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Abstract

Accurate assessment of postoperative recurrence risk in thyroid cancer is of great significance for
improving patient prognosis and optimizing medical resource allocation. Addressing the limita-
tions of traditional statistical methods in handling complex nonlinear clinical data, this paper aims
to explore and compare the application value of various machine learning algorithms in predicting
thyroid cancer recurrence. This study utilizes the clinical dataset provided by Borzooei and
Tarokhian, comprising 17 feature variables. After data cleaning and numerical processing via Label
Encoding, the data was split into training and testing sets at a 3:1 ratio. Seven machine learning
models were constructed, including Logistic Regression, K-Nearest Neighbors (KNN), Decision Tree,
Support Vector Machine (SVM), Random Forest, XGBoost, and CatBoost. The classification perfor-
mance of each model was comprehensively evaluated using a multidimensional metric system in-
volving Receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC), accuracy, sen-
sitivity, and specificity. Experimental results demonstrated that all seven models exhibited excel-
lent predictive performance, with AUC values exceeding 0.93 and accuracy surpassing 0.89. Notably,
ensemble learning algorithms performed the best: Random Forest demonstrated optimal generali-
zation ability with the highest AUC of 0.9904; XGBoost and CatBoost tied for the highest overall ac-
curacy (0.9375), with XGBoost achieving the best specificity (0.9000). Feature analysis further re-
vealed that Risk level, Response to therapy, and TNM stage were the core predictors affecting recur-
rence. In conclusion, machine learning techniques, particularly ensemble learning algorithms rep-
resented by Random Forest and XGBoost, can effectively improve the accuracy of thyroid cancer
recurrence risk prediction. These models can serve as objective and efficient auxiliary diagnostic
tools, providing a scientific basis for clinicians to formulate personalized follow-up strategies.
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Table 1. Description of dataset variables
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Thyroid Function FARBRDIREIRAS SR
Physical Examination S AR R A R E
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Risk SRR 53 I IR
T T 3 B e g e 1) IPRAE
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Stage FEIE LR 4 IrRAE
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Recurred HRIRES RA R

3. HA M

ATA $RRE 9 70 A7 BOIR e R R VP A O BUBb A, 5 f8 35 70 9 b i =R = 42 [15],
AEARRITRR M2 e O TR AR B RIS S RS S K LA, Sl i L R RS 28 18 7 A 1
BRI I ATRAE, W& 1R .

DOI: 10.12677/aam.2026.152070 295 I3RS


https://doi.org/10.12677/aam.2026.152070

THE, 2

Age vs Recurred Age vs Risk
0.025
Recurred Risk
1 No 3 Low
1 Yes 0.020 1 [ Intermediate
0.020 1 [ High
0.015 1
0.015 4
z 2
7] i)
c =
[ Q
a 2 0.010
0.010 4
0.005 1 0.005 1
0.000 T T T T T T 0.000 T —_— T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Age Age
Age vs Recurred Age vs Risk
Low “e ¢
No 1 “» ¢
el
g &
=1 4 Intermediate
tLIJJ [-4
o
Yes -
High
20 30 40 50 60 70 80 20 30 40 50 60 70 80
Age Age

Figure 1. Age distribution characteristics across recurrence status and risk levels

E 1. FRIEXRRER KGR THFER D HEHE

LRI AR, REREERTERERNERE, BEEmmE. Mk, RREHE
B AT E . BT, BUE 30~40 B, (HAEZEXMNEZ R E®H T RERMA, £ TH
IR B HE— P ENIE 13X — kil BREH KFR P82 45 )RR T REAKH (K35 %), Rk
NHEEEAREE W DK

A LRSS, RS EEALPE 30 ¥ idh, DAEERE; PN EEFERERER, 2HUE
BB S B NTE 60~80 ¥ XA B M I Ao A AR R, (R RS L AR e i i
HEEh (th A4 35 %), BB XSG e, FERerh i g2 60 £ f, Hm A s THEEZM
i B . IR IR IR R R e XS R AR AT T D) BB R R R, X R BRI
e B i PR B2 A RIS s S BRI PR S B 4 T i AT SE S DD (K SR

FER AN ST 2 T, IRANFZ0 25 W PRI BRARFAE 2 (R IR I AEIBR 2R 0 T RFAE 8] 14 22 FE 3L 2R 0]
TEUBBIR S B RE R, [ 2 R 1 17 NMRIEAZ R PIE Z 8] B SRR, B S R AR A R
BN, LI, T DL O] W2 i R R bR [ A7 A R S s oL, BLRENT S R
FORAS I HRIRE L o

DOI: 10.12677/aam.2026.152070 296 I Bl


https://doi.org/10.12677/aam.2026.152070

TOEHER,

The Correlation Among Features

1.0

031 [ 013 018 [GHZEAENEEY 0.1 (O0FEN 022 03 024 [OGEH 024 053 | 014 026

07218 0.26 [NOSIEN 0.33

Age

Gender - 0.19 8 021 03 027 [§OH6

0.32 046 0.24 0.33

Smoking - 0.31 0.38

0.15

Hx Smoking - 0.13  0.18 0.25 ‘0.28 0.15 0.14

0:23 0.37 014 0.17

Hx Radiothreapy - 0.18 0.24 0.3

Thyroid Function — 010/ 0.02 - 0.011 -0.0046 0.05 0.037 0.0072 -0. ; -0.053 -0.035 - 06

Physical Examination -SUH0CERSER -0.19 1 0.042 -0.035 0.06 -0.17 -0.13 -0.19 -0.13 -0.2 -0.049 -0.14 -0.094 -0.038 -0.12

0.31 0.33 J0:58

0.23  0.21  0.51 ReKZNSEGRorCR=0.15" BoKrLE - 0.17 -0.4

045 045 029 0.22 034 024 0.38

Adenopathy - 0.11

Pathology - #1677/

Focality - 0.22 0.36 0.23

0.61 0.5 10.62 041 ROWE]

0.6 0.45

Risk- 0.3 0.3

0.42 039 055 036 056 0.2

0.47 0.45

0.21
0.51 .68
0.55 [OKZAE 0.29 0.61‘ g
0.2 Moyl 022 05 0.39

0.31 0.34 0.62 0.55

0.15
0.33 [t 024 041 036

T- 024 0.27

N JOOEES 0.16

M- 0.24 0.21

0.52

0:228 0.25 50.23

0.35

0.32 @,1‘3<| 0.43

Stage- 0.53 0.26 0.46 0.28 0.37

0.0

Response- 0.14 0.18 0.24 0.15 0.14

=)
&
IS

Recurred - 0.26 0.33 0.33

Risk

o
=)
<

Gender -
Focality -
Recurred

'
Q
)
=
s}
o
@
QU

o

Smoking -
e
Hx Smoking —‘ E
Hx Radiothreapy -
Thyroid Function
Physical Examination
Adenopathy -
Pathology -

Figure 2. Pearson correlation coefficient heatmap of feature variables
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Figure 3. Comparison of ROC curves for seven machine learning models
B 3. 8% JREN ROC fhikxttt

Hh i AL B AR R B BH 14 22 (False Positive Rate), Z\AARXEE . BH 1428 (True Positive Rate), ¥ 1 %) #
RELRMAE A BEAL 7 235 I 5L 1 (AUC = 0.5) . ANEIH AT LIS MTHLE e, AT ALY ROC 2k 3 ™ inl /e
A, mEBEHLEEL, H AUC (EI97E 0.93 LU L, RUIFTHT S5 VT AN (1A 20 H0 F A AR v 1) To0I o ff
Az Abfe Ji. fE AR KDL L, BENLARAR(RF, SR liZk) Ll 0.9904 [f = AUC EA BB B, BB i
MR 7 2525 B s S BE L T ()72 XGBoost (3 4 # £5, AUC = 0.9869)#i1 CatBoost (7 (& ik, AUC =0.9848),
X = HYPNER S IR, BRI EVE A B Z AR AR (0 BB LA . B[R (logreg) Rl 7 1) &
Hlsvm)t R BLH B, AUC ¥4 0.9677, 1Mt FM(DT)FI K JZ4F (knn) B ARI& D — %, {H AUC th4) Hlik 5|
1 0.9540 F10.9346, A 7k [ LA 2% ST AL S R I A ok, e 2 DABE HLARAR 9 AR I 4R 1k
HIERMBCHRH

T RGPS T SIS BYTE FOIR M 52 R 00 Hh (4 SE BRIl PR Ak e S B E, A0l T 22K
b seas, Wil 4. B0, N T HOSLARTIRARARHE N TR, AT T A IR R TR AR
Logistic [A] A7 (5 4 55 28), iz AUC {E M 0.8848, I H & B UK LS & K&K 5 2 ke
IEBI TN ERR, VBN E R RIS S AR K, N T IR I F R R A &L T
FACI AR FFESZAE RE 71, BAVEFRAIBR “Risk” 43248, R HEE . TNM 4 % R 650014
TG RE L), 45 BRI AUC 5k F) 0.9818, 2 HASLILAENE T M E 4G FEEHE B AR
Mm R, BAAMB ARSI IS WG . 2, BT IR SRR 215 B 1 478 Bk
BU(A B S 2R) S T et PERE(AUC = 0.9869), FL 5 BELRAR R 2 [H] (1) 14 6 22 FE R T HL88 2 SI HioAR 11 br
Wead, EBH T AHE U AR E S AR A R S R A B R PE Sy, s A 2 R AR, PR A TR
TA& GG PRFE B 1 BEORS PR TS VP A 1A

HIR ROC M2 Fl AUC {H ELWLHE S B T S B TY (R B R 73 SRR RE, Ho T B4 A0S PPl B BY 7
I R A I SEBR I, A SCEE— B Giit T e . REUT . RS EAVEN e Rr. R 2 LR T
BRI BEHLARAR . XGBoost 4G AL FEMNRER 11 2 4EME BRI, DAEER AN EEAS [F) 5002 i) AL

DOI: 10.12677/aam.2026.152070 299 I3RS


https://doi.org/10.12677/aam.2026.152070

TR, FH

5 A

Marginal Benefit of Machine Learning vs Clinical Risk Stratification

o
o
|

True Positive Rate

o
IS
L

0.2 1

-- Random Guess (AUC = 0.50)

-+ Baseline: Clinical Risk Only (AUC = 0.8848)
== ML without Risk Variable (AUC = 0.9818)
—— ML with Full Features (AUC = 0.9869)

0.0 +- . . . .
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4. Comparison of ROC among the clinical baseline, the model excluding expert
scores, and the full-feature machine learning model
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Table 2. Comparison of performance metrics for seven machine learning models
= 2. LR ERE SIEEME BRI HRARXTEL

Model Accuracy Sensitivity Specificity PPV NPV AUC
Logistic [F19 0.9063 0.9393 0.8333 0.9254 0.8621 0.9677
K 46 0.9271 0.9848 0.8000 0.9155 0.9600 0.9346
RSB 0.9375 0.9697 0.8667 0.9412 0.9286 0.9540
BEHLARAK 0.8958 0.9697 0.7333 0.8889 0.9167 0.9904
SVM 0.8958 0.9545 0.7667 0.9000 0.8846 0.9677
XGBoost 0.9375 0.9545 0.9000 0.9545 0.9000 0.9869
CatBoost 0.9375 0.9697 0.8666 0.9412 0.9286 0.9848

FRILE TIEEEIE, KT, RER . BEHLARA. SVM. XGBoost % CatBoost L5 1 71 HUAR i
St SR T 55 Th ) 2 JEPERE VAL 45 1, T ERFE . REUE . R E. PPV. NPV JZ AUC 75 KSR
bro BHERI, M. XGBoost 15 CatBoost 75 B A4 T v Afi fE 5155 —, 14155 0.9375, EHL T K
EI A RRERE . EA0 o Fahs b, S SRR AN E . K I ARRAY BN AR e R fa (A%
197 % & R AU (Sensitivity, 0.9848)F1 B 4 FMIE (NPV, 0.9600), 7 HAE /> IRi2 5 1 B A B335
1M XGBoost U 7E 45 5+ J (Specificity, 0.9000) A1 BH 1 il {5 (PPV, 0.9545) LRI i f£, Ui B LRI =115
W EAEE RN, AR A AERA B (Accuracy, 0.8958) 3 E i, {HH: AUC {E ik 0.9904, {5
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