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摘  要 

甲状腺癌术后复发风险的准确评估对改善患者预后及优化医疗资源配置具有重要意义。针对传统统计学

方法在处理复杂非线性临床数据时的局限性，本文旨在探讨并比较多种机器学习算法在甲状腺癌复发预

测中的应用价值。本文采用Borzooei和Tarokhian提供的临床数据集，包含17项特征变量，在对数据进

行清洗及Label Encoding数值化处理后，按3:1比例划分为训练集与测试集，构建了逻辑回归、K近邻、

决策树、支持向量机(SVM)以及随机森林、XGBoost、CatBoost共七种机器学习模型。通过受试者工作特

征曲线(ROC)、曲线下面积(AUC)以及准确度、灵敏度、特异度等这一多维指标体系，全面评估各模型的

分类性能。实验结果显示，七种模型均表现出优异的预测性能，AUC值均超过0.93，准确度均高于0.89。
其中，集成学习算法表现最为突出：随机森林(Random Forest)以0.9904的最高AUC值展现了最优的泛

化能力；XGBoost与CatBoost在整体准确度上并列第一(0.9375)，且XGBoost在特异度(0.9000)上表现

最佳。特征分析进一步揭示，风险等级(Risk)、治疗反应(Response)及TNM分期是影响复发预测的核心

指标。机器学习技术，特别是以随机森林和XGBoost为代表的集成学习算法，能有效提升甲状腺癌复发

风险预测的准确性，该模型可作为一种客观、高效的辅助诊断工具，为临床医生制定个性化随访策略提

供科学依据。 
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Abstract 
Accurate assessment of postoperative recurrence risk in thyroid cancer is of great significance for 
improving patient prognosis and optimizing medical resource allocation. Addressing the limita-
tions of traditional statistical methods in handling complex nonlinear clinical data, this paper aims 
to explore and compare the application value of various machine learning algorithms in predicting 
thyroid cancer recurrence. This study utilizes the clinical dataset provided by Borzooei and 
Tarokhian, comprising 17 feature variables. After data cleaning and numerical processing via Label 
Encoding, the data was split into training and testing sets at a 3:1 ratio. Seven machine learning 
models were constructed, including Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree, 
Support Vector Machine (SVM), Random Forest, XGBoost, and CatBoost. The classification perfor-
mance of each model was comprehensively evaluated using a multidimensional metric system in-
volving Receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC), accuracy, sen-
sitivity, and specificity. Experimental results demonstrated that all seven models exhibited excel-
lent predictive performance, with AUC values exceeding 0.93 and accuracy surpassing 0.89. Notably, 
ensemble learning algorithms performed the best: Random Forest demonstrated optimal generali-
zation ability with the highest AUC of 0.9904; XGBoost and CatBoost tied for the highest overall ac-
curacy (0.9375), with XGBoost achieving the best specificity (0.9000). Feature analysis further re-
vealed that Risk level, Response to therapy, and TNM stage were the core predictors affecting recur-
rence. In conclusion, machine learning techniques, particularly ensemble learning algorithms rep-
resented by Random Forest and XGBoost, can effectively improve the accuracy of thyroid cancer 
recurrence risk prediction. These models can serve as objective and efficient auxiliary diagnostic 
tools, providing a scientific basis for clinicians to formulate personalized follow-up strategies. 
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1. 引言 

近年来，随着筛查手段普及，甲状腺疾病发病率逐年上升，对患者生活质量产生显著影响[1]。在疾

病诊疗中，利用机器学习进行辅助预测已成为研究热点[2]，机器学习能够通过分析影像、临床及基因数

据，辅助医生进行精准诊断及风险评估。 
机器学习在医学诊断与决策支持领域应用广泛。司锐[3]、于帆[4]等学者指出，人工智能已深入心血

管、神经及消化系统等多个医学领域。黄浩然[5]、文宏伟[6]及王新光[7]等研究证实，通过特征提取与模

型优化，机器学习在心血管疾病分型、神经影像分析及肾脏疾病术前预测等方面表现优异。在甲状腺疾

病研究中，机器学习同样成果显著，孙悦[8]与卢江昆[9]分别将其用于甲状腺眼病基因筛选及结节超声预

测；易捷伊[10]与马明瑞[11]验证了随机森林与神经网络在结节良恶性鉴别中的高准确性；周天晗[12]与
王子柯[13]则通过梯度提升与随机森林算法，有效提升了淋巴结转移预测及临床综合诊断的效能。本文基

于 Borzooei 和 Tarokhian [14]发布的甲状腺癌数据集，应用多种机器学习算法构建复发预测模型，对比各
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个模型性能。 

2. 数据描述与预处理 

本文选取 Borzooei 和 Tarokhian [14]发布的甲状腺癌数据集，对数据集中 383 名甲状腺癌患者进行研

究，这些患者在同一医疗中心接受了甲状腺癌的组织病理学诊断。本文共纳入 17 个特征变量，其名称、

含义及数据类型详见表 1。在所有变量中，“Age”(年龄)为唯一的定量连续变量，可直接用于模型计算，

其余 16 个变量均为定性分类变量，涵盖了人口学特征(如 Gender)、既往病史(如 Hx Radiotherapy)、临床

病理指标(如 Pathology、TNM 分期)以及预后情况(Response、Recurred)。 
考虑到分类变量(如“Gender”、“Risk”等)在原始数据中以文本字符形式存在，无法直接输入机器

学习模型，本文对其进行了数值化编码处理(Label Encoding)。例如，在性别特征中，将“女性”映射为

0，“男性”映射为 1，对癌症分期及风险等级等变量也进行了相应的离散数值转换，以确保数据格式满

足算法输入要求。 
 

Table 1. Description of dataset variables 
表 1. 数据集变量特征说明 

变量名称 含义 类型 

Age 患者年龄 连续变量 

Gender 性别 分类变量 

Smoking 吸烟状况 分类变量 

Hx Smoking 既往吸烟史 分类变量 

Hx Radiothreapy 既往放疗史 分类变量 

Thyroid Function 甲状腺功能状态 分类变量 

Physical Examination 颈部体格检查 分类变量 

Adenopathy 淋巴结肿大情况 分类变量 

Pathology 病理学类型 分类变量 

Focality 病灶数量 分类变量 

Risk 复发风险分层 分类变量 

T T 分期(原发肿瘤范围) 分类变量 

N N 分期(淋巴结转移) 分类变量 

M M 分期(远处转移) 分类变量 

Stage 癌症综合分期 分类变量 

Response 治疗反应 分类变量 

Recurred 复发状态 分类变量 

3. 描述性分析 

ATA 指南作为分化型甲状腺癌复发风险评估的权威标准，将患者分为低、中、高三个风险层级[15]，
本数据集亦采用此分类。为了解年龄对复发状态及风险等级的具体影响，通过核密度图和箱线图分析了

数据的分布特征，如图 1 所示。 
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Figure 1. Age distribution characteristics across recurrence status and risk levels 
图 1. 不同复发状态及风险等级下的年龄分布特征 

 
左上图的核密度曲线显示，未复发患者集中在较年轻的年龄段，波峰窄而高。相反，复发患者的年

龄分布曲线更平坦、跨度更广，虽在 30~40 岁有峰值，但在老年区间的密度显著高于未复发组，左下角

的箱线图进一步印证了这一点：复发患者的年龄中位数(约 45 岁)明显高于未复发者(约 35 岁)，说明复发

人群整体年龄偏大。 
右上图显示，低风险患者主要集中在 30 岁左右，分布形态紧凑；中等风险患者年龄跨度大，分散在

各年龄段；高风险患者则在 60~80 岁区间有较高的密度分布。右下角的箱线图表明，低风险组年龄最轻

且最集中(中位数约 35 岁)，随着风险等级升高，年龄中位数上移至 60 岁左右，且高风险组包含了更多的

高龄患者。上述分析表明复发患者及高风险患者的年龄分布更为广泛且整体偏高，这意味着老年群体面

临更高的复发风险，建议在临床实践中给予该人群更密切的关注。 
在输入机器学习模型之前，深入挖掘各临床病理特征之间的内在联系、分析特征间的多重共线性对

于理解数据结构至关重要。图 2 展示了 17 个特征变量两两之间的相关性矩阵，图中颜色的深浅代表相关

系数的大小，通过观察该图，可以直观地判断各临床指标之间是否存在高度耦合的情况，以及它们与复

发状态的关联强度。 
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Figure 2. Pearson correlation coefficient heatmap of feature variables 
图 2. 特征变量皮尔逊相关系数热力图 

 
图 2 展示了甲状腺癌数据集中 17 个特征变量之间的皮尔逊相关系数热力图，通过颜色梯度的变化直

观量化了各变量间线性关系的强弱与方向，其中深红色代表强正相关，深蓝色代表强负相关。在针对目

标变量“Recurred (复发)”的分析中，Risk (风险等级)显示出最强的正相关性，相关系数高达 0.73，表明

临床风险评估是预测复发的首要关键指标；其次是 Response (治疗反应) (0.62)以及 Adenopathy (淋巴结情

况)、T 分期和 N 分期，其相关系数均超过 0.5，有力证实了病理分期与治疗反馈对于复发预测的重要性。

相比之下，虽然人口学特征如 Age (年龄)与复发呈现正相关(0.26)，但强度不及病理指标，而 Thyroid Func-
tion (甲状腺功能)与复发几乎无线性关联(−0.035)。此外，图表揭示了特征内部显著的多重共线性，特别

是 Risk 与 T、N、Stage 之间存在高度相关(系数在 0.6 至 0.7 之间)，这符合医学逻辑，即风险分级本质上是

由这些分期指标综合推导而来的；同时，Gender (性别)与 Smoking (吸烟)之间也表现出显著关联(0.62)。 

4. 实验结果与分析 

4.1. 评价指标 

本文采用随机抽样将数据集按 3:1 的比例划分为训练集与测试集，其中 75%的样本用于模型的构建

与参数训练，剩余 25%的样本作为独立的测试集，用于评估模型的泛化能力。 
为全面评估各模型的分类效能，本文选取了准确率(Accuracy)、灵敏度(Sensitivity)、特异度(Specificity)、
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阳性预测值(Positive Predictive Value, PPV)和阴性预测值(Negative Predictive Value, NPV)作为基础评价指

标。此外，ROC (Receiver Operating Characteristic)及 AUC (Area Under the Curve)来判断模型效果，ROC
曲线通过描绘不同阈值下的真阳性率与假阳性率的关系，直观展示分类器性能，模型性能越优，其 ROC
曲线越凸向左上角(即偏离对角线越远)，AUC 值介于 0 到 1 之间，数值越接近 1，表明模型的分类鉴别

能力越强。 
为了给出公式，首先给出混淆矩阵(Confusion Matrix)的基础元素： 
TP (True Positive)：真阳性(实际为阳性，预测也为阳性)； 
TN (True Negative)：真阴性(实际为阴性，预测也为阴性)； 
FP (False Positive)：假阳性(实际为阴性，误报为阳性)； 
FN (False Negative)：假阴性(实际为阳性，漏报为阴性)； 
准确率(Accuracy)衡量模型整体预测正确的比例。 

 TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (1) 

灵敏度(Sensitivity)衡量模型识别出所有阳性样本的能力(即“不漏诊”的能力)。 

 TPSensitivity
TP FN

=
+

 (2) 

特异度(Specificity)衡量模型识别出所有阴性样本的能力(即“不误诊”的能力)。 

 TNSpecificity
TN FP

=
+

 (3) 

阳性预测值(Positive Predictive Value, PPV)模型预测为阳性的样本中，真正为阳性的比例(预测准不

准)。 

 TPPPV
TP FP

=
+

 (4) 

阴性预测值(Negative Predictive Value, NPV)模型预测为阴性的样本中，真正为阴性的比例。 

 TNNPV
TN FN

=
+

 (5) 

ROC 曲线坐标： 

纵轴(Y 轴)：真阳性率(True Positive Rate, TPR) = 灵敏度 = TP
TP FN+

； 

横轴(X 轴)：假阳性率(False Positive Rate, FPR) = 1 − 特异度 = FP
TN FP+

； 

AUC (Area Under Curve)：AUC 是 ROC 曲线下的积分面积。 

4.2. 模型性能对比分析 

本节对比分析了七种不同的机器学习模型，其中包括逻辑回归(Logistic Regression, logreg)、K 近邻

(KNN, knn)、支持向量机(SVM, svm)、决策树(Decision Tree, DT)传统监督学习算法，以及随机森林(Random 
Forest, RF)、XGBoost (xgb)、CatBoost (cat)等基于集成学习策略的先进算法。通过绘制 ROC 曲线(如图 3
所示)，直观地评估了各模型在甲状腺癌复发风险预测任务中的分类效能，并计算了曲线下面积(AUC)作
为衡量模型优劣的关键指标。 
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Figure 3. Comparison of ROC curves for seven machine learning models 
图 3. 七种机器学习模型的 ROC 曲线对比 

 
图中横坐标代表假阳性率(False Positive Rate)，纵坐标代表真阳性率(True Positive Rate)，深蓝色对角

虚线则作为随机分类器的基准(AUC = 0.5)。从图中可以清晰地看出，所有模型的 ROC 曲线均显著凸向左

上角，远离随机基准线，且 AUC 值均在 0.93 以上，表明所有参与评估的模型都具有极高的预测准确性

和泛化能力。在具体模型表现上，随机森林(RF，绿色曲线)以 0.9904 的最高 AUC 值位居榜首，展现出最

优的分类效能；紧随其后的是 XGBoost (黄色曲线，AUC = 0.9869)和 CatBoost (青色曲线，AUC = 0.9848)，
这三者均为集成学习模型，显示出此类算法在处理该数据集时的显著优势。逻辑回归(logreg)和支持向量

机(svm)也表现出色，AUC 均为 0.9677，而决策树(DT)和 K 近邻(knn)虽然略逊一筹，但 AUC 也分别达到

了 0.9540 和 0.9346，有力证明了机器学习模型在复发预测中的有效性，尤其是以随机森林为代表的集成

算法表现最为突出。 
为了系统评估机器学习模型在甲状腺癌复发预测中的实际临床效能及增量价值，本文设计了多层次

的对比实验，如图 4。首先，为了确立当前临床标准下的预测基线，我们构建了仅包含单一临床指标的

Logistic 回归模型(蓝色点线)，该模型的 AUC 值为 0.8848，其目的是量化仅依赖传统专家经验分层所能

达到的预测上限，作为衡量复杂模型收益的参考标杆。其次，为了验证机器学习算法是否具备独立于专

家先验知识的特征挖掘能力，我们特意剔除“Risk”分层变量，仅利用年龄、TNM 分期等原始参数训练

了模型(绿色虚线)，结果显示其 AUC 仍达到 0.9818，表明算法能够成功从原始病理数据中自主捕捉非线

性高危模式，具有不依赖人为预判的独立诊断价值。最终，集成了原始特征与临床分层信息的全变量模

型(红色实线)实现了最优性能(AUC = 0.9869)，其与基线模型之间的性能差距展示了机器学习技术的边际

收益，证明了本研究提出的模型并非简单复述现有的风险评分，而是通过整合多维数据特征，提供了优

于传统临床指南的更精准的预后评估依据。 
虽然 ROC 曲线和 AUC 值直观地反映了各模型的整体分类效能，但为了更全面、细致地评估模型在

临床应用中的实际表现，本文进一步统计了准确度、灵敏度、特异度等具体评价指标。表 2 详细汇总了

逻辑回归、随机森林、XGBoost 等七种模型在测试集上的多维性能数据，以便深入对比不同算法的优势
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与侧重点。 
 

 
Figure 4. Comparison of ROC among the clinical baseline, the model excluding expert 
scores, and the full-feature machine learning model 
图 4. 临床基线、剔除专家评分模型与全特征机器学习模型的 ROC 曲线比较 

 
Table 2. Comparison of performance metrics for seven machine learning models 
表 2. 七种机器学习模型性能评价指标对比 

Model Accuracy Sensitivity Specificity PPV NPV AUC 

Logistic 回归 0.9063 0.9393 0.8333 0.9254 0.8621 0.9677 

K 近邻 0.9271 0.9848 0.8000 0.9155 0.9600 0.9346 

决策树 0.9375 0.9697 0.8667 0.9412 0.9286 0.9540 

随机森林 0.8958 0.9697 0.7333 0.8889 0.9167 0.9904 

SVM 0.8958 0.9545 0.7667 0.9000 0.8846 0.9677 

XGBoost 0.9375 0.9545 0.9000 0.9545 0.9000 0.9869 

CatBoost 0.9375 0.9697 0.8666 0.9412 0.9286 0.9848 

 
该表汇总了逻辑回归、K 近邻、决策树、随机森林、SVM、XGBoost 及 CatBoost 七种模型在甲状腺

癌复发预测任务中的多维性能评估结果，涵盖准确度、灵敏度、特异度、PPV、NPV 及 AUC 六大关键指

标。数据表明，决策树、XGBoost 与 CatBoost 在整体预测准确度上并列第一，均达到 0.9375，展现了极

高的分类精度。在细分指标上，各模型呈现出不同的优势侧重：K 近邻模型虽然整体准确度居中，但录

得了最高的灵敏度(Sensitivity, 0.9848)和阴性预测值(NPV, 0.9600)，提示其在减少漏诊方面具有显著优势；

而 XGBoost 则在特异度(Specificity, 0.9000)和阳性预测值(PPV, 0.9545)上表现最佳，说明其误报率控制得

当。值得注意的是，尽管随机森林的准确度(Accuracy, 0.8958)并非最高，但其 AUC 值高达 0.9904，位列
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所有模型之首，表明其在综合区分正负样本的能力及模型的鲁棒性上具有不可替代的优势，因此集成学

习算法(特别是 XGBoost 和随机森林)在各项指标的综合平衡上表现最为优异，是构建复发预测模型的理

想选择。 

5. 总结 

本文基于 Borzooei 和 Tarokhian [14]提供的临床数据集，系统开展了数据预处理、特征关联性分析及

七种机器学习模型的构建与评估工作。通过对逻辑回归、决策树、随机森林、XGBoost 等模型的对比分

析，证实了利用机器学习挖掘临床病理特征预测复发的可行性，所有模型均展现出极高的分类精度。其

中，集成学习算法表现最为显著，随机森林以 0.9904 的 AUC 值位居榜首，XGBoost 在特异度和准确度

上表现优异，验证了该类算法在处理高维非线性医疗数据时的鲁棒性；同时，特征分析确认了风险等级、

治疗反应及 TNM 分期为影响复发的最核心指标。 
尽管本研究构建的集成学习模型在甲状腺癌复发预测中表现优异，但仍受限于部分客观条件。由于

数据来源于单中心且样本规模有限，缺乏大规模外部队列的独立验证，模型在不同群体中的泛化能力尚

待进一步考证。同时，现有特征仅涵盖结构化临床文本，尚未融合超声影像、病理切片或基因测序等多

模态数据，导致部分深层生物学信息利用不足。鉴于此，后续工作拟引入深度学习技术处理非结构化数

据，探索多维度分析模式，从而开发出更加精准且具备普适性的临床辅助决策系统。 
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