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Abstract

To address the feature selection and classification challenges in high-dimensional, small-sample,
and high-noise gene expression data, this paper proposes a sparse logistic regression model (PIE-
SPLR) that integrates Piecewise Exponential (PiE) regularization with Self-Paced Learning (SPL).
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The PiE regularization approximates the |, norm, providing strong sparse selection capability,

while the SPL mechanism progressively filters low-noise samples to enhance model robustness.
Through efficient alternating direction optimization and proximal gradient methods, the model
achieves optimal classification performance on four gene datasets (Colon, Leukemia, etc.), while se-
lecting the fewest features. This method provides an effective tool for biomarker discovery and
high-dimensional data classification.
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1. 518

DUAR B A A e A R )32 B FE AR R I R T A i B2 U B A O . fln, EEER
AEPIEARAE B O R B R A SR B B DS 1 = E T TEAS . B AR R S —, BT
JE T 2R 2 5 R A/ B SRR A b 1] [2]

SRIM, 12 FAMLES 2 21 77000 A S DR A 258 () dn 358 TR 3k i) b, B BTG P KBk : 1) “Kop /b
n” ). R RAHE S A A KR AL R (p) R BEAEAR (n), HAOE AR R S B ARG L EA
Ko RELRFFESTINERS . SEOEEGI G, HmEHHE S BB RS PR EB] [4]. 2) &
WS ), R AR O AR, EIR R FEART SEICERAE IS RN, BT NS, (E
AL SRR T &5 AN AT 5E[5].

RRAE IR B N 10 ) ) O . o, IR UL vkl 20 SRR 2 8, BENS R I SEIL I SR e S5
H BhRFAE I 9, A2 A B 1 4 /NREAS S 10 R0F BE[6] . 42 8L ) 1E U 4k (Lasso) [7] f A & (w1 SCAD [8]-
Elastic Net [91) B4 2 F, (HFT=E MR AN SR BT, ELAE R RS ORI A 0 22 B 5L [10] o JE4FEKS
<l ot TE U PR S SR R L 55 0 B2 BUSRTE - Xu R AR 1, TENUAR[11]7E BRSPS AN 580 2 1]
AT TR, JFAA Oracle MEIT[11] [12]. SRV, ELEAEI 1, TR 1 EH —Fhig e, HA
BiRE S SEABRAR I |, QR 2 18] AT 280 . SCE[1SLELEIEFIZE TR 2 | VE B R . 2EVE 2L
BRI, 4y BB E(PIE) SR BUR N AT PAEL | VU0 28 5K RS B b 51 1 A KSR

T, PR RILE M SR N SR, B P52 2] (Self-Paced Learning, SPL)HLI#E 51 A[14].
EEI B G B IR AR S SISk, A RPRAR T W AR A A SE R R U R, CAE 2 R ST
IR FA[15] [16]. (HAnfarf SPL 55 AMmi i /) IE WA T MR Es &, AR AR R .

EEXF BRI, ASCERE— R R T PIE s B0 5 I MG R [ AR . AR (BT M 3 A
PLAE LR 7 T -

1) SINE RN AR K BATRA PIE BREAE D | R IE Bl B TR, iz sl ), %5
28 AR R T B BT | LTS S AR, RETE SR P TAT MR R, 5 SR,
Fo e R E IR R 45 2R

2) FREPUME R A 2 S HESE . FRATH PIE IENLS B D2 I WUHIRER S, W T —A%—1H
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SRS

PREREL S AL S o AZAHESRRENS (AL S i 4B R E B 3 S e P RE AR B IE ROINEL, ATTAE “ K p/hn” S
MRS A BRI T, AT BT R R A bR SR A B SRR B

NI ITARIA A, BATEZ A AR RIA IR FAT 75850, F+5 Lasso. SCAD. |,
SEIEHAT IO GURRY, BB R R R 0 SRS LRI T, RERG I dE S > H O R AR AR
S, IR BRI R I 5 A PR E Tk

2. TRBINE

B0 v /MRS i PR TR B T KR AR R S MR S T IR, AR F R AT PIE IR
Ji A 57 5] B R B] AR R (PIE-SPLR) » 245 R A 2K BRHS . W20 R 5 Pk 2 2] =N 2T KRG & B
WA N HEAL 73 284 TIN PIE BRECE L, JEH, HIvRRRAEE FRIMER I JRRE B G R 2 2 HL
L B FEA IS THE A e S R IR IE . N OOR X &3 #EAT R4l 4
2.1. ZAEEIIHK K H

BHEEEZ M ZMHT R NG Tk X TG E U2 R &
D:={(xi,yi):ie[n]g]Rp x{O,l}} s H[n]={1,2,---,n} . BHEHE Sigmoid BRI ECR 2R & x| B WL
NFEARJE T IEGI(y, =1) TR

P(yi:1|xi§ﬂ)=6(xrﬁ): 1

T,
1+e %7

Hrb g e RP ARHE THIOHARL R HA &
AT WEBSHL, BRI T, HO R 45 5 B B (R 0 2R ) -

0(p)==>1, (ﬁ):—Z[yi logo (X' B)+(1- yi)log(l—cr(xfﬂ))]. 2.1)
i=1 i=1
KD EBRE TR 5 B2 MR, B RME(Q2.1) T3R5 248 g kg,
E)EENS UL

FEABETE T, R 0] VA 45 2% B BOR A R B (R R AR B, )5 B 5 51N IE AL U5 B A AL
), 3 A e RS AL 5 R R U P IR RE

2.2. IEN{keR ¥
RVCR A PIE EAE NIEMI, HFRERXN:

i=1 i

P(/}):}p:p(ﬁi); fl(l—ei} VS eRP, (2.2)

wE 1R, ANFE o BUE T PIE B0 1) JEEIE IR BURAE R E Z R .Y o [/ (W1 o =0.01),
BRI 2R BE Y BELE, AR E R HE T |, YO B B AR I BRI B o I R (W o =1.0), BREH 2 IZ
P, MBS SREIAHNIRES . UL, S8 o REBHIFE TS I AT M 1 S P R T
2.3.SPL

TR e e P AR B RS N R T30, SPL 448 T —Fio UM BE A S IR R . 5% etk 7572
X FTAREARTPEER AN, SPL Ut 5 BIHMER 2 S0 AR, 85 7E VI Zhid 72 v 2078 TR B AR AL
H, AL ) BRI iR PR, FRBDINTE BRI RRE AT, TS THAS B 7E e 75 3
B R HIE Sz ae 1[14].
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Figure 1. The approximation relationship between the PiE function and the IO
norm under different values of o
E 1. FE o BUET PiE &t | SEmERXFR

20 L) SPL HE SR H AR Oy LA R A 17

I’T}InEﬂVT )+ f(vir)].

=3[t (s

FAtv = (Vi VeV, ) [0 ARERRE R, ¢() MBUKERE ©>0 MERSHL Bl N <5
o F (Vo) NEBETISL T R AR AL, R RN RS £ (vi0)=—ov, .

2.4. PIE-SPLR &Y

> ”

FETRISCATR, ASCRZ IR R, PIE IENML RS EIERDE 2 I HUBIARS &, 1% PIE IE
SO F 38 B2 2 o) B 4R R VAR (PIE-SPLRY) o AL ) H b 0 T
min £(/,) =i[vifi (B)+ f(viiz) ]+ AP(B). (2.3)

i=1

Horb, 55— TUNINBGZ R B VA5 R 55 30 f (vi;
A>0 NN S

3. RUE=E
3.1 XEREMRLEE
TR AE=(2.3)5E X PIE-SPLR #E4Y, AR50k FH A2 77 M1 14k (Alternating Direction Optimization) 5% .

7)=—cv, NEHERCPIE T, v e[0,1] AR,

T EFORE SR B A DAL R0 R0 A D A AR R T B I R [EDE REARUER v ST S g, DAL T E A
MBH B EFHEARE v . AT R B IS E WL
3.2. IRESY g EH
[ EREANE v, KT g RO R A A -
mlnL 5 (B)= ZVIEI( )+AP(B). (3.1)
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Y SERS

AE)EE A E EES R B S AR ARIE PIE IR, A SCR sk B2 T F (Proximal
Gradient Descent) SLVABEAT KAl . FAKML, FERVGENS, BRTHESURREIIBEE L, K5 RH] PIE &
B i3 3 57 (Proximal Operator).

VOBt UOERINSHOy Y, E51% N >0, WEHSER:

1) BREETHE

:Vﬂ(ivifi(/)’)j . =§”:Vi<k>(gi(ﬁ<k>)_yi)xi. (3.2)
i=1l ﬁ:ﬂl i=1
2) B
BY =Y —ng". (3.3)
3) A -
AU = Prox, ([3(')). (3.4)

Hrr, prox, e () 2 PIE BRI IR ST, € SON:
.1
prox,ﬂp(z)=argmﬁ|n{z||ﬂ—z||2+/1P(ﬂ)}

PIE I m & 7 B CEL7H S R, BiEkn, o, 1>0, HEAREAN:
1) R pgi<o?, WHFEEMzeR, A

e | < A
{0}, g < =
prox,ﬂp(z): 1
{sign(z)o\N{—n—zje o +Z}, HE,
O
2) ¥ pi>c?, MXFIEMzZeR, H
{O}i %|Z|<T'Mxo'

L]
{O,sign(z)aw ( M)e g +z} #l7=1,,,
o

d
{sign(z)o-wo(—n—fje 4 +Z}, HE,
o

Prox,;p (z2)=

Hrp, WEZ,, =7 +7Z1e o.7* e(O )E?ﬁi +77/1(—2:0EI"JH’$~%0 BRI H W, 72 i 2
W (z)>-117 Lambert W (W (z) 43 32[18].
3.3. HEAME v RIEH

EERERSH B, RFFEABUE v FPLAL AT 70 8 n AL ]

Vm[Lq]{vi-f( B)+ f(vir)}, =1 (3.5)
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EB

|

%\

b 0, (B) FoR S T AFEARLE AT R BUR B SR BT B8 (vii7) = —2v,» WIXEBE)TEEA:
min {v, (¢,(8)-7)}. (3.6)

vie[0.1]

KEB.6)- KT v ILNERRI R, HAR A w8 247 H AR R B P B B 2, T SRAG
AP v, (P CE T A 3K

1 % Zi (ﬂ(tafl))S T(t)’

0, % Zi (ﬁ(m)) > T(t),

t+l) _

i=1-n. (3.7)

ot o, (B ) REETF BB S M | MERFUR, o R MATER RIS RE)EXT AR
BRI . O REAR R SN T 4 RTE R 28 O B, R A A S AR (v, =1); 75 M0l 2
(v, =0) {EEBHL ¢ TEREARIE AR HE L MR K HEmS 3 37

= prt), (3.8)
Ht p> 1 AMKE T B « K, 2 0 (B) <o FIFMREARRHIN S, BRZPNTE L “FHfE”
FEA .
3.4. EREERIE

ST FIRTEHAN, e PIE-SPLR AL SVE M. 1 iR .

r

Table 1. PiE-SPLR optimization algorithm
7 1. PIE-SPLR &%

P B VL
N HR (%)) s AT o T e A: EMEBHG p>1: BKET
1 wiatk: t=0, g9, v BEAYIRE
2 while t<T and |[AB]>€¢ do FEIEH
3 e gV R2)REEEL Y (3.3)
4 T g B =prox,, (BY) (34) S SRR 25
5 FoHiv (3.7) T ) (i 7 0k
6 B 7 (3.8) TS R B
7 tet+l AR
8 end while
i 4 BepY, v =28 it

4. IRGERE R
4.1. LGB SIS E

AR EELE DYAN AT 356 R 3 et 4 B 36E 4R PIE-SPLR B A 2kt . 3 A AR 4R (95 Colon
[19]. Leukemia [20]. DLBCL [21]F Prostate [22], 7 2 FJH T X 844l EE M 205 .. X L E R4 394K
RITV e/ REAR S O, FL 32 B TR B 7 VA PPl
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Table 2. Statistical information of experimental datasets
2. IEHWEGIHER

) .. . F 53 A
EAETE FEA% FEIESL
EF AT iR/
Colon 62 2000 22 40
Leukemia 72 3571 25 (AML) 47 (ALL)
DLBCL 77 7129 19 (FL) 58 (DLBCL)
Prostate 102 12,600 50 52

DA LR RE , IEHR T ONFIRRIE T AR 92 HE: Lasso (I, IENLZEEIA). 1, (1, IEN{LIZE
[F1J9). SCAD-1, (SCAD IEN{KZHEEIH). I -Net (I, 4 IEN{LIZ 4 EH). Inter-Net (3¢ 4% 1IE N4k
HEH). SLNL [23] (1, - NL IERALIZEEEIE) L 1, -Net (1, M2 IEMLEEEIR) . A 52 R
FAARTE ) 5 3758 X UE R AR AT S HOR S YERE VAL PN T b5 T2 A H5 AR 40 SRV ZRiE 1 22 (Training
Acc). IR HER 2 (Testing Acc). DA S AR % £ iR AE 30 2 (Genes) . PIE-SPLR 1) = B2 Hud i o k%
BT, KR IEU S XA {1:0.1:2) tikH, FIEA4ER S5 O B8 0.1, MKEHF p AIXFE
{1:0.05:1.2} "PIEHL, %% ne{0.02,0.03,0.04} , WSIHEZE e=10"°, HAEMRKET =800.

4.2. SARMBESFDEFER

P 3 MR 4 4y RN T BRI AR N GREEFIIAEE F oy 8RR . MIZREE AT L, AR
(1) PIE-SPLR 7EFTA WY/ MR AR 3R i s dirfi 26, Hoh/E DLBCL ##li 4R b2 lAS 1 45 56 £ 1
99.99%HEHf 2 o FEMME T B2, PIE-SPLR fE VIR A8 EAHRER SLNL J7iEA B R4 7F, 4t Colon
HiEsE LN 93.81% 42T+ ZE 94.02%, #£ Leukemia %54 M 98.75%3 T+ % 99.95%.

TN E B RS ERRIL(E 4), X BRI T2 GRE ). PIE-SPLR fEATA 44 13
HUAS T sl HErf 2, P31 5] 96.58%, BRI J7i% SLNL (134 92.65%) 42 7t 3.93 N F 73 sl HA7E
DLBCL ##4E LRI NG, M 91.56%EKTHZE 98.47%. X —45 FE£ W, PIE-SPLR AMWAE I ZRid 72
RS AL A HdE, HE R B A TRz AR ), e T A A .

Table 3. Comparison of Training Acc among different methods (%)
2 3. & 753X Training Acc EE35 (%)

Jiid Colon Leukemia DLBCL Prostate
Lasso 88.61 97.00 94.95 93.29
|1/2 89.52 93.87 92.69 92.29
SCAD-1, 90.47 94.06 94.80 92.04
I, -Net 88.99 98.45 94.13 93.23
Inter-Net 87.80 98.14 95.32 93.54
l, -Net 91.46 96.36 96.48 94.61
SLNL 93.81 98.75 97.55 95.72
PIiE-SPLR 94.02 99.95 99.99 97.78
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Table 4. Comparison of Training Acc among different methods (%)
5% 4. & 733K Testing Acc L3R (%)

Jii Colon Leukemia DLBCL Prostate

Lasso 80.23 9341 84.89 88.81
|1/2 85.16 93.84 88.81 89.73
SCAD-I, 82.29 95.36 88.93 89.84
I, -Net 86.40 95.99 87.25 88.48
Inter-Net 85.58 94.13 87.51 90.25
ly, -Net 86.84 95.54 89.48 90.51
SLNL 87.46 97.85 91.56 93.73
PiE-SPLR 94.78 99.14 98.47 93.91

Table 5. Comparison of selected Genes among different methods
Fz 5. &5k Genes HLE

Jrik: Colon Leukemia DLBCL Prostate

Lasso 8.3 6.6 23.1 247
Ly, 8.0 3.9 14.8 145
SCAD-1, 18.7 15.3 335 29.9
I, -Net 22.8 14.7 40.2 47.4
Inter-Net 26.1 20.2 374 51.3
I, -Net 21.2 8.8 30.1 17.7
SLNL 17.7 9.2 24.7 21.3
PiE-SPLR 7.69 6.76 12.27 11.3

FERFIELE T, 2 5 BB VSN ik ik FE R RHIE SR . PIE-SPLR JRILH B4 R Bk, 7EPTA di
e B T R/ IERG PO 951 e XS RIEICT I SLNL J7VE /1 18.23 AMRHE, B
B E DT H A F v AR, R PIE-SPLR 1E4#% T /D MRHE, HI /R PEREEIME 2 T 41
$Tt, RIGUE T PIE IENALAEIE |, VEROT ML " Re SRS I b UM I OR B L IR SGBE 9 A= b i
Y, IR S A RO B TU AR RIAN A R RFAIE -

B AR TR —PUIE

NHE— B IOAIE SPL ML XTI 75 (&, FRAITE Colon HdEAEH 5N 2006852 HEAT #7852 56
Nz 6 fT7R, PIiE-SPLR 7EM: S TN RFERALMERE, HOCHEREH {R B %6 (KGRR) =14 85%, iz T PiE-LR
(62%) 1 Lasso (45%). iXilF % SPL ALHLEIS ShAFEARIEL, REA FOLIEME S FEA, $RTHRHIEE R AR 2
.

43. GRWREREH

LA LB SR, PIE-SPLR HIUBAE RE AT A 25 T BT IR RO E R FEHL A . PIE IENIAGIERIX |
TR B BOEIT, SCHL T HAR SR, 11 DU SERS Al A s 42 1, 38 S 17 AT I PS8 s 7 25 2K B B R A I
A, FEARZEME AP EE NS RE RIS M HER R SimAa gk, XA T SPL AL M S FEAC R |5 3 M g E
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LIREE

73, e E AR RAE R iR A TR TR . BEROE S B S R, R
BRI BEARMNGIERE, AROLUE TRFEFEARR T X A R R R A AL 1 S e
B MG T RGP .

Table 6. Comparison of feature selection stability under noisy environment
7= 6. MRARIME THHERFIREMEXTEL

WaRrS DR 2 (%) it Hh R R £ KGRR (%)
PiE-SPLR 88.56 8.2 85.0
PiE-LR 79.24 15.6 62.0
Lasso 72.31 22.8 45.0

ATERIG AL | PIE-SPLR £ 4/ MFE AL PRI MU 70 AT 55 AR AT R o 2T VEAE 73 SRR 2R
RFAE L SR AN S R I = A SRt fiadn LRI B2 s, vk RRIA S e it 17— Mol A
MIE. T , TAMGEE— P RZZINEE A A BRSPS 77, %8R
I B2 S 73 FERAAT M S5 S R IR I AE PR 7 i

SE
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