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摘  要 

本文旨在深入探究(3 + 1)维Hirota双线性型非线性偏微分方程的对称性质及其精确解的构造机制。研究

采用李对称分析方法，首先基于无穷小生成元理论系统推导出该方程所允许的李点对称代数；在此基础

上，选取若干典型对称方向，通过构造相似变量实现对方程的有效降维约化；进一步结合行波变换与变

量分离等解析技巧，求解所得低维系统，成功获得了两类新型精确解：一类为具有局域结构特征的孤立

波解，另一类为包含任意时间函数与积分形式的广义非行波解。结果表明，李对称分析不仅能够揭示高

维非线性演化方程的内在不变结构，而且为系统构建其丰富多样的解析解族提供了一条有效且普适的技

术路径，对理解复杂非线性波动力学行为具有理论意义。 
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Abstract 
This paper aims to investigate the symmetry properties and construction mechanisms of exact so-
lutions for the (3+1)-dimensional Hirota bilinear-type nonlinear partial differential equation. By 
employing Lie symmetry analysis, we first systematically derive the Lie point symmetry algebra ad-
mitted by the equation based on infinitesimal generator theory. Subsequently, several representative 
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symmetry directions are selected, and corresponding similarity variables are constructed to effec-
tively reduce the original equation to lower-dimensional systems. Further analytical techniques, 
including traveling wave transformations and variable separation, are applied to solve these re-
duced systems, yielding two new classes of exact solutions: one featuring localized solitary wave 
structures, and the other representing generalized non-traveling-wave solutions involving arbitrary 
time-dependent functions and integral terms. The results demonstrate that Lie symmetry analysis 
not only reveals the intrinsic invariant structure of high-dimensional nonlinear evolution equations 
but also provides an effective and universal approach for systematically constructing diverse fami-
lies of analytical solutions. This work holds theoretical significance for understanding complex non-
linear wave dynamics. 
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1. 引言 

在非线性科学与数学物理领域，非线性偏微分方程(NLPDEs)作为刻画复杂自然现象的核心工具，始

终处于研究前沿[1]。特别是变系数非线性发展方程，因其能够更真实地反映介质非均匀性、外部扰动或

时空演化对波传播的影响，在流体动力学、等离子体物理、光纤通信及生物系统建模中具有不可替代的

作用。然而，由于非线性项与变系数的耦合效应，这类方程通常缺乏通用求解方法，解析解的构造极具

挑战性。尽管近年来涌现出多种有效技术，如双线性方法、达布变换、反散射理论及各种试探函数法，

但它们往往依赖特定结构假设或仅适用于特定类型方程。因此，发展一种系统性强、适用范围广的求解

框架，仍是当前非线性科学研究的重要方向[2]。 
李对称分析法正是这样一种普适而深刻的理论工具。该方法源于 19 世纪挪威数学家 Sophus Lie 对

连续变换群的研究，其核心思想是：通过寻找微分方程在单参数点变换下的不变性，确定其无穷小生成

元(即对称向量场)，进而构造相似变量，将原高维偏微分方程约化为低维形式，甚至常微分方程。这一过

程不仅实现了方程维度的有效降低，更重要的是揭示了方程内在的几何与代数结构。对于包含非线性项

和变系数的复杂系统，李对称方法无需预设解的形式，而是从方程本身的对称性出发，系统地导出不变

解族，包括含任意函数或参数的广义精确解。这类解不仅涵盖孤子、行波等经典特解，还能为数值模拟

提供灵活初值，在理论分析与工程应用中均具有重要价值[3]。 
进入 20 世纪后，李群方法在微分方程求解中的应用得到极大拓展。众多学者系统发展了对称分类、

最优系统构造、守恒律推导及非经典对称等理论，使其成为研究可积性、约化与精确解的有力手段[4]。
近年来，该方法被广泛应用于各类数学物理模型，包括 KdV 型、KP 型、Schrödinger 型及 Hirota 型方程，

成功揭示了大量新的对称结构与解析解。其中，(3 + 1)维 Hirota 双线性方程作为 KdV 方程在高维空间的

自然推广，不仅完全可积、支持多孤子解，还能描述三维空间中孤立波的传播、碰撞与能量分布特性，

在弱色散介质、等离子体波动及浅水波动力学中具有明确物理背景。尽管已有研究通过双线性叠加原理、

降维技巧等获得了其 lump 解、共振解等特殊解型，但对于该方程基于李对称的系统分类、相似约化及广

义精确解的构造，相关工作仍较为有限。其中，(3 + 1)维 Hirota 双线性方程[5] 
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 ( )3 3 3 0,yt xxxy x y xx zzx
u u u u u u− − − + =  (1) 

作为经典 Korteweg-de Vries (KdV)方程的高维推广，具有重要的理论与应用价值。在变量约化

, , xx T x y z X U u→ = = = = 下，方程(1)可退化为标准 KdV 方程 6T XXX XU U UU+ + ，因而继承了其描述弱

非线性与弱色散介质中孤立波传播的基本物理内涵。同时，由于包含三个空间维度，该方程能够刻画更

丰富的高维非线性波动力学行为，如多向色散耦合与三维局域结构演化。 
为深入探究方程(1)的解析性质，本文采用李对称分析方法对其进行系统研究。基于李群理论，首先

确定方程的李点对称生成元；在此基础上，构造相应的相似变量，并利用对称性对原方程实施相似约化，

有效减少自变量个数；进而通过求解约化方程，获得原方程的若干精确解。该方法不仅体现了李对称分

析在高维非线性系统中的适用性，也为理解多维波的内在结构提供了一种有效的解析途径[6]。 

2. 李对称分析 

李对称分析是研究微分方程内在结构与求解精确解的重要理论工具。其基本思想是：若一个微分方

程在某个连续单参数变换群作用下保持形式不变，则称该方程具有李点对称性。利用这种对称性，可以

构造不变量(即相似变量)，从而将原方程约化为低维形式，显著简化求解过程。本节主要研究方程(1)的李

点对称性。首先考虑一个单参数的李变换群其参数为无穷小量 ε ： 

, , , ,x x y y z z t t u uεξ εη εζ ετ εφ→ + → + → + → + → +  

与上述变换群相关联的无穷小生成元(向量场)可写为： 

 X
x y z t u

ξ η ζ τ φ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂
 (2) 

其中 , , , ,ξ η ζ τ φ 是待定的系数函数。 

该向量场生成的对称群必须满足李对称条件 ( ) ( )4

Δ 0
pr Δ 0X

=
= ，其中 

( )3 3 3 0yt xxxy x y xx zzx
u u u u u u∆ = − − − + = 。根据李对称理论，方程(2)的四阶延拓可以表示为： 

( )4pr x y xx zz
x y xx zz

yt xxx xxxy
yt xxx xxxy

X X
u u u u

u u u

φ φ φ φ

φ φ φ

∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂

∂ ∂ ∂
+ + +

∂ ∂ ∂

 

延拓系数由全导数定义，关键表达式如下： 

( ) ( ) ( ) ( ) ( ) ,x x x x y x z x t xD u D u D u D u Dφ φ ξ η ζ τ= − − − −  

( ) ( ) ( ) ( ) ( ) ,y y x y y y z y t yD u D u D u D u Dφ φ ξ η ζ τ= − − − −  

( ) ( ) ( ) ( ) ( ) ,z z x z y z z z t zD u D u D u D u Dφ φ ξ η ζ τ= − − − −  

( ) ( ) ( ) ( ) ( ) ,xx x x xx x xy x xz x xt xD u D u D u D u Dφ φ ξ η ζ τ= − − − −  

( ) ( ) ( ) ( ) ( ) ,zz z z zx z zy z zz z zt zD u D u D u D u Dφ φ ξ η ζ τ= − − − −  

( ) ( ) ( ) ( ) ( ) ,yt t y yx t yy t yz t yt tD u D u D u D u Dφ φ ξ η ζ τ= − − − −  

( ) ( ) ( ) ( ) ( ) ,xxx x xx xxx x xxy x xxz x xxt xD u D u D u D u Dφ φ ξ η ζ τ= − − − −  

( ) ( ) ( ) ( ) ( ) ,xxxy y xxx xxxx y xxxy y xxxz y xxxt yD u D u D u D u Dφ φ ξ η ζ τ= − − − −  
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其中 , , ,x y z tD D D D 分别表示关于 , , ,x y z t 的全导数。将延拓作用于方程(1)，得到对称条件： 

( )3 3 3 0yt xxxy x y y x xx zzx
u uφ φ φ φ φ φ− − + − + =  

令各独立导数项的系数为零，得到决定方程组。求解后，易得出系数函数有如下的形式 

( ) ( )1 4
3 1 6 3 4 5 1 2, 2 , , ,

3 6
c cx f t c c y z c c z c t c c t cξ η ζ τ= + = − − + = + + = +  

( ) ( ) ( )1 1
3

21 2 ,
3 3 3
c cu f t x c y m t z n tφ  = − − + − + + 

 
′  

其中 1 2 3 4 5 6, , , , ,c c c c c c 为任意常数， ( ) ( ) ( ), ,f t m t n t 为任意光滑函数。 
因此，方程(1)的无穷小李代数由以下六类向量场生成： 

( ) ( ) ( ) ( )1 1 1 2 3
1 ,
3

X F t F t x F t z F t
x z u
∂ ∂ ∂ ′= + + − + + ∂ ∂ ∂ 

 

( ) ( ) ( ) ( )2 4 4 5 6
1 ,
3

X F t F t x F t z F t
x t u
∂ ∂ ∂ ′= + + − + + ∂ ∂ ∂ 

 

( ) ( ) ( ) ( )3 7 7 8 9
1 ,
3

X F t F t x F t z F t
x y u
∂ ∂ ∂ ′= + + − + + ∂ ∂ ∂ 

 

( ) ( ) ( ) ( )4 10 10 11 12
1 1 ,
6 3

X F t z t F t x F t z F t
x y z u
∂ ∂ ∂ ∂ ′= − + + − + + ∂ ∂ ∂ ∂ 

 

( ) ( ) ( ) ( )5 13 13 14 15
12 2 ,
3

X F t y z F t x F t z F t y
x y z u
∂ ∂ ∂ ∂ ′= + + + − + + − ∂ ∂ ∂ ∂ 

 

( ) ( ) ( ) ( )6 16 16 17 18
1 1 2 1
3 3 3 3

X x F t y t F t x F t z F t y u
x y t u
∂ ∂ ∂ ∂   ′= + − + + − + + + −   ∂ ∂ ∂ ∂   

 

上述六类向量场构成了方程(1)的完整李点对称代数，其结构包含无限维理想(由任意函数 ( )IF t 生成)。
然而，对于相似约化和最优系统构造而言，只需考虑其有限维子代数。通过令所有任意函数 ( ) 0iF t ≡ ，并

分离各独立常数方向，可从上述通解中得到以下 9 个线性无关的无穷小生成元： 

1 2 3 4 5 6, , , , , ,V V V V V z V
t y z u u x
∂ ∂ ∂ ∂ ∂ ∂

= = = = = =
∂ ∂ ∂ ∂ ∂ ∂

 

7
2 2 22 ,
3 3 3

V u y t x z
u t x z
∂ ∂ ∂ ∂ = − − + + +  ∂ ∂ ∂ ∂ 

 

8 9
1 2 1 , 6 .
3 3 3

V u y t x y V t z
u t x y z y
∂ ∂ ∂ ∂ ∂ ∂ = − − − + = − +  ∂ ∂ ∂ ∂ ∂ ∂ 

 

值得注意的是，部分基本生成元虽未以孤立形式显式出现在通解中，但均可由前述六类向量场在特

定参数选取下通过线性组合得到。这得益于李代数作为向量空间的结构特性，其有限维子代数可通过分

离常数方向自然导出。 
由李括号定义 [ ],m n m n n mV V V V V V= − ，可知，生成元集{ }1 9, ,V V 构成一个九维李代数。其所有非零对

易子为： 

[ ] [ ] [ ] [ ] [ ]1 7 1 1 8 1 1 9 3 2 9 3 3 5 4
2, 2 , , , , 6 , , , , ,
3

V V V V V V V V V V V V V V V= − = − = − = = −  

[ ] [ ] [ ] [ ] [ ]5 9 2 6 7 6 6 8 6 7 8 9 8 7 9 9
2 1 2, , , , , , , , , ,
3 3 3

V V V V V V V V V V V V V V V V= = = − = − − = −  
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[ ] [ ] [ ] [ ] [ ] [ ]3 4 4 4 5 4 7 4 4 8 4 4 8 5 5 7 5 5
2 1 1 2, , , , , , , , , , ,
3 3 3 3

V V V V V V V V V V V V V V V V V V= = − = − = = − = −  

其余对易子均为零。 
基于该李代数结构，我们采用 Ovsiannikov 的标准方法构造其一维最优系统[7]。通过伴随作用 

( )( )
2

Ad exp , , , ,
2i j j i j i i jV V V V V V V Vεε ε     = − + −       

对一般一维子代数进行等价分类，可将任意非零向量化简为规范形式。经系统分析，方程(1)的一维

最优系统由以下 10 类互不等价的代表元构成： 
1. 1V ，2. 2V ，3. 3V ，4. 4V ，5. 5V ，6. 6V ，7. 7V ，8. 8V ，9. ( )2 3 0V aV a+ ≠ ，10. ( )4 5V bV b R+ ∈  

3. 相似约化与精确解 

尽管前述一维最优系统提供了对称约化的完备分类，但为探索更丰富的解析结构，我们转而考虑由

决定方程通解导出的含任意函数的无穷小生成元。此类生成元虽属于无限维李代数，但其对应的相似约

化可导出依赖于任意函数的广义精确解。 

3.1. ( ) ( ) ( ) ( )2 4 4 5 6
1
3x t uX F t F t x F t z F t ′= ∂ + ∂ + − + + ∂ 

 
 

对于无穷小生成元 2X ，取 ( ) ( ) ( )4 5 6, 0, 0F t t F t F t= = = ，得特定生成元 2
1
3x t uX t x= ∂ + ∂ − ∂ ，求解特征

方程，得到相似变量[8] 

21 , , .
2

x t y zξ η ζ= − = =  

沿特征线积分得不变解为 

( ) ( ) 31 1, , , , , .
3 18

u x y z t v t tξ η ζ ξ= − −  

将上述不变解代入原方程，得到约化方程 

3 3 3 3 0.v v v v v v vξξξη ξξ η ξ ξη ξξ ζζ+ + + − =  

为构造显式解，并引入行波变量 ( )21 m mzθ ξ η= + − + ，其中 m 为任意常数。令 ( ) ( ), ,v wξ η ζ θ= 。代

入后得常微分方程 
( )4 6 3 0,w w w w′ ′′ ′′+ + =  

积分一次(取积分常数为零)并令 ( )p w= ′ ，化为 
23 3 0.p p p+ + =′′  

采用 Riccati 方法[9]，设 2
0 2p a a γ= + ， 2dγ γ′ = + ，解得 

( ) 33 tanh .
2

w θ θ θ
 

= − +   
 

 

得原方程的精确解 

( ) ( ) ( )2 2 2 2 31 3 1 1 1, , , 1 3 tanh 1 .
2 2 2 3 9

u x y z t x t m y mz x t m y mz tx t
    = − − + − + + − + − + − +         
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3.2. ( ) ( ) ( ) ( )4 10 10 11 12
1

6 3x y z u
zX F t t F t x F t z F t ′= ∂ − ∂ + ∂ + − + + ∂ 

 
 

对于无穷小生成元 4X ，取 ( ) ( ) ( )10 11 12, 0, 0F t t F t F t= = = ，得特定生成元 4
1

6 3x y z u
zX t t x= ∂ − ∂ + ∂ − ∂ 。

求解特征方程，得到相似变量 
2

, , .
12
zx z y t

t
ξ η τ= − = + =  

沿特征线积分得不变解为 

( ) ( )21 1, , , , , .
3 2

u x y z t xz z U
t

ξ η τ = − − + 
 

 

将上述不变解代入原方程，得到约化方程 

( ) 1 13 .
2

U U U U U U Uητ ξξξη ξξ η ξ ξη ητ τ
− − + + = −  

为构造显式解，设 ( ) ( ) ( ), , ,U A Fξ η τ τ η ξ τ= + ，代入后分离变量，得 

( ) ( )1 1 ,
2

A Aτ τ
τ τ

′ + = −  

其解为 

( ) 2 , .KA K Rτ
τ

= − + ∈  

因此， ( ) ( ), , 2 ,KU Fξ η τ η ξ τ
τ

 = − + + 
 

，其中 ( ),F ξ τ 为任意函数。得原方程的广义精确解 

( ) ( )
2

21 1, , , 2 ,
3 2 12

z Ku x y z t xz z y F x z t
t t t

   = − − + + − + + −        
 

3.3. ( ) ( ) ( ) ( )5 13 13 14 15
12 2
3x y z uX F t y z F t x F t z F t y ′= ∂ + ∂ + ∂ + − + + − ∂ 

 
 

对于无穷小生成元 5X ，取 ( ) ( ) ( )13 14 150, 0, 0F t F t F t= = = ，得特定生成元 5 2 2y z uX y z y= ∂ + ∂ − ∂ 。求

解特征方程，得到相似变量 
2

, , .zx t
y

ξ τ ω= = =  

沿特征线积分得不变解为 

( ) ( ), , , , , .u x y z t y F ξ τ ω= − +  

将上述不变解代入原方程，得到约化方程 

( )3 3 12 6 0.F F F F F F F Fξξξω τω ξ ξω ξξ ω ωω ωω − + + + + =  

为构造显式解，设 ( ) ( ) ( ), , ,F f Gξ τ ω ξ τ ω= + ，代入后分离变量，得 

( ) ( ) ( )2, ,
2
kf A Bξ τ ξ τ ξ τ= + +  
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其中 k 为常数， ( )A τ 、 ( )B τ 为任意可微函数。对应的 ( )G ω 满足 

( ) ( ) ( )1 0,
2 4

kG G Gω ω ω
ω ω

′ +′ + =′  

其通解为 

( ) 1 2 4
0

e dksG C s s
ω

ω − −= ∫  

其中C 为积分常数。得原方程的广义精确解 

( ) ( ) ( )
2

2 1 2 4
0

, , , e d .
2

z y ksku x y z t y x A t x B t C s s− −= − + + + + ∫  

该精确解的收敛性与正则性依赖于积分上限
2z
y

ω = 及参数 k 的取值。首先，被积函数 1 2 4e kss− − 在

0s +→ 处可积，(因 1 2
0

  d ?s s
ε − < ∞∫ )，故只要  0ω ≥ ，(即 0y > )，积分即收敛；当 0z = 时积分上下限相等， 

值为 0，解仍保持光滑。当 0y < 时， 0ω < ，积分路径进入负实轴，此时需将积分理解为复平面上的解析

延拓，或限制物理域为 0y > 以保证解的实值性与光滑性。其次，当 0k > 时，指数衰减项 4e ks− 保证积 

分在  s→∞时快速收敛，解在整个区域 0y > 上非奇异；若    0k = ，积分退化为 2 2
C z

C
y

ω = ，在 0y +→  

时发散，呈现代数奇性；而 0k < 时，指数增长导致积分仅在有限区间内有定义，物理意义受限。因此，

非奇异解要求 0k > 且定义域满足 0y > 。 
与 Hirota 双线性法或达布变换所得解相比，本文通过李对称约化获得的解具有显著差异：Hirota 法

通常构造孤子解(如行波多孤子、非行波 lump 解)，其结构局域、光滑且在全空间定义；达布变换生成的

解则多表现为有理函数或三角/双曲函数的组合，同样具备良好的正则性。而本文所得到的解显式包含任

意时间函数 ( )A t 、 ( )B t 与非初等积分项，属于非行波、非局域、含外部调制的广义解族，能够有效描述

受任意时间扰动影响的三维波场演化过程，这是传统基于完全可积性的方法(如 Hirota 或达布变换)难以

覆盖的情形。因此，两类方法在本质上互补：Hirota 方法与达布变换擅长揭示方程在完全可积框架下的特

殊精确解，而李对称分析则提供了一条系统构造广义不变解的有效途径，尤其适用于探索高维非线性系

统中非孤立、非行波的复杂动力学行为。 

4. 结语 

本文围绕(3 + 1)维 Hirota 双线性型非线性偏微分方程，系统开展了李群对称性分析与精确解构造研

究。基于无穷小生成元法，首先确定了该方程的李点对称代数；随后选取三个具有典型意义的生成元

2 4,X X 和 5X ，分别对应时空平移–尺度混合对称、含时空间耦合对称与纯横向尺度对称，成功构造出相

应的相似变量，并将原四元偏微分方程有效约化为低维系统。在此基础上，通过引入行波变换或变量分

离假设，进一步求解约化方程，获得了若干显式精确解，包括含任意参数的孤立波解以及包含任意时间

函数与非初等积分结构的广义解析解。所有结果均通过计算机代数系统严格验证，确保其正确性与可靠

性[10]。 
本工作不仅丰富了该高维方程的解析解库，更从对称性视角揭示了其内在的不变结构与多维波动力

学特性。研究表明，李对称分析方法在处理高维非线性演化方程时依然具有强大的适用性与灵活性，能

够突破传统行波框架的限制，发现更为复杂的解结构[11]。 
值得指出的是，本文所采用的对称约化策略本质上依赖于方程的连续对称性，而这一性质与系统的

可积性、守恒律及几何结构密切相关[12]。尽管当前研究聚焦于单个整数阶偏微分方程，但李群方法的思
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想框架具有良好的可拓展性。未来的研究方向可包括：将对称分析推广至高维耦合系统(如多分量 HB 方
程)、分数阶导数模型，乃至离散格点方程；同时，探索对称性与现代数值方法、数据驱动建模或机器学

习技术的融合，亦可能为复杂非线性系统的解析–数值协同研究开辟新路径。 
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