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Abstract

The transmission process of infectious diseases is usually influenced jointly by seasonal variation
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and population heterogeneity, and classical assumptions of constant coefficients and homogeneous
mixing often have limitations in describing real transmission dynamics. To address this issue, this
paper constructs a class of age-structured infectious disease dynamic models with variable coeffi-
cients by incorporating age-specific differences, and infers the time-varying transmission rates of
each age group based on hospitalization surveillance data. Numerical examples show that the trans-
mission rates inferred from the proposed model can well reflect the seasonal variation of transmis-
sion intensity during the influenza season, and reveal significant differences in transmission levels
and temporal evolution among different age groups. The model predictions of hospitalizations for
each age group remain in good agreement with the observed data in terms of peak timing, peak mag-
nitude, and cumulative levels. The model proposed in this paper effectively characterizes age het-
erogeneity and time-varying transmission features while ensuring parameter stability and model
interpretability, and can provide quantitative references for the analysis of transmission mecha-
nisms, hospitalization burden assessment, and subsequent intervention strategy studies of sea-
sonal infectious diseases such as influenza.
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Figure 1. Compartmental flow diagram of the age-structured infectious disease model
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Figure 2. Estimated weekly time-varying transmission rates S, , for different age groups
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