signed graph neural networks with time 
delay. First, we adopt a nonlinear coupling method and use signed connection weights to describe 
the coexistence of cooperation and competition among nodes. Then, taking time delay as the bifur-
cation parameter, we analyze the distribution of characteristic roots and establish sufficient condi-
tions for both local asymptotic stability and the occurrence of Hopf bifurcation at the equilibrium 
point. Finally, numerical simulations are carried out by using the DDE-BIFTOOL package, and the 
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first Lyapunov coefficient at the bifurcation point is computed to determine the direction and sta-
bility of the Hopf bifurcation, thereby validating the theoretical results. 
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1. 引言 

近年来，神经网络非线性动力学的研究已经成为了一个前沿性的课题，其研究方向涉及稳定性、同

步性、分岔与混沌等。分岔是指一个动力系统的长期行为模式随着系统中参数的连续变化而发生突然的、

定性的改变，而连续变化并引起动力学行为突变的参数称为分岔参数[1]。目前的研究中以时滞作为分岔

参数的居多，并且讨论了不同的拓扑结构对时滞神经网络动力学行为产生的影响。例如文献[2] [3]研究了

环状耦合结构的时滞神经网络的稳定性和分岔现象，文献[4] [5]研究了星状结构的时滞神经网络分岔动力

学行为。相较于简单的拓扑结构，文献[6]提出了一种以星状和环状相混合的结构，这种结构既具有环形

结构的高拓扑值也具有星状的强信息集成能力，在此基础上，文献[7]进一步探讨了分数阶微积分对该类

型的网络分岔阈值造成的影响。然而现实中的神经网络，节点之间存在着合作或对抗关系，这也是影响

整个网络状态的因素之一。 
符号图神经网络可以很好地描述节点之间的合作或对抗，目前以同步性研究居多。例如文献[8]在网

络中加入了线性连续控制项，研究了区间二分同步问题，文献[9]进一步的考虑了耦合过程中时滞的影响。

时滞、耦合强度都可作为自由参数研究分岔问题。文献[10]研究了一类信念动力学问题，并且以耦合强度

为自由参数，计算出了发生周期振荡的临界值。 
基于以上的论述，本文研究在轮式拓扑结构符号图神经网络中，采用非线性反馈控制，以时滞为自

由参数的分岔问题，使用 MATLAB 软件包[11]进行数值仿真，以验证理论结果。 
符号说明： ( )Aσ 表示矩阵 A 的谱，τ 表示耦合时滞， ( )Re ⋅ 表示复数的实部， ( )Im ⋅ 表示复数的虚部，

1F C∈ 表示函数 F 的一阶导数是连续的。 

2. 预备知识与模型描述 

2.1. 预备知识 

定义 1： ( ), ,G V E C= 为一个有向符号图，其中 { }1, , nV v v=  ，E 和 ( ),ij ij jin n
C c c c

×
 = ≠  分别为节点

集，边集以及连接权重所组成的邻接矩阵。若 ( ),i jv v E∈ ，则 0ijc ≠ ，反之 0ijc = 。 0ijc > ， 0ijc < 分别说

明两节点之间为合作关系和对抗关系，若 0ijc = ，则节点 iv 到节点 jv 的方向无连接。 

定义 2： ( )ijL l= 为 Laplace 矩阵，其中： 

1 ,

,

n
ijj

ij
ij

c i j
l

c i j
=

 == 
− ≠

∑
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简记为 { }1, , nL diag l l C= − ， 1
n

i ijjl c
=

= ∑ 。 

引理 1 [1]：对于动力系统 ( )X F Xτ= ， nX R∈ ， Rτ ∈ ，若存在一个平衡点 ( )*
0,X τ ，并且满足下列

条件： 
1) ( )0

* 0xD F Xτ = 在虚轴上存在有且仅有一对纯虚根，其余为负实部的根，并且在平衡点邻域内

( )F Xτ 对 X 与τ 是解析的； 

2) 当τ 通过 0τ 时，特征根横穿虚轴，且满足

0

dRe 0
d τ τ

λ
τ =

  ≠  
； 

则 ( )X F Xτ= 于平衡点 ( )*
0,X τ 处出现 Hopf 分岔。 

引理 2 [12]：考虑如下的指数型多项式： 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

0 01 0
1 1

1 1 11
1 1

1
1 1

, e , , e

e

e .

m

m

SS n n
n n

Rn
n n

m m m Rn
n n

G p p p

p p p

p p p

λλ

λ

λ

λ λ λ λ

λ λ

λ λ

−− −
−

−−
−

−−
−

= + + + +

 + + + + + 
 + + + + 

 

 



 

其中， ,i
j ip R R∈ ， ( )0,1, , ; 0,1, ,i m j n= =  且 0iR > 。当参数 ( )1, , mR R 的取值改变时，指数多项式

( )1, e , , e mSSG λλλ −−
 在虚平面右半边的零点总阶数会变化当且仅当其零点有穿越虚轴的情况。 

引理 3 [13]：对于参数自治时滞系统族 ( ) ( ) ( ),t tx t L x f xµ µ= + ，其中 ( )L µ 为线性部分，若系统在

0µ µ= 处发生 Hopf 分岔，对应的线性算子为 ( )0A µ ，伴随算子为 ( )*
0A µ ，对应于 0iω 与 0iω− 的特征向量

分别为 ( )q θ 与 ( )*q θ ，且 *, 1q q = ，令 ( ) *, tz t q x= ，则限制在中心流形上的规范型为： 

( ) ( )
2 2

0 20 11 02 212 2 2
z z z zz t i z t g g zz g gω= + + + + +

， 

第一李雅普诺夫系数为 ( )
2

2 02 21
1 11 20 11

0

0 2
2 3 2

g gic g g g
ω

 
= − − + 

  
，记 ( )( )1 1Re 0l c= ，则有： 

1) 若 1 0l > ，则系统在平衡点处发生亚临界的 Hopf 分岔，其周期解是不稳定的； 
2) 若 1 0l < ，则系统在平衡点处发生超临界的 Hopf 分岔，其周期解是稳定的。 

2.2. 模型描述 

相较于耦合关系仅体现为单一的合作行为，本文研究如图 1 所示的包含 5 个节点的轮形符号图的神

经网络，并且引入符号权重以刻画合作与竞争共存关系，分析了两节点之间合作或竞争行为过程中时滞

所引起的动力学行为变化，其中实线表示合作关系，虚线表示竞争关系。 
 

 
Figure 1. Wheel topology structure 
图 1. 轮形拓扑结构 
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轮形符号图时滞神经网络动力学由如下时滞微分方程描述： 

 ( ) ( ) ( ) ( ) ,X t X t F X U t τ= − + + −  (1) 

其中 ( ) ( ) ( ) ( ) ( ) ( )( )T
1 2 3 4 5, , , ,X t x t x t x t x t x t= 表示每个结点的状态变量，自衰减系数与权重系数设置为 1，

( ) ( ) ( ) ( ) ( ) ( )( )T
1 1 2 2 3 3 4 4 5 5, , , ,F X f x f x f x f x f x= 表示每个节点自身的非线性激活函数，需要被设计的控制

输入为 ( ) ( ) ( ) ( ) ( ) ( )( )T
1 2 3 4 5, , , ,U t u t u t u t u t u tτ τ τ τ τ τ− = − − − − − ，表示节点之间的耦合。 

现实中，神经网络普遍存在合作与竞争并存的交互模式，相互作用常呈现出非线性特性，单纯的线

性耦合难以刻画此类复杂动力学，因此我们考虑如下的非线性耦合方式： 

 ( ) ( )( ) ( ) ( )( )( ) , 1, 2,3, 4,5i ij i j ij i i
j i

u t c g x t sign c g x t iγ τ τ
≠

= − − − =∑ ， (2) 

γ 表示耦合强度， ig 为每个节点在耦合过程中的非线性激活函数，轮形结构的邻接矩阵
5 5ijC c
×

 =   为： 

12 13 14 15

21 23

31 34

41 45

51 52

0
0 0 0
0 0 0
0 0 0

0 0 0

c c c c
c c

C c c
c c
c c

 
 
 
 =
 
 
 
 

。 

将(2)代入(1)，并展开为时滞微分方程组的形式： 

 

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )

5

1 1 1 1 1 1 1 1
2

2 2 2 2 2 2 2 2
2,3

3 3 3 3 3 3 3 3
1,4

4 4 4 4 4 4 4 4
1,5

5 5 5 5 5

j j j
j

j j j
j

j j j
j

j j j
j

j j

x t x f x c g x t sign c g x t

x t x f x c g x t sign c g x t

x t x f x c g x t sign c g x t

x t x f x c g x t sign c g x t

x t x f x c g x

γ τ τ

γ τ τ

γ τ τ

γ τ τ

γ

=

=

=

=

= − + + − − −

= − + + − − −

= − + + − − −

= − + + − − −

= − + +

∑

∑

∑

∑









 ( )( ) ( ) ( )( )( )5 5 5
1,2

j
j

t sign c g x tτ τ
=












 − − −


∑

。 (3) 

假设 1：激活函数满足 ( ) ( ) ( ) ( ) ( ) ( ) 10 0 0, 0 0 1, ,i i i i i if g f g f x g x C′ ′= = = = ∈ 。 

为聚焦于时滞τ 导致系统稳定性丧失以及 Hopf 分岔的发生，保证理论分析的清晰性与可处理性，本

文以原点 ( )* 0,0,0,0,0X = 为平衡点对网络系统(3)进行线性化，得到如下线性化方程组： 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

5

1 1 1 1
2

2 2 2 2
2,3

3 3 3 3
1,4

4 4 4 4
1,5

5 5 5 5
1,2

j j j
j

j j j
j

j j j
j

j j j
j

j j j
j

x t c x t sign c x t

x t c x t sign c x t

x t c x t sign c x t

x t c x t sign c x t

x t c x t sign c x t

γ τ τ

γ τ τ

γ τ τ

γ τ τ

γ τ τ

=

=

=

=

=


= − − −


 = − − −
 = − − −

 = − − −

 = − − −


∑

∑

∑

∑

∑











， (4) 

方程组(4)的 Laplace 矩阵为： 

https://doi.org/10.12677/aam.2026.152067


郑晨阳，孙文 
 

 

DOI: 10.12677/aam.2026.152067 261 应用数学进展 
 

1 12 13 14 15

21 2 23

31 3 34

41 4 45

51 52 5

0 0
0 0
0 0

0 0

l c c c c
c l c

L c l c
c l c
c c l

γ γ γ γ γ
γ γ γ
γ γ γ
γ γ γ
γ γ γ

− − − − 
 − − 
 = − −
 
− − 
 − − 

， 

对角线元素为
1

n

i ij
j

l c
=

= ∑ ，令 eA I L λτλ −= − ，网络系统(3)的特征行列式如下： 

( )

1 12 13 14 15

21 2 23

31 3 34

41 4 45

51 52 5

e e e e e
e e e 0 0

det e 0 e e 0
e 0 0 e e
e e 0 0 e

l c c c c
c l c

A c l c
c l c
c c l

λτ λτ λτ λτ λτ

λτ λτ λτ

λτ λτ λτ

λτ λτ λτ

λτ λτ λτ

λ γ γ γ γ γ
γ λ γ γ
γ λ γ γ
γ λ γ γ
γ γ λ γ

− − − − −

− − −

− − −

− − −

− − −

−
−

= −
−

−

。 

显然，系统的特征方程是一个含有多个指数项的超越方程，其解析解无法直接计算。为了简化特征

方程的计算，我们假设 1 2 3 4 5l l l l l l= = = = = ，但它们可以不一样。 
可计算出特征方程： 

 ( ) ( ) ( ) ( )5 3 2

1 2 3 4e e e e 0l a l a l a l aλτ λτ λτ λτλ γ λ γ λ γ λ γ− − − −− − − + − − − + = ， (5) 

各项系数如下： 

1 12 21 13 31 14 41 15 51

2 12 23 31 13 34 41 14 45 51 15 52 21

3 12 23 34 41 13 34 45 51 14 45 52 21 15 52 23 31 23 34 45 52

4 12 23 34 45 51 13 34 45 52 21 14 45 52 23 31 15 52

,
,

,

a c c c c c c c c
a c c c c c c c c c c c c
a c c c c c c c c c c c c c c c c c c c c
a c c c c c c c c c c c c c c c c c c

= + + +

= + + +

= + + + +

= + + + 23 34 41.c c

 

方程(5)中的超越项仍然太多，直接化简后难以计算特征值，为此我们可以将 el λτλ γ −− 视为一个整体

元素，通过代换将其化简为一般多项式(6)，通过分析整体元素的实部与虚部，可确定特征方程(5)的特征

值。 
令 el λτλ γ −Λ = − ，特征方程(5)简化为： 

 ( ) 5 3 2
1 2 3 4 0H a a a aΛ = Λ − Λ + Λ − Λ + = ， (6) 

若方程 (6)有虚数根 a ibΛ = + ，且 0a ≠ ， 0b ≠ ，同样地对于特征方程 (5)式的特征根来说

el a ibλτλ γ −− = + 亦是成立的。 

3. 理论分析 

在这一节，我们将研究以时滞引起的分岔现象，计算出临界点并搭建分岔现象发生的充分条件，以

下内容都基于假设 1 成立的情况。 
定理 1：当 0τ = 时，若 ( )max Relγ > − Λ ，则 ( )H Λ 中所有的特征值都是负实部的，即网络系统(3)在

0τ = 时于平衡点处是局部渐进稳定的。 
证明：对(6)式中的整体元素 el λτλ γ −Λ = − 展开实部与虚部： 

( ) ( ) ( ) ( ) ( )( )Ree Re Im e cos sinl i l iλ τλτλ γ λ λ γ ωτ ωτ−−− = + − + ， 

可得出实部 ( ) ( ) ( ) ( )ReRe Re e cosl λ τλ γ ωτ−Λ = − 。当 0τ = 时，(6)式特征根的最大实部满足 
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( )( ) ( )( )max Re max Re lλ γΛ = − 。若 ( )max Relγ > − Λ ，则特征方程(5)的特征根实部是负的。 
综上所述，网络系统(3)在平衡点邻域内是局部渐进稳定的，定理 1 得证。 
接着，我们分析在 0τ > 时网络系统(3)产生 Hopf 分岔的充分条件。若特征方程(5)存在纯虚根 iλ ω= ，

将 iλ ω= 代入 el λτλ γ −Λ = − ，则有： 

( ) ( )( ) ( ) ( )( )e cos sin cos sinii l i l i l i lωτω γ ω γ ωτ ωτ γ ωτ ω γ ωτ−Λ = − = − + = − + − ， 

上式的实部与虚部分别为 ( )cosa lγ ωτ= − 和 ( )sinb lω γ ωτ= − ，从而： 

 
( )

( )

sin

cos

b
l
a
l

ωωτ
γ

ωτ
γ

− =

 = −


。 (7) 

由于 ( ) ( )
2 2 2

2 2
2 2 2 2

2cos sin 1a b b
l l

ω ωωτ ωτ
γ γ

− +
+ = + = ，所以我们得到如下等式： 

 2 2 2 2 22 0b l a bω ω γ− − + + = 。 (8) 

定理 2：若 2 2 2l aγ ≥ ，则方程(8)至少存在一个非零解，即方程(5)存在纯虚根 iλ ω= 。 
证明：若 2 2 2l aγ ≥ ，则判别式 ( )2 2 2 2 24 4 0b a b lγ∆ = − + − ≥ ，并且 0b ≠ ，对称轴不与纵坐标重合。因

此，(8)式至少存在一个非零解，对应的方程(5)存在纯虚根 iλ ω= 。 
定理 2 证明完毕。 
定理 2 说明特征方程(5)至少存在一个纯虚根 iλ ω= ，为了不失一般性，我们假设方程(5)存在m个纯

虚根，对应虚部为 1 2, , , mω ω ω  ( 1m ≥ )，由(7)式可知，每一个虚部对应的一簇时滞解： 

( )
( )
1 arccos 2k m

m k
m

a k
l

τ
γω

π
 

= − + 
 

， k Z∈ ， 

在所有纯虚根对应的时滞解 ( )k
mτ 中选取最小值 ( ){ }0 min k

mτ τ= 。由引理 2，网络系统(3)在 [ )00,τ τ∈ 时，

位于虚轴右半边的特征根总阶数不变，由定理 1 可知当 0τ = 时，系统的特征根全部位于虚轴左边。因此，

系统在 [ )00,τ τ∈ 时在平衡点邻域内局部渐近稳定的。反之，如果 0τ 不存在，网络系统(3)不满足定理 2，
即 2 2 2l aγ < ，使得(8)式无解。根据引理 2，特征根在 0τ > 时会一直全部位于虚轴左边，此时网络系统(3)
在 [ )0,τ ∈ +∞ 时位于平衡点邻域内是局部渐近稳定的。 

在网络系统(3)满足定理 1 与定理 2 的条件下，我们接下来推导发生 Hopf 分岔的横截性条件，即引 

理 2 中的

0

dRe 0
d

µ µ

λ
µ

=

 
≠ 

 
。 

定理 3：若
( )0 0

0

sin
0

l
ω τ

γ ω
> ，且 ( ) 0H ′ Λ ≠ ，则有如下不等式成立： 

0

dRe 0
d τ τ

λ
τ =

  > 
 

。 

证明：对(6)式等号左右对τ 求导，即有： 

( )4 2
1 2 3

d d5 3 2 e e 0
d d

a a a l lλτ λτλ λγ τ γ λ
τ τ

− − Λ − Λ + Λ − + + =  
。 
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将上式化简得到 ( )( ) ( )d1 e e
d

H l l Hλτ λτλγ τ γ λ
τ

− −′ ′Λ + = − Λ ，并且等号两边同时除以 ( )H ′ Λ 可得： 

1d e
d

l
l

λτλ γ τ
τ γ λ

− +  = −  
， 

取 0τ τ= ， 0iλ ω= 并代入上式： 

0

1
0 0 0 0 0

0

cos sind
d

i l
liτ τ

ω τ ω τ γ τλ
τ γ ω

−

=

+ +  = −  
， 

则上式实部： 

( )
0

1
0 0

0

sindRe 0
d lτ τ

ω τλ
τ γ ω

−

=

  = >  
， 

因此实部的符号为：  

0 0

1d dRe Re 0
d d

sign sign
τ τ τ τ

λ λ
τ τ

−

= =

         = >               
， 

定理 3 证明完毕。 
综上定理 1~3 所述， 0τ 就是网络系统(3)在平衡点处的临界点，可以得出定理 4。 
定理 4：在假设 1 成立且 ( )max Relγ > − Λ 的前提下，对于轮形符号图时滞神经网络(3)，我们有如下

结论： 
1)若 2 2 2l aγ < ，则网络系统(3)在 [ )0,τ ∈ +∞ 时于平衡点邻域内是局部渐进稳定的； 

2) 若 2 2 2l aγ ≥ 且
( )0 0

0

sin
0

l
ω τ

γ ω
> ， ( ) 0H ′ Λ ≠ ，则网络系统(3)在 [ )00,τ τ∈ 时于平衡点处是局步渐近稳

定的，在 0τ τ= 处出现 Hopf 分岔，当 0τ τ> 时，平衡点失去稳定性，产生周期解。 
证明：1) 若 ( )max Relγ > − Λ ，则由定理 1 可知，当 0τ = 时，网络系统(3)在平衡点处是局部渐近稳

定的；由于 maxlγ < Λ ，由判别式 ( )2 2 2 2 24 4 0b a b lγ∆ = − + − < ，(8)式无解，特征方程(5)不存在纯虚根，

由引理 2，特征方程(5)位于虚轴左半边零点总阶数不随着τ 的增大而改变，因此网络系统(3)在 [ )0,τ ∈ +∞

时于平衡点邻域内是局部渐进稳定的。 
2) 若 2 2 2l aγ ≥ ，由定理 2 可知，特征方程(5)存在纯虚根；在所有的纯虚根虚部对应的时滞

( )
( )
1 arccos 2k m

m k
m

a k
l

τ
γω

π
 

= − + 
 

中选取最小值 0τ ，若
( )0 0

0

sin
0

l
ω τ

γ ω
> 且 ( ) 0H ′ Λ ≠ ，由定理 3 可知

0

dRe 0
d τ τ

λ
τ =

  > 
 

，横截性条件满足。因此由引理 1，网络系统(3)在平衡点处出现 Hopf 分岔。 

对于网络系统(3)在临界点 0τ τ= 处发生 Hopf 分岔的方向和稳定性，我们可以使用 DDE-BIFTOOL 中

的“nmfm”模块来计算引理 1 中第一李雅普诺夫系数来确定。 

4. 数值模拟 

在这一节中，我们使用 DDE-BIFTOOL 软件包[11]对理论推导结果进行仿真验证。考虑如下 5 个节

点的网络，选取的激活函数为 ( ) ( ) ( )tanhi if x g x x= = ，参数取值如下： 

12 13 14 15 21 31 41

51 23 34 45 52

0.2, 0.5, 0.7, 0.3, 0.3, 0.2, 0.3,
0.8, 1.5, 0.5, 0.4, 1, 0.2, 4.5,

c c c c c c c
c c c c c τ γ

= = − = − = = = − = −

= = − = − = − = − = =
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在初值条件下，外围节点之间是对抗关系，且为单向连接；中心节点 1 与外围节点 2 和 5 为合作关

系，与节点 3 和 4 为对抗关系。  
首先在初值条件下，计算网络系统(3)的特征根，并且在图 2 上展示特征根的分布情况，可见在初值

条件下网络系统(3)存在位于虚轴右半平面的特征根，此时是不稳定的。 
 

 
Figure 2. Characteristic root distribution of network system (3) at the initial state 
图 2. 初值条件下，网络系统(3)的特征根分布。 

 
创建一个以时滞τ 为自由参数的分支，设置 ( ]0,2τ ∈ ，最大步长 0.01τ∆ = ，在τ 按照最大步长从 0 增

大至 2 之前，我们的程序共计算了 222 个点的特征值，特征值实部随时滞τ 的变化曲线见图 3，每一个点

对应特征值的实部取值见图 4。从这两个图中我们可以看出当 0τ = 时，特征根实部全部小于 0，随着时 

滞取值的变化，特征值存在穿越虚轴的情况，即临界点 0τ 是存在的，并且穿越虚轴时
0

dRe 0
d

sign
τ τ

λ
τ =

    >     
， 

我们的横截性条件成立，Hopf 分岔现象是存在的。 
 

 
Figure 3. Variation of the real parts of the characteristic roots with increasing time 
delay for network system (3). The cyan curve represents the calibrated values 
图 3. 网络系统(3)的特征根的实部随时滞增大而变化的曲线。青色线为校正值 
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Figure 4. Variation curve of the maximum real part of the characteristic roots 
图 4. 每一个点的特征根实部最大取值及变化曲线 

 
在图 4 中可见第 209 到第 210 个点之间就存在临界点，接着经过持续校正，最终定位到系统的临界

值 0 0.1259τ = ，对应的虚部取值 0 10.6429ω = ，此时特征根分布情况见图 5，这就说明随着时滞τ 的不断

增大，网络系统(3)由稳定向着不稳定状态变化，也验证了定理 4 的正确性。 
 

 
Figure 5. When the time delay is set to 0 0.1259τ = , a pair of pure imaginary roots 

0iλ ω= ±  with 0 10.6429ω =  emerges in the network system (3) 
图 5. 当时滞取值 0 0.1259τ = 时，网络系统(3)存在一对纯虚根 0 0, 10.6429iλ ω ω= ± =  

 
使用 DDE-BIFTOOL 计算出临界值后，我们接着使用 MATLAB 自带的 dde23 函数插件作出对应的状

态图和相位图。当 00.1τ τ= < 时，网络系统(3)是局部渐进稳定的，对应的状态图与相位图见图6(a)与图6(b)。
当 0τ τ= 时，网络系统(3)出现极限环，并且有周期震荡现象，对应的状态图与相位图见图 7(a)与图 7(b)。 

为了展现网络系统(3)发生 Hopf 分岔时的性质，我们接着使用 DDE-BIFTOOL 中的“nmfm”模块来

计算时滞 jτ τ= 时的李雅普诺夫第一系数。初值条件不变，仍然取 ( ]0,2τ ∈ ，最大步长 0.01τ∆ = ，在延拓
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的过程中，我们的程序一共检测到 13 个 Hopf 分岔点，对应的 jτ 以及第一李雅普诺夫系数实部

( )( )1 1Re 0l c= 的取值见表 1。 
 

 
(a)                                                (b) 

Figure 6. Local asymptotic stability of the network system (3) for 00.1τ τ= < , with other parameters fixed. (a) State diagram 
of the system (3); (b) Phase diagram of the system (3) 
图 6. 其他参数不变，当 00.1τ τ= < 时，网络系统(3)局部渐近稳定。(a) 系统(3)的状态图；(b) 系统(3)的相位图 

 

 
(a)                                                (b) 

Figure 7. Emergence of periodic oscillations in the network system (3) for 0τ τ= , with other parameters fixed. (a) State 
diagram of the system (3); (b) Phase diagram of the system (3) 
图 7. 其他参数不变，当 0τ τ= 时，网络系统(3)出现周期振荡现象。(a) 系统(3)的状态图；(b) 系统(3)的相位图 

 
Table 1. The values of jτ  and the normal form coefficient 1l  for each Hopf bifurcation point obtained during continuation 

with a maximum step 0.01τ∆ =  on ( ]0,2τ ∈  

表 1. 在 ( ]0,2τ ∈ 上以最大步长 0.01τ∆ = 延拓的过程中，每一个 Hopf 点对应的 jτ 与正规型系数 1l 的取值 

Hopf 分岔点 取值 正规型系数 1l  

0τ  0.125920 −0.086930 

1τ  0.169263 −0.061351 

2τ  0.184757 −0.100368 
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续表 

3τ  0.448087 −0.038938 

4τ  0.716285 −0.004809 

5τ  0.759628 −0.004285 

6τ  1.016162 −0.107250 

7τ  1.306651 −0.001463 

8τ  1.349994 −0.001371 

9τ  1.450445 −0.004457 

10τ  1.713776 −0.003187 

11τ  1.897016 −0.000665 

12τ  1.940359 −0.000695 

 

 
(a)                                                (b) 

Figure 8. For 1τ τ= , periodic oscillations emerge and a stable limit cycle is generated in the network system (3). (a) State 
diagram of system (3); (b) Phase portrait of system (3) 
图 8. 取 1τ τ= ，网络系统(3)出现周期振荡现象并且产生稳定的极限环。(a) 系统(3)的状态图；(b) 系统(3)的相位图 

 

 
(a)                                                (b) 

Figure 9. For 6τ τ= , (a) State diagram of system (3); (b) Phase portrait of system (3) 
图 9. 取 6τ τ= ，(a) 系统(3)的状态图；(b) 系统(3)的相位图 
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(a)                                                (b) 

Figure 10. For 12τ τ= , (a) State diagram of system (3); (b) Phase portrait of system (3) 
图 10. 取 12τ τ= ，(a) 系统(3)的状态图；(b) 系统(3)的相位图 

 
显然，对于 ( ]0,2jτ ∈ ，对应的正规型系数 1 0l < ，网络系统(3)发生超临界 Hopf 分岔并且周期解是稳

定的。接下来分别取 1τ τ= 。 6τ τ= ， 12τ τ= ，代入 dde23 函数，相应的状态图与相位图分别见图 8~10。 

5. 结论 

本文研究了轮形符号图时滞神经网络的稳定性和 Hopf 分岔现象。通过引入带符号的耦合权重来刻画

节点间的合作与竞争关系，并采用非线性耦合方式，建立了一个更贴近实际交互模式的网络模型。以时

滞为分岔参数，得出了局部渐近稳定和 Hopf 分岔发生的充分条件，并计算了整个网络系统动力学行为发

生突变的临界点。然而现实中的网络普遍是高维度的，并且引起分岔的因素还有耦合强度、激活函数等，

未来我们将进一步探讨这些问题。 
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