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Abstract

Aiming at the core challenge of nonlinear inverse optimization problems—where optimal solutions
are difficult to express explicitly and traditional methods face limitations—this paper proposes a
nested evolutionary inverse optimization algorithm. The algorithm constructs a dual-population
framework comprising parameter and solution populations, generating initial parameter vectors
and corresponding solutions for optimization subproblems through random initialization, while lev-
eraging neighborhood information to synergistically enhance search efficiency. A dynamic screening
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mechanism for protection and update sets is designed, integrating differential evolution mutation
and crossover operators for population updating, and rapidly approximating the Pareto frontier
through non-dominated sorting. The algorithm is validated on inverse shortest path problems; re-
sults from 30 experimental groups on 7-node, 15-node, and 25-node graphs demonstrate that the
Euclidean distance between optimal and initial weights obtained by the proposed algorithm is sig-
nificantly smaller than that of traditional methods, with average distances as low as 0.359, 1.733,
and 3.162 respectively, confirming its superiority in global optimization and cost control. This al-
gorithm provides an efficient solution framework for nonlinear inverse optimization problems in
geophysics, production planning, and path allocation.
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Figure 1. Update the parameter vector with a larger f(x) value and

a lower dominance of [f(d),f(x)]
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Figure 2. A graph of 25 nodes for inverse shortest path search
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Table 1. Performance of the algorithm under different node numbers and feasible initial paths
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Figure 3. Performance of our proposed algorithm in inverse shortest path prob-
lem with different number of nodes
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