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Abstract

Accurate traffic speed prediction is a prerequisite for intelligent transportation systems to benefit
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human travel. However, existing research on traffic speed prediction is limited and struggles to cap-
ture and integrate the spatial characteristics of the road network and the temporal characteristics
of traffic speed, resulting in insufficient prediction accuracy and generalization ability. To fully cap-
ture the temporal characteristics of traffic speed and the spatial characteristics of the road network,
this study proposes a STiGHT architecture based on Transformer and graph neural networks to
capture spatiotemporal features. It combines predefined static graphs with dynamic graphs that
integrate temporal features for modeling and uses a gating mechanism to fuse spatiotemporal fea-
tures for modeling, thereby predicting the traffic speed of the road network. The prediction task on
the real road network data METR-LA verified that the prediction accuracy of the STiGHT model is
significantly better than that of the baseline model. The comparison of error results indicates the
feasibility of this model in practical applications. The STiGHT model better integrates and captures
spatiotemporal features by combining dynamic graphs, static graphs, the transformer architecture,
and the gating mechanism, thereby improving the prediction accuracy and stability of traffic speed
on the road network.
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Figure 1. Transformer encoder-decoder architecture
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Figure 2. Modeling of time characteristics
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Figure 4. Sensor distribution heat map
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