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Abstract

This paper investigates the bifurcation dynamics of wheel-signed graph neural networks with time
delay. First, we adopt a nonlinear coupling method and use signed connection weights to describe
the coexistence of cooperation and competition among nodes. Then, taking time delay as the bifur-
cation parameter, we analyze the distribution of characteristic roots and establish sufficient condi-
tions for both local asymptotic stability and the occurrence of Hopf bifurcation at the equilibrium
point. Finally, numerical simulations are carried out by using the DDE-BIFTOOL package, and the
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first Lyapunov coefficient at the bifurcation point is computed to determine the direction and sta-
bility of the Hopf bifurcation, thereby validating the theoretical results.
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Figure 2. Characteristic root distribution of network system (3) at the initial state

B2 MEFHT, MEREQ)MFHERD .

QI —NCARH « HE B SEI 3 WE re(0,2), RABK AT=0.01, 7 ¢ IR AP KM 0 1
K& 2 200, BAIKREFIEE T 222 A ri fRHIEAE, FFAEAE SEARREIN I « AOAfLth 20 LIS 3, & — i
X ERFAEAE (Y SE A HUEL L P 40 MO EIh BATAT AR 124 0 =0 I, RRIEARSE IS4 #/N T 0, BEAE I

ﬁﬁﬁ%%&%ﬂﬁﬁﬁ?ﬁﬁ%m@hw%ﬁﬁ%%ﬁﬁmﬁﬁﬁﬁﬁﬁﬁﬁw%{%}:Fm

AT S AP L, Hopf 43 LG R AFTENY

7 T T T T T T

6 -

R(N)
T
I

X013
Y 0.157962
o

tau

Figure 3. Variation of the real parts of the characteristic roots with increasing time
delay for network system (3). The cyan curve represents the calibrated values

B 3. 4% R ()HIFHER K SLRRRERT B AM L WALk . FREARIEE

DOI: 10.12677/aam.2026.152067 264 I3RS


https://doi.org/10.12677/aam.2026.152067

HIRRH, #h3C

X209
Y 0.157962
°

3(\)

N
T
1

4 1 1 1 1
0 50 100 150 200 250

WA RS

Figure 4. Variation curve of the maximum real part of the characteristic roots

Bl 4. 88— B4R SEAP R A BUE R T L L

FEFE 4 ra] BLEE 209 B 210 N s AEAE IR s, HR A FRERIE, RA& B R G M 5t
fH 7, =0.1259 , X1 R EFHUE @, =10.6429 , U RFAEAR /> AT E LI 5, 3% mf 158 B Bl 25 IRV« PR AN B
BER, W% RS (3) AR E M & AR e B, WERIE T 2 4 MIER T

15 T T

I
| X4.37817e-16

| Y 10.6429
10 - -

X 4.37817e-16

10 - Y -10.6429 B

-15 1 1 I
-2 -1.5 -1 -0.5 0 0.5

R(N)

Figure 5. When the time delay is set to z,=0.1259, a pair of pure imaginary roots
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diagram of the system (3); (b) Phase diagram of the system (3)
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Figure 8. For 7z =1, periodic oscillations emerge and a stable limit cycle is generated in the network system (3). (a) State
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