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摘  要 

传染病传播过程通常同时受到季节变化与人群异质性的共同影响，经典常系数、均质混合假设在刻画实

际传播动力学时往往存在局限。针对这一问题，本文在考虑年龄结构差异的基础上，构建了一类分年龄

组的变系数传染病动力学模型，并基于住院监测数据对各年龄组的时变传染率进行推断计算。数值算例

结果表明，基于本文模型推断的传染率能够较好地反映流感季内传播强度的季节性变化特征，并揭示了

不同年龄人群在传播水平与时间演化上的显著差异。模型对各年龄组住院人数的预测与观测数据在峰值

位置、峰值规模及累计水平上均保持良好一致。本文所提出的模型在保证参数稳定性与模型可解释性的

同时，有效刻画了年龄异质性与时变传播特征，可为流感等季节性传染病的传播机制分析、住院负担评

估及后续干预策略研究提供定量参考。 
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Abstract 
The transmission process of infectious diseases is usually influenced jointly by seasonal variation 
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and population heterogeneity, and classical assumptions of constant coefficients and homogeneous 
mixing often have limitations in describing real transmission dynamics. To address this issue, this 
paper constructs a class of age-structured infectious disease dynamic models with variable coeffi-
cients by incorporating age-specific differences, and infers the time-varying transmission rates of 
each age group based on hospitalization surveillance data. Numerical examples show that the trans-
mission rates inferred from the proposed model can well reflect the seasonal variation of transmis-
sion intensity during the influenza season, and reveal significant differences in transmission levels 
and temporal evolution among different age groups. The model predictions of hospitalizations for 
each age group remain in good agreement with the observed data in terms of peak timing, peak mag-
nitude, and cumulative levels. The model proposed in this paper effectively characterizes age het-
erogeneity and time-varying transmission features while ensuring parameter stability and model 
interpretability, and can provide quantitative references for the analysis of transmission mecha-
nisms, hospitalization burden assessment, and subsequent intervention strategy studies of sea-
sonal infectious diseases such as influenza. 
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1. 引言 

传染病自人类社会形成以来始终伴随其发展，对公共健康、社会运行及经济活动造成了持续而深远

的影响。大量历史与现实案例表明，传染病的暴发与流行不仅威胁个体健康，也可能对社会结构与经济

系统产生系统性冲击。因此，如何刻画疾病传播规律、识别关键影响因素，并据此评估与制定有效的干

预策略，已成为流行病学与应用数学领域长期关注的核心问题之一[1] [2]。 
在众多影响传染病传播的因素中，传染率是刻画疾病扩散强度与传播效率的核心参数。经典传染病

动力学模型通常假设传染率为常数，这一设定在理论分析与定性研究中具有较好的数学可处理性，因而

在早期研究中得到了广泛应用[2]。然而，越来越多的实证研究与监测数据表明，常数传染率假设在刻画

真实疾病传播过程时往往存在明显局限，难以反映传播强度随时间变化的实际特征[3]。 
一方面，气候条件、环境因素以及人类社会活动模式通常呈现出显著的周期性变化，使得多种传染

病(如流感、麻疹等)的发病水平表现出明显的季节性波动。为描述这一现象，已有研究引入随时间变化的

传染率函数，其中最具代表性的形式为 ( ) ( )1 cost a tβ ε ω= + ，用于刻画季节性强迫对疾病传播的影响[4] 
[5]。尽管该类模型在理论分析上结构简洁，但其所假设的三角周期形式在实际应用中未必能够准确反映

真实传染率的复杂变化，尤其是在多波次流行或公共卫生干预频繁调整的背景下，单一周期结构往往难

以对历史数据进行恰当刻画[6]。 
另一方面，现实人群并非均质混合群体。不同年龄群体在生理特征、社会活动频率及接触模式等方

面均存在显著差异，从而导致疾病传播风险在年龄结构上呈现出明显的不均衡分布。相关研究表明，忽

略人群异质性，尤其是年龄结构差异，可能掩盖关键传播路径，并对基本再生数的评估及干预策略效果

的判断产生重要影响[7] [8]。在流感等呼吸道传染病中，儿童与青少年群体往往在传播过程中发挥着更为

突出的作用，其接触模式与行为特征对整体传播动力学具有不可忽视的影响[9]。 
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基于上述背景，本文在考虑年龄结构差异的基础上，构建分年龄组的变系数传染病动力学模型，通

过引入年龄接触结构并结合历史流行数据，对各年龄组的传染率随时间变化特征进行反演与刻画。本研

究有助于深化对不同人群之间传播机制及时序演化规律的理解，并为后续制定精细化预防和干预提供模

型与计算方法。 

2. 分年龄组的变系数传染病模型 

2.1. 人群划分 

传染病传播过程通常表现出显著的年龄异质性，不同年龄人群在社会活动强度、接触模式以及疾病

易感性等方面均存在明显差异。为刻画该特性，本文按照公共卫生研究中常用的年龄分层方式，将总人

口划分为四个互不重叠的年龄组(0~4 岁，5~19 岁，20~64 岁，65 岁及以上)。 
设总人口规模为 

 
4

1
,k

k
N N

=

= ∑  (1) 

其中， 1N 表示 0~4 岁婴幼儿群体， 2N 表示 5~19 岁儿童及青少年群体， 3N 表示 20~64 岁成年人群体，

4N 表示 65 岁及以上老年群体。 
对每一个年龄组 ( )   1, 2,3, 4k k = ，进一步将人群划分为以下五类不同仓室： 

 易感者 ( )kS t ：尚未感染但可能被感染的个体； 
 感染者 ( )kI t ：已感染且具有传染能力的个体； 
 住院患者 ( )kH t ：因感染发展为重症并接受住院治疗的个体； 
 康复者 ( )kR t ：感染后康复并获得暂时性免疫的个体； 
 接种者 ( )kV t ：通过疫苗接种获得暂时性免疫的个体。 

任意时刻 t ，各年龄组内人口数量满足如下守恒关系： 

 ( ) ( ) ( ) ( ) ( ) , 1, 2,3, 4.k k k k k kN S t I t H t R t V t k= + + + + =  (2) 

2.2. 模型基本假设 

在上述人群划分基础上，为构建可分析的动力学模型，本文作如下假设： 
 A1 (疫苗即时生效假设)：易感个体完成疫苗接种后立即获得免疫力，并进入接种者仓室。 
 A2 (人口规模恒定假设)：在研究时间尺度内，不考虑人口出生、自然死亡及迁移因素，总人口规模保

持不变。 
 A3 (免疫衰减假设)：无论是自然感染获得的免疫，还是疫苗诱导的免疫，均会随时间逐渐衰减，免疫

个体最终重新回到易感状态。 

2.3. 模型仓室图与参数说明 

在假设 A1~A3 的前提下，各年龄组内不同仓室之间的转移关系如图 1所示。箭头表示人群转移方向，

箭头旁标注了相应的转移速率或转移流量。 

具体而言，易感人群 kS 由于与各年龄组感染人群的接触，以速率 ( ) ( ) ( )4
1  j

k k kjj
j

I t
t S t c

N
β

=∑ 转移至感染 

人群 kI 。与此同时，在疫苗接种的作用下，易感人群 kS 以每日接种人数流量 ( )kv t 转移至接种人群 kV 。

感染人群 kI 以自愈速率α 转移至康复人群 kR ，或以住院速率 kη 转移至住院人群 kH ；住院人群 kH 以住院
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康复速率θ 转移至康复人群 kR 。康复人群 kR 和接种人群 kV 分别以速率σ 和 bσ 丧失免疫力并重新转移至

易感人群 kS ，其中参数 b 用于刻画疫苗诱导免疫与自然免疫持续时间的差异。 
除时变传染率 ( )k tβ 、接触矩阵 kjc 及接种流量 ( )kv t 外，其余参数在不同年龄组间取相同值。模型中

各参数的生物意义汇总于表 1。 
 

 
Figure 1. Compartmental flow diagram of the age-structured infectious disease model 
图 1. 分年龄组传染病模型的仓室流程图 

 
Table 1. Model parameters 
表 1. 模型参数 

符号 含义 单位 

kjc  年龄组 k 与 j 的接触率 天−1 

( )k tβ  年龄组 k 的单位接触感染概率 无量纲 

kη  年龄组 k 的感染者住院转移速率 天−1 
α  感染者自愈速率 天−1 

θ  住院患者康复速率 天−1 

σ  免疫力丧失速率 天−1 

b  疫苗免疫衰减系数 无量纲 

( )kv t  年龄组 k 的每日接种人数流量 人⋅天−1 

2.4. 动力学方程 

综合上述人群划分、接触结构及参数设定，得到分年龄组的变系数传染病动力学模型： 

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
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 (3) 

该系统刻画了在年龄异质性与时间变传染率共同作用下，疾病在不同年龄人群中的传播与演化过程。

其中， ( )kv t 表示年龄组 k 在时刻 t 的每日疫苗接种人数。为保证模型可行性，限定疫苗接种速率 kv 与感
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染者 kS 满足 ( ) ( )0 k kv t S t≤ ≤ ，以避免出现易感人群数量为负的情形。 

3. 时变传染率 ( )k tβ 估计的优化模型 

3.1. 时变传染率的参数化 

为刻画不同年龄组传染率随时间变化的季节性特征，本文将每个年龄组的传染率 ( )k tβ 设为按周分段

常值函数。具体地，记 

 ( ) [ ), 1, , , 1, ,52, 1, , 4,k k w w wt t t t w kβ β += ∈ = =   (4) 

其中 ( )7 1wt w= −  (天)表示第 w 周的起始时刻。由此，待反演的参数为{ }4,52
, 1, 1k w k w

β
= =

，共 52 × 4 个。 

在数值实现中，模型以日为时间步长(Δ 1t = 天)进行仿真，每周内的传染率取常值 ,k wβ 。 

3.2. 目标函数 

给定一组周尺度传染率参数{ },k wβ ，通过数值求解模型(3)可得到感染人群的日存量 ( )kI t 。模型中感

染者以速率 kη 转化为住院病例，因此模型预测的第 w 周新增住院人数定义为 

 ( ) ( ) ( )1
6

new

0
d 1ˆ , ,w

w

t
k k k k k wt

d
H w I t t I t d t tη η+

=

= ≈ + ∆ ∆ =∑∫  (5) 

该量与美国流感监测网络 FluSurv-NET 提供的按周统计新增住院人数 ( )obs
kH w 在统计口径上保持一

致。 
为估计{ },k wβ ，本文构造“周新增拟合”、“累计拟合”与“平滑正则”组成的复合目标函数。考虑

到不同年龄组住院规模存在数量级差异，且低住院周的相对波动更为显著，在数据拟合项中引入分年龄

组权重 0kω > 以平衡各年龄组对反演结果的影响。 
1) 周新增住院拟合误差 
以周新增住院人数作为主要观测量，采用加权相对误差平方和构造拟合项： 

 ( ) ( ) ( )
( )

2new obs52 4

obs
1 1

ˆ
.k k

H k
w k k

H w H w
J

H w
β ω

ε= =

 −
=   + 
∑∑  (6) 

其中 0ε > 为稳定化常数，用于避免低住院周带来的数值不稳定。{ }kω 为不同年龄组的权重系数。 
2) 累计住院拟合误差 
为进一步约束模型在长期尺度上的住院负担，引入累计住院人数作为辅助拟合项。记

( ) ( )obs obs
1

w
k kjC w H j

=
= ∑ 为第 w 周的累计住院人数，模型预测的累计住院量为 ( ) ( )new

1
ˆ ˆw

k kjC w H j
=

= ∑ 。相应

辅助目标函数定义为 

 ( ) ( ) ( )
( )

2obs52 4

obs
1 1

ˆ
.k k

C k
w k k

C w C w
J

C w
β ω

ε= =

 −
=   + 
∑∑  (7) 

该项用于抑制短期波动导致的累计住院规模偏差，在总目标中赋予较小权重。 
3) 传染率平滑正则 
由于逐周独立估计 ,k wβ 容易引入不合理的高频震荡，本文对各年龄组传染率序列引入二阶差分平滑

正则项： 

 ( ) ( )
4 51 2

smooth , 1 , , 1
1 2

2 .k k w k w k w
k w

J β λ β β β+ −
= =

= − +∑ ∑  (8) 
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其中 0kλ > 为不同年龄组对应的平滑权重，用于调节各组传染率曲线的平滑程度。 
综合目标 
综上，时变传染率估计问题表述为如下带正则项的最小化问题： 

 
{ }

( ) ( ) ( ) ( )
,

smoothmin .
k w

H CJ J J J
β

β β γ β β= + +  (9) 

其中 0γ > 为累计住院拟合项的权重参数。本文中的权重参数{ }kω 、γ 及{ }kλ 通过数值试验进行调节，以

在“峰值与全季趋势拟合”和“传染率序列平滑性”之间取得折中，并确保反演结果在不同年龄组与不

同时段均具有稳定的拟合表现。 

4. 数值算例与结果 

4.1. 数值求解方法与模型参数设定 

本文采用粒子群优化(Particle Swarm Optimization, PSO)算法对分年龄组传染病模型(3)中的时变传染

率进行反演。在每一次迭代中，对给定粒子位置对应的传染率参数{ },k wβ ，首先在日尺度上数值求解模型

动力学方程，随后通过周尺度观测算子计算模型预测的新增住院人数，并据此评估目标函数值。粒子位

置依据适应度函数进行更新，算法迭代直至满足预设的收敛准则或达到最大迭代次数，最终得到分年龄

组、按周分段常值的时变传染率估计序列{ }*
,k wβ 。 

在数值实验中，为验证模型在具有显著季节性与年龄异质性疾病中的适用性，本文选取监测体系成

熟、数据来源可靠的流感作为数值算例对象，并据此开展模型参数设定与数值分析。数值算例中所采用

的流感住院数据来源于美国疾病控制与预防中心(CDC)建立的 FluSurv-NET 住院监测网络[10]。 
模型参数设定 
根据临床医学与流行病学研究结果，普通季节性流感患者的症状持续时间通常为 3~7 天，而住院病

例的康复过程一般需要 7~14 天[11]。综合上述结果，感染者与住院患者的平均康复时间分别取为 5 天和

10 天，对应的康复速率设定为 

 1 1, .
5 10

α θ= =  (10) 

该处理方式为传染病动力学建模中的常用做法[2]。 
根据 CDC 对既往流感季节疾病负担的统计结果[12]，得到各年龄组对应的住院转化速率 

 ( ) [ ]0.0014,0.0005,0.0015,0.0200 .kη η= =  (11) 

流感疫苗诱导免疫的最优保护期通常为 6~8 个月[13]，而自然感染获得的免疫可在至少约 15 个月内

维持较高且相对稳定的保护性抗体水平[14]。据此设定自然免疫的免疫丧失速率为 

 1 .
450

σ =  (12) 

根据两类免疫保护期的时长比例取免疫衰减系数 2.5b = 。 
疫苗接种流量 
模型中的疫苗接种流量 ( )kv t 作为模型的已知输入量引入，用于刻画流感季内不同年龄人群的疫苗接

种过程。该流量依据美国疾病控制与预防中心(CDC)发布的成人及儿童流感疫苗接种覆盖率统计数据进

行估算[15] [16]，并统一映射至本文所采用的四个年龄组。在数值模拟与传染率反演过程中， ( )kv t 作为

已知输入量参与模型演化，不作为优化变量进行反演。 
年龄接触结构 
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模型中的年龄接触矩阵选取自 POLYMOD 项目的英国样本[8]。由于目前缺乏与本文年龄分组方式一

致的美国全国性社会接触调查数据，本文采用该英国样本作为年龄混合结构的近似刻画，并按照本文采

用的四年龄组划分方式对其进行聚合处理。所得接触矩阵(单位：次/人/天)为 

 

1.92 1.76 4.97 0.23
0.43 8.74 5.48 0.30

.
0.43 1.87 7.83 0.67
0.20 1.27 5.17 1.76

C

 
 
 =
 
 
 

 (13) 

初始条件 
模型初始条件基于 CDC 发布的流感住院监测数据、成人及儿童流感疫苗接种覆盖率统计数据，并结

合美国人口普查局公布的分年龄人口数据确定[10] [15]-[17]。研究起始时刻取为 2023 年第 40 周初，对应

各年龄组的初始状态为 

( ) ( )0 6193510,22307337,72890802,18474199 ,S =  

( ) ( )0 3134,6993,10174,1217 ,I =  

( ) ( )0 44,38,156,243 ,H =  

( ) ( )0 113631,252434,369059,48201 ,R =  

( ) ( )0 1422915,3938740,9419447,5817612 .V =  

4.2. 时变传染率 ( )k tβ 的估计结果 

为刻画参数反演结果的不确定性，本文通过多次随机初始化的 PSO 反演过程构造传染率估计的经验

分布，并据此给出 95%置信区间，相关结果以阴影形式展示于图 2 和图 3 中。 
基于 2023 年第 40 周至 2024 年第 39 周的住院监测数据，在显式引入年龄结构、疫苗接种流量及平

滑正则约束的条件下，本文反演得到了分年龄组的周尺度时变传染率 ,k wβ 。图 2 展示了各年龄组传染率

随时间的演化结果。 
从时间维度上看，各年龄组的传染率均呈现出清晰的季节性变化特征：在流感季早期逐步上升，于

流感季中期达到较高水平，随后随季节推进逐渐衰减并趋于较低水平。整体变化趋势与住院人数的动态

演化过程保持一致，体现了反演结果在时间尺度上的合理性。相较于未加平滑约束的反演结果，当前 ,k wβ
在相邻周之间的非物理跳变显著减少，表明二阶差分正则项在缓解反演问题病态性、提升参数稳定性方

面发挥了有效作用。 
从年龄异质性角度看，不同年龄组的传染率在数量水平与波动幅度上存在明显差异。儿童及青少年

人群在流感高发阶段表现出较高的有效传播强度，反映了其更为频繁的社会接触特征；成年人群体的传

染率变化相对平稳，而老年组整体水平较低，但在流行高峰期仍呈现出明确响应。上述差异表明，在住

院数据约束下，模型能够有效识别年龄结构对传播动力学的影响。 
需要指出的是，由于 ,k wβ 在模型中被设定为周尺度分段常值参数，其反演结果应理解为在对应时间

区间内的等效传播强度，而非刻画微观接触层面的瞬时感染概率。该设定在提高参数可识别性的同时，

不可避免地牺牲了更高时间分辨率下传播细节的刻画能力。 

4.3. 分年龄组住院人数的拟合效果 

在反演得到的 ,k wβ 基础上，进一步对模型预测结果与观测住院数据进行对比分析。图 3 给出了各年
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龄组周新增住院人数及累计住院人数的 模型预测结果与观测数据对比。 
 

 
Figure 2. Estimated weekly time-varying transmission rates ,k wβ  for different age groups 

图 2. 分年龄组周尺度时变传染率 ,k wβ 的反演结果 

 
可以看出，模型能够较为准确地再现各年龄组住院人数的峰值位置与峰值规模，并在峰后衰减阶段

保持与观测数据一致的变化趋势。在整个流感季尺度上，模型预测的累计住院人数与观测结果高度一致，

未出现系统性高估或低估现象。相较于仅拟合周新增住院人数的情形，引入累计住院约束有效抑制了误

差在时间积分意义下的累积，显著提高了反演结果在季节尺度上的稳定性与一致性。 
需要注意的是，模型预测曲线整体较观测数据更为平滑，这主要源于动力学结构对随机波动及观测

噪声的过滤作用，并不意味着模型无法刻画真实传播过程中可能存在的短期扰动。 

4.4. 模型局限性讨论 

尽管本文在分年龄结构建模、时变传染率反演以及疫苗接种过程刻画方面取得了较为稳健的数值结

果，仍需指出模型存在的若干局限性。首先，本文以住院数据作为主要观测量，未显式引入轻症感染或

未就医感染者的信息，可能导致对低风险年龄组传播强度的估计存在一定不确定性。其次，疫苗接种过

程在模型中以外生给定的接种流量表示，未进一步区分疫苗类型、接种时点差异及个体免疫反应的异质

性。 
此外，尽管本文已区分疫苗诱导免疫与自然感染获得免疫在持续时间上的差异，并通过免疫衰减参

数进行刻画，但相关参数仍基于既往文献的平均估计结果给定，未能在当前住院监测数据框架下进行独

https://doi.org/10.12677/aam.2026.152065


洪云平 
 

 

DOI: 10.12677/aam.2026.152065 245 应用数学进展 
 

立反演。不同免疫来源在持续时间及个体层面异质性上的更精细刻画，仍有待在引入更丰富免疫学或血

清学数据后进一步研究。 
 

 
Figure 3. Comparison between model-predicted and observed hospitalizations by age group. Subfigure (a) 
shows cumulative hospitalizations, and subfigure (b) shows weekly new hospitalizations 
图 3. 分年龄组住院人数的模型预测与观测数据对比。其中，子图(a)表示累计住院人数，子图(b)表示

周新增住院人数 

 
此外，传染率参数在周尺度上的分段常值设定虽然有助于提高反演问题的稳定性与参数稳定性，但

也在一定程度上限制了模型对更高时间分辨率传播特征的刻画能力。 
总体而言，在保证住院数据拟合精度的同时，本文提出的反演框架在参数稳定性、可解释性与模型

复杂性之间取得了较为合理的平衡，为后续疫苗接种策略优化及住院负担评估提供了一组具有流行病学

意义的参数估计结果。 
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