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Abstract

Coupled nonlinear Schrédinger equations (CNLS) describe the dynamical behavior of many quan-
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tum systems, and finding an efficient numerical method is crucial for scientific and engineering ap-
plications. This paper introduces a meshless method for solving two-dimensional nonlinear cou-
pled Schrédinger equations, called the generalized finite difference method (GFDM). This method
combines Taylor polynomials with the least squares method. In the derivation, the CNLS nonlinear
system is first discretized in the time direction using the Crank-Nicolson method, deriving the line-
arized discretized form of CNLS in time. Then, GFDM is used for spatial computation. This method
generates a sparse nonlinear algebraic system for CNLS. Finally, numerical examples are given to
demonstrate the effectiveness of the proposed method in solving linear algebraic equations in two
regions. Numerical results show that the developed numerical method is a stable, fast, and accurate
computational approach.

Keywords

Coupled Nonlinear Schréodinger Equations, Generalized Finite Difference Method, Meshless
Method, Irregular Computational Domain

Copyright © 2026 by author(s) and Hans Publishers Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

1. 5l

A AR LR MY 2 15 77 #2420 (Coupled Nonlinear Schrédinger Equations, CNLS)/E & F4)# . AE28 62 .
mn RV Bt - 2 DR B R AR B ) 2 S Y B A A BRI (1]-[3], B LR R T T2
IBEFL . AN 5 225 8 T AR & AR Ze M B E v 7 14 [4]:

Ou(x,1)

t

16—+Au(x,t)+(b11 |u(x,t)|2 +b, |v(x’z)|z)u(x,t) = fi(x,1),xeQ,re(0,T],

i¥+m(x,t)+(bﬂ|u(x,t)|2 +b,, |v(x,t)|2)v(x,t) =/, (x,t),xeQte(0,T], (1.1)
u(x,t)=u(x,t),v(x,1)=v(x,1),xcoQte(0,T],
u(x,O) =u° (x),v(x,O) =y’ (x),x eQ.

Hfi=v=1, uflyv 2EEH, FRWAMEERIZSBEAMRIEEL. Ba9E. M), x=[xy] 2%
B, by, by, by, F by, FEAELRIE TR BE (AR R S8, RO BAH BARH 558 XOM AR R R EE . fEB A - 52
DTSR R AR 1 R G5k, 12 R T PR M SRARS], Forb u (e 1) R v (e, 1) X T 2093 O30t R 5
Z 7 FREH AT DISSHOCHT 5 53 (8 S A5 6] B 2 R 2F B B AR 1R [ 7], FHorbru Ry RORUSE AR
Prt OB IRz . £, £ IR, Q RILF N o WA FIK, w,v,u’, v & CAIESL R

AESR, — MR A BR 22 731 GFDM) TG A R TE TR AR A 2 12 BR8] [9]
AR e AT LUR 25 5 ™ i BAS O TSR [X Sk f) s A 7R o ST 102 R — ol T SR ARAS L SR
X35 I (1) 4k CNLS [) GFDM. GFDM ¥ Taylor 2 W5 /) —iEAHL &, %7715 CNLS A i b
AR R S

2. BEERLT
BUE, BAWETTRE(L D) RYIE — R T IE) 77 R4S & CNLS #-F B ks 50 BN O — D IEEEHL,
v=T/N WK, MRS R e, =ne))  BERHE[0,T] R0 NAF X Wi, id

n

ik
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t +t

. :”T"”,u(x,tn)zu” (x).v(x,t,)=v"(x), f(xz,)=f"(x),0<n<N.

2

SRR )T (xt I)AL A 1755

u(x,t . )
nty

u(x,tml)
2

XHEo<n<N-1, RIGHRATE LT EHUL:

6u(x t

.—H2)+Au(x,tn+l)+[b“
2

2
+b,,

v(x,twl)

2

v(x,t}”l)
2

u (x’ t’1+% )

S+l ) 1= 3L ()« £ () ]+ O ()

”(x”w%)
—[v ta)+v(xt)]== [f2 t)+ 1 (x.8,)]+0(7%),
i3 Taylor FEFF R 53 ) u(x,t), v (xot) 21 =1, IT=BRIEM, X T n>2,
u(x,tﬂ+1)—§u(x 6)- gu(x,tn,l)+§u(x,zn)+o(r3),

3 5 15
__v(x,tn71)+§v(x,tn)+O(13)’

i
ot

6v(x,ln+i)
U sl oo
nts

ot

2
+b,,

2
]v("%;)zfz(x’tm;)’

2

+b,|v

T

iu(x,t,m) (xf) [Au ,M)JrAu(X,tn)]‘{bn

Q.1

2

+by, [v[x

T

iv(X,tn+1)_V(x t [Av X, n+1)+Av(x,tn)]+[b21

EHZIETJ‘,
u(x,t%):%u(x,tl)—%u(x,t0)+0(r2),
v(x,ti):%v(x,tl)—%v(x,to)—i-O(z’Z).

N T ORIESUEAS SRS e, AT E n = 0 AR X1 DH, ©1—0, TSR]

8u(a);,0) =iA”0(x)+i(b”|u0(x)|2+b12 Vo(x)|2)u0(x)_iflo(x)’er)

@ =in’ (x)+i(b21 |u° (x)|2 +b,, |v° (x)|2)v° (x)-ify (x),xeQ.

T Tl L L
u’ (x)-i—%[iAuo (x)+i(b11 |u° (x)|2 +b, |v0 (x)|2)u° (x)—ifl0 (x)},n =0,
i"(x)= %u(x,tl)—%u(x,to),n =1,

3 5

gu(xt )—Zu(xt )+%u(x,tn),n22.

>"n-2 > "n-1
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. (x)+%[iAv° ()i o G+ O ) ()32 ()| =,

" (x): %v(x,tl)—%v(x,to),n =1,

%v(x,t,ﬂ)—%v(x,tnfl)+%5v(x,t"),n22.
B an (), 9" (x) RAFFFER.1), FEABIH " (x),v" (x) @IEHFEQ.DF M u(x,1,),v(x,1,), 35

P (x)|2)[u"+I (x)+u" (x)]

i (x)

" 2.2)
21M+ AV (x)+ AV (x)+ (bZ] |ﬁ” (x)|2 +b,, |\3" (x)|2)[v"+1 (x)+v" (x)]
= (x)+f2” (x),OSn <N-1

HO AT REQ.2) A&, A B — DAL RO TR B ot 2, W R s
ku™' (x)+Au"™ (x) =] (x),0<n <N -1,
(2.3)
kv (x)+ A (x) =@ (x),0<n< N -1,

21

. %+(b“ @7 () + by | (x)|2),k§ — (bﬂ % (x)|2 + by i (x)|2),
01 ) =| 2 (o i o 5" 0 ) o o) ) () 1 (),
@2 ) =| 2~ {b 17 (0] 5 ) o ) () 127 ()12 ().

3. ZEE{AR GFDM
AT (AR I, TE T 28 B 30(2.3) TP 2 I 1) A, 4 u(x), v () FERMI 5 AR AT 200 R A
@, (x), D, (x) TR TR, AL IZ o O R BB AR DARIRI, &, &y R AR MR TR SRS 0
fEN ARk 2 5, ERARZE L (n=1,--,N) &3 58 =&k ik
ku(x)+Au(x)=,(x),
kyv(x)+Av(x)=0,(x),

-\|N ﬂ|l\>

3.1)

LS 3 5 2% A
u(x)=u(x),v(x)=v(x),xeoQ.

GFDM 2 3R 5 S W HE 7 R 0 — R RO L[ 101 [11] ZEARTT o, FoATTR A GEDM J5 R 5 F2(3.1)
R I R RS . B N RBAIN 9 GFDM 7 “4EE R (Qc R?) FRISZHL. BUHH X — A5
x = (0, vy ) PEA AT 25, BEES AT 2 e, SOOI m AN SV RET S 1 FR), B, v, AT
O A ey AR, w v, N m AR A X, = (3, p,), 0 = 1 m R R KA

FER BT TR, AN RETFIERR, B, A, W SCRE AL x, T Taylor 203U
It
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Figure 1. Diagram of central node and supporting nodes
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Hl b =x,—x0.k, =y, —y, » HEEWIDUPr FECZ A E 7, FTRUE AT B iR AL

m 2 A2 2 A2 2
R(u)=D|| uy—u, +h, oty k,%+h—"a u2°+k—"au2°+h,.k,.au°
i oy 2 Ox 2 oy Ox0y
W ou, ko‘u, Wk u, hkl u, h' o'y,
-+ + + +—L
6 ox° 6 9 2 ax’oy 2 oxoy® 24 oxt
k4 84u0 Kk, 0*u, hkl o'u, h'kl 'y, 2
+ + + i |
24 ot 6 oy 6 xdy 4 ox*oyt) !
m 2 A2 2 A2 2
RO) =3[ vy v, + 1, Doy Do I OV K OV gy OV
pary oy P 2 oy’ Oxoy

B v, +k_i363v0 N Wk, v, +hikl.2 v, +£84v0

6 &’ 6 o 2 ax*oy 2 oxoyt 24 oxt
+k_f64v0+hi3k,. o*v, Jrh,.k,.3 v, +h,.2k[.2 o*v, 2

24 9" 6 oy 6 oxdy' 4 ooy ) |

Horb o NIOALRREL[12], FEASCH R

2 3 4
o =1-6| | p8( 4| 5[ 9| 4 <a iz1im,
dm dm dm

X d, = R B R SR, d, = max {d,,i =1, m) . DIBLEREOR A
U FFEGE AR (4 T, R P S 85 T 4 AR , 34 AT SR T AR, SR A
SO SR -

NTAERRERME, KT R (1), R (v) s s b
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_| Oy 8u0 azuo 82u0 ’u, O'u, 83u0 o'u, 0wy, 0'u, 0'u, 0'u, 0'w, O'u, i
! ox oy axt oyt Taxdy ax’ T oy Toxtoy oxdy' oxt T oyt Tox’oy axoy® axloy?

_{6\/0 ov, 0%, 0, 0%, v, O, o, 0o, d'v, o', o'y, o', ', }T
14x1

Tlax oy o eyt axdy’ o 0y’ oxtoy oxdy’ axt oyt T ax’oy oxdy’ ox oy’

R /ME, B4
R (u) _o, oR(v) 0.

oD, oD,

RIS R TR AR D, D, KA1 FE 4
AD, =b,,4D, =b,,
VEAR LA T RELL I R BGERE 4, Adm I b, , b, 73514

A=P'wp,
b, =BU,b, =BV,

|

2

W:diag{wf,wzz,--',a)m}>

2 12 373 12 2 14 14 13 37272
[ BB B R Rk W KK R e ]
2 2 6 6 2 2 2424 6 6 4 | .
i ni |
) hok, 141
Py .
hyk;
p=| "= h ky 7 |,
L Pm 2.2
hok, o Bk,
L 4 |
B= _Za)zzpfaa)lzprawjp;:awip;} 5
=1 Ixm+1

U=[u0,u1,u2,"',um]lxm+l s

V= [vo,vl,vz,---,vm]lxm+I .
H G A S (B i 53 D, , D, T R B R A
D, =A4"h,=A"'BU=EU,D,=A4"'b,=A"'BV =EV.

FRIEE ISR T LK x, A R w,, v, B SIS 3R R A H SR v, IREUE R S H S, KT
YRR A AR M 1 T RE I R B A JE R (3. 1), FRATAT AT E

0 ha
auz _631”0+zlesz+1”w 6; _641”0"'21:@4”1”1’

AN
&—e v, +Ze V. 62\) e V, +Ze V.
ax 3,170 = 3,i+1 l’ay —*4,1%0 P 4,i+17i>
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He) SR E SRR AR IRAES W ERERE, RASI IR R, X
FF R IE BRI R, T R B B O R T AAE AN DX b BE4T
AT T RE B D) FF R w (), v(x) » FEREAN TN BHUM 5, 4 M, M, 53 F R TS X IR
WHELL KL 50 @ ERTESHUSECR. H T
ku(x)+Au(x) =0, (x),
u(x)=u(x),xeoQ,

A DI AT R AR TR, RIS R AL M, ST, R M, SRR R%%
B THAM,, +M,, FITRENAEOTREL, HEMERTRAN

Loy 0 u(x, )
|: MprMbp kl[MianM‘p:|u = (Dl (xMh;l) 5 (3.2)
_(Dl (bep+M,np )_

[FERERT, XTI %
kyv(x)+Av(x) =0, (x),
v(x)=v(x),xedQ,
[AM,,+M,, FTTRENRBOTEH, RSN

V(f‘l)
{1 0 } v(x,)

o, (xM,,p+1) G-

o, (beerM,»np )

R RARR] T WA KR H S TSR R EOERE, RS v D LR, O X 35K
W I, T AR, WA X AR, AR TR TR B 2 R
AR TSI A R R AN R A SR AR I8 5340, HZER IR, TTFEQG.2)M3.3)F IR BUE M2 M
(. XFERT LS i RO

4. BUEEG

TEATTH, AR 7 =DM EUE B 7RI 5 GFDM SR = X CNLS %% . 1T
MBI, IRATEMEH] GFDM 24T T 4 Bir 28R IT. 4 7 I GFDM Kfi# CNLS [EivE RIS &
Phe B, ESGRZETEHL:

rr :max|ﬁk —uk|,k:l,2,~-,M,
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DL 2 [ WL S p, At [RS8k p, =
B log[E(hl,z')/E(hz,z')]
P log(h/m)
~ log[E(h,z'1 )/E(h,r2 )]
2 log(z,/7,)
Horbdg, u, 73 03RS B U x, S BUE MRS . M O E XN S, E RRiRE.
4.1. WSS

AREHIHBEITANFE X, Q=0<x,y<1, LFNoQ, FIFFHIHLDK h EEHLY S0 (a2 fr
), BRI by =by, =2,b, =by, = VITE L, BIEHITFEN:

>

i—aug’t)+Au(xt ( |u x,1) | +|v X, t)| ) (x,0)=f,(x.1),xeQte(0,T],
i—a‘}g’t)+Av(xt (2|u(x 1) | +|V |2)v(x,t):fz(x,t),er,te(O,T],

Hin 55 R Dirichlet 260 1m0 RS B f# -
u(x,t) =sech(x+y—4t)e i(2ae2y-3)
v(x,7)=sech(x+y+2t)e el
FEYIE

u’ (x) =sech(x+y)e®*),

v’ (x) =sech(x+ y)ei(”y).

1.2 ¥ mRA
AR
1t %**%*+**+*++***%*%+*
%.. ORI “+
o L
_*<o . : :.+
e .ok
0.6 T e
e -k
> *) ] Lok
04l I et
# s
d Lk
oy "k
) * o o, T
o ‘ﬁ+%%**+%%+%%*#+*%%*%
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X

Figure 2. Schematic diagram of a square computational domain with
randomly uniformly distributed points
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TG, BAVGIGBEAR XSRS, %1 5% 2 450 T iZHUE M U £ =1/200,7 =1 I 1R %
AT SR L 2 (A A A B ES b = 1/100 SRAR S Z B M SR TS B, 6 3 56 4 45 Tl
G 22152 HIEE R I EUE A S A B o (r*) S O U HE A HT R S . 5
b, 423 54 4 IR R B AR I A 0 (27) X RRRA HA TR AR MU ST LR

RS INT T 77 1f) B (4 2 B — B

Table 1. L”,RE and convergence order of function u (7 =1/200,7=1)
F 1. R u B L7, RE TSR (£ =1/200,7 =1)

h i SN p, RE WS p,
1/60 8.41x107° E— 3.46x107* -
1/80 2.64x107° 4.02 1.14x10™* 3.85
1/100 1.09x107° 3.97 4.86x107° 3.83
1/120 5.51x10°° 3.74 2.26%x107° 4.19
1/140 3.14x10°° 3.64 1.28x107° 3.71
Table 2. L*,RE and convergence order of function v (z=1/200,7 =1)
2. R¥ v B L”, RE FLEN (7 =1/200,7 =1)
h Vs BB p, RE WS p,
1/60 9.56x107 — 4.04x107 —
1/80 2.92x10°° 4.13 1.29x107° 3.97
1/100 1.18x10°¢ 4.07 5.28x107°¢ 3.99
1/120 5.64x1077 4.03 2.63x107°° 3.82
1/140 3.06x1077 3.97 1.46x10°° 3.80
Table 3. L”,RE and convergence order of function u (/h=1/100,7=1)
3. B u B9 L7, RE TSN (1 =1/100,T=1)
T o WS p, RE WS p,
1/100 4.38%x107° — 1.94x10™* —
1/120 3.10x107° 1.89 1.38x10™* 1.89
1/140 2.23%x107° 2.13 1.02x10™* 1.97
1/160 1.71x107° 1.98 7.59x10°° 2.18
1/180 1.35x107° 2.01 5.96x107° 2.06
Table 4. L*,RE and convergence order of function v (4=1/100,7=1)
F 4. BB B L, RE FULEIBN (2 =1/100,T =1)
T i WS p, RE WS p,
1/100 4.51x10°° S 2.04x107° —
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gk
1/120 3.20x107 1.88 1.43x107° 1.96
1/140 2.39x107 1.89 1.07x107 1.89
1/160 1.82x107° 2.03 8.05x107° 2.10
1/180 1.45x107° 1.95 6.40x107° 1.95

4.2. FREHREHE

AR B H BB (1,1) WDy A2 1 R BRI 5 X B2 STE 0 < x, y < 1 19 0
FA R I KR 3 ), BRI by, = by, =1, by = by, =1 TS, BDE 7729

i@+m¢(x,t)+(|u(x,t)|2 +|v(x,t)|2)u(x,t) = fi(x.1),xeQ,1e(0,T],
i%);’t)+m;(x,t)+(|u(x,t)|2+|v(x,t)|2)v(x,t)=fz(x,t),er,te(O,T],
Fih 525 A1 Dirichlet 5541, %10 RS fdE A -
u(x,t)=sin(4x+y+ Z)e'@“zﬂ”z),

v(x,1)=cos(2x+2y+1)e™~),

HEAME

2x+2y+2)

u’ (x)=sin(4x+y+2)e ,
V) (x) =cos(2x +2y +1)e).

1 :
T EEEEEE T T
y ;i’f*.*- *
T SRR R A
09 F 7%7%.*. . 0' .'..-. & & @ "P\]
e ¢ o, L e 0% e, * *

L *‘-0 Tk
0.8 *, o "ok
07 * *

* "ok
06 .. Rl

ot -*

e .
054" -" Rl

“ *
04 . ";

P <0

o <
03 . N

* T

k?‘F’--;F\--;&-**tg-"",:."--.'--..‘*

L -+ . NN .. %

0.1 Felae 0T ey
ST

L Retgta ¥

0 1 L L
0 01 02 03 04 05 06 07 08 09 1
X
(b)
Figure 3. Schematic diagram of randomly uniformly distributed points in circular and five-pointed star-shaped computational

domains
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BAMERTE H I A0 7 4384 ANECE T AL, HAP S 126 N1 S 4258 ASEBTT Al AT
WA X M =02 =1, 3 AR FEEPEE N =0.01. HELREREE u,v AL L2, RE
WZEWE 4 Frn. WEIREREH, EREIFEXEE, B s s R S R . 78 U IR
FU X3 EBENL AT T F53 A 7 9560 ANERE T AL, A HE 258 AN AT S 9302 AP ER T . FRAT
BT XM =02t =1, 3 HIHEE KR E A =0.01 . B 20153 05 u,v B 25 L2, RE
WM S Bin. WEIH G5 IRE 76 T BRAS N5 X, B s D7 V2[RI RE e DR A (RO AS 2
L_E AT PR B 2R A 1K) GFDM 78 fif v il J1_ 1243t 7 3L o 7 %

103 T . . 103

— > -
RE —
— 104 ¢
10+ o =
L~ — |
s/’ ~ N ,H / |
/ /,
10/
100}/,
10° N |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t
; (b)

Figure4. L” and RE of function u, v (circular computational domain)
4. B¥u, vEIL,RE (EFITEE)

"[——L=] 103

L=
—RE -~ RE
10°
10+ I
104 / 110°
10
10°
' ‘ ‘ ' 107
0 0.2 0.4 0.6 0.8 170 0.2 0.4 0.6 0.8 1
t t
(@) (b)

Figure5. L” and RE offunction u, v (five-pointed star-shaped computational domain)

Els5 &#u, vBIL,RE (ARERITEE)

43. RIMFABRESE

ST WAL R AT R AR AR A Th I U 25 [ 2 —[12], JUHAE e fa) v, Hs et o R
AR o STITAEA— MRS N 4K, RS 1 H A R AR AR L MR M ) A0 5 b A% 3 I ER F A2 E 10
A, AREY BERg. SEMEARE, ST RS 4R RO T ARk RN 5t IR 2 TR RS
WP, £ 4R, T A BRI, X PEE e, IR S e R A Bk
A, PR SRR 5 ER I AT A

DOI: 10.12677/aam.2026.152051 90 N H it e


https://doi.org/10.12677/aam.2026.152051

PRULDL, 202238

AT H xR AR T VEAA R A 2 8] A% 1) 4k B A g AR AR, 4
[ 7~ H W6 TE i B A 8 AL fR AL A A2 . seiedr, AT NEA Bt K5 — 44 itk E
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Figure 6. Profiles of the numerical solution at different times
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Figure 7. Contour plots of numerical solution at different times
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