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Abstract

To efficiently solve large-scale consistent systems of linear equations, this paper proposes an adap-
tive deterministic block Kaczmarz method based on geometric smooth momentum, building upon
the existing Adaptive Deterministic Block Kaczmarz (ADBK) method. The proposed method inherits
the computational advantages of ADBK in adaptively selecting block indices through residual norms
and avoiding explicit computation of submatrix pseudoinverses. Furthermore, by introducing a ge-
ometric smooth momentum acceleration mechanism, the convergence speed is enhanced without
increasing additional computational complexity. Numerical experimental results demonstrate that
compared with the original ADBK method and various typical algorithms, the proposed method ex-
hibits significant advantages in terms of iteration count, computational time, and convergence rate.
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1. 518

LM 5 FEAL R v OR AR RBE M WLAR 2 ST ORI PR A5 Ak T 25 435 v v i e L SRV AN 0 F R )
WO IRAT, HHE S B A R, RS R L. Rk, Mg . P ERE S A S0 B R )
IR IEAE R ZEME Ty FR A . 2R S ) A0 46 (] R e G B

W 2L B 5% Stefan Kaczmarz T+ 1937 4E4% ) Kaczmarz J55[1], T sRARL M 7 FR AL AN 261 A3 5E 1)
R, G0 ST R A A S A B [2] 45 . SR 1T, Kaczmarz 77 14 RSSO R R T 17 Fa bs 138 2 7
WS N FLAR e USRS BT 45 SR . AR L T vR A B, 2009 4E Strohmer A1 Vershynin [3142H T3 F 1.
TEATFRPRBEHLIE I I BENL Kaczmarz (RK) 772, FHIEB T HAK IR H0I S, (H/& RK 771k 5 52 KA
s 5 P R 520 o

Ht Kaczmarz (BK) 778 57T LUE i 3] Elfving [41/0 TAE, & Kaczmarz J7ikif) HARHE . FEiEHT
FEAE 5256 £ IR IE B Kaczmarz 2807162 32T+ Kaczmarz J7 A1 RK ik BUE MERE A R0 tE. B AT E
PN Ah 25 T T 5 TR R VB B i R B T i — P B TR AR ST 1) BK L[5)-[7], X Tk
PR — YA R TP A0 7 B SO SR AR — A /D g i, ELMEDUSERE IR AT IR R T
Dyl AR SZ I BK 5%, 7R BRI G B I Bk M . LU L 8 5 A SRR AE A B 1 7
FRLHHIBENL T2 H Kaczmarz (RaBK) /772 [8] 1B i & Bt Kaczmarz (FDBK) J7i%[9].

ARSI T G Ot AR SZ [ BK 7732, 18 H G N e PEBE Kaczmarz 7732 1366l s JL P8 3)
Big 3% AP EE T 3B M E Kaczmarz J572: . F) I SE SE9656 3E A7 ) LA P8 S i B 3 B e 1
P Kaczmarz J7 V5 1 R A e Rk «

2. BENHEMHR Kaczmarz 3%
ZRE NN ) R IR 2 7 R 2
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Ax=b, Q)

HAr AeR™, RHAE xeR" MAmHbe R o X FAHAKLETRA, HHAME—, EERETRE
(1) e MR T

X, =argmin|x|,, % Ax=b,
xeR"

oo |-, RHOUE AR W TR B TR, — K% R — TR

X,s =argmin|b—Ax|,
xeR"

IR D T N SR x, = A'b o TR R, MR Tl N O
& BN EUR[10].
2.1. ¥t Kaczmarz #753%k

Y] FoREA (L2, m), R AR, ) R TR (1, j=12,p). B
3N =0, AL =[m], AR FRIXALES 3,3, 3, RS [m] B A5 S —AIE
0, LU AMGTRIIRIN N = (3,3,,9, ) BUs AZoRN A= AL AT - A ] I
L8 b Fr b=[b] b] oo bl | B K LUIBA R, M TR A, RN R TR, |, 3
i, =mod(k, p)+1. £, AT x, HEIEAHBEIRA A {x e R": A, x=b, | Fo LB
a5 X, R, B Kaczmarz JvERIE RS T AR R A

Xer =X+ AL by, — Ay %) k=012 @)\

o AT_ FRMFE A, 1) Moore-Penrose 14

FELERS [m] — e k)5 J Z )5, Needell Fil Tropp [5]42 HiBfiHL ik Kaczmarz (RBK) 7572, v
KT 24, Necoara [8[HEH T — NG — IBEHL T ¥ H Kaczmarz (RaBK) 77323, %7 1EA T BT S0y,
kAT

Xy = X+

b(i) A()Xk( ())TJ 3

IE‘] “ “

ot of € [01 BUE, AL 3 of =1, o, €(0,2) Jyb. Jy T3k —L RIS E, Chen Al Huang 12
H T — AN E 1 B Kaczmarz (FDBK) /772:[9], B LI R, FDBK AiETEMERE AL T RaBK J7ik.
2.2. BENMEMR Kaczmarz F3%

HAEhE R T A R R LR AR TR bR

2
U, = b('k)_A(ik)Xkr2”b_AXk”2}’ 4)

m

EbsERRFEAIU, AR, BARN A W 1.

DOI: 10.12677/aam.2026.152068 272 I3RS


https://doi.org/10.12677/aam.2026.152068

CF S/ RCES

3% 1. ADBK 7334[10]

1: #IA: Ab,l,x, erange(A")
2: %J'Hj X
3: for k=0,1,---,1-1 do
4: W ERT
. i 12 |lb—AX 2
U, _{Ik | b(k)_A(k)Xk| Z" . k"z};
5: itH
no= Y (0% - A¥x e, (5)
i eUy
6: T
T (b— Ax
X = X +MAT7IK~ (6)
|A"nd,
7: end for

EHL2.2.1. % AT B A AT RIS &2 X, » B ADBK J7EAE R IEAR AR 51 {Xk}:lo e
BRI TTRRA Q) BN EEUR x, = A'b, HisR 5 {Xk}f:0 SRS = e
2 :LM’min ATA 2
||xk+1—x*||2s[l—#]nxk—x*uz, o

m//iblock
Forb a=inf (N(U,)} > N(U,) ZRHER 4 U, 1 BT & TE R LE 285 = max, (A (A, AL )} -

3. ET/LMEBENBENFEMR Kaczmarz 5%

S8 LT S &R itk ADBK J5 VARG SIGH B o JSULT STHR[11] P i AR, %5 T340 f €[0,1)
FIM e[01], & XUl & Kaczmarz J7 i 5%, HakRp R F .

b(ik) _ A(ik)x T

Vi = BY +(1_:3)(Xk+1_xk)

NS LA S & Kaczmarz (KGSM) 72 I SR 16
T 3L FEsMpe[0l), Me[0l], BLKkle{l,n}. By, ZHFEA KL KR o kR
A7 . B X, 2 H KGSM J5ikfre L. MaxtFHia k=04

E<>LH1 ﬂk{—wll—m}“"‘x’v')’

X = X

Hr

r=1-

+M(1-8), ¢ =M (1-8)"-

Glz
Al
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M BEEET 1, EISAAR S B OO LT sh & s A Ui N ADBK J7 VA 1) B ik
fRARH
—nk c (b=, )ATWk +My,
| )
Yir = Bk +(1 ﬂ)(xk+1 - Xk)

b, AT LRI S E ) ADBK (gsmADBK) ik, FLAR P 25 i R 5L 2.

X = X+

U

E3% 2. gsmADBK 753%

1 fiA: ADbL0<A<L, JFH x,erange(AT) ) Yo=%;;
2: iﬁﬁtlj X
3: for k=01---,1-1 do

4: HESRIRET

ol b— Ax
Uk:{mb(k) A H A kz}
5: itH
o= Z (b(ik) A(Ik)Xk)e
ix €Uy
6: T
T (b— Ax
Xip1 = X k(T zk)AUk"’Myk
|a"nd,
7: itH
Vi = BY + ( ﬁ)(xkﬂ )
8: end for

iR 3.1 UBHM =01, gsmADBK JjikiEB{k N ADBK J5ik.
gsMADBK 77 S o AT B T 7, HRE AT E , BRI 45 H — ANV R WSO SO 22 1) b 2 TR 1
AR I 1 — D5

4. BUESCIE

RS LALSO 5 KT gsmADBIK 7R AR B I8 2 e 7 R 17 X DA B e, 9
%o 45585 MATLAB (A R20200)4 S0, AT LR X, = zeros (n,1) o 15 HLHE R 15 23
ol

RSE " k ||2 <10 -3
el
B A BT 100,000 vk, BiE A A AR 3600 £b. 7RIS PIRBIL T, AR RE T AR B
CPU Wl “--” o IT A CPU 72 50 {RE & iHH A FiEAR D EOR CPU B [H] - FRAME (R AL : ). &4
s b= AX,, X, € R" 1 MATLAB &%k randn BEFLAE X
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4.1. BEMREZMHFEE

HhH R R REUERE RS, B MATLAB Bi4K randn BEHLAER, BF A=randn(m,n). ffH]
RaBK. FDBK. ADBK F1 gsmADBK 75 ¥R fif KA AHA 27 #2240 Ax=b , o RaBK 5 ik R 77

_ i ()2
Ziejk & (A( %, ~b ) o
2 @ =
_ i (i) T
‘Zisjkwik(A()Xk_b )(A())
2

C AL
BAEA R 1 2 45, Hd gsmADBK 775K H S HUE BUA L5072 i e b 24, s
it CPU fH H/NRE . AT B RUSIFERE, gsmADBK J7 it HoAth 7 7% B s 52 Sl
CPU of Method
CPU of gsmADBK

RS BORRE, Bk mf| AL | K o =1.95L,, L, =

speed-up_ADBK =

mE 1A 2 B4 BT LB H, RaBK. FDBK. ADBK Fl gsmADBK 75 43R il 52 M R 5 etk
TR L) H A R . MIEASEANTHE B EIRE , gsmADBK 774t T RaBK. FDBK Fl ADBK 751,
speed-up_RaBK. speed-up_FDBK il speed-up_ADBK [{JHU{f i [# 737y 895.56~5419.41. 8.69~103.16+
1.05~3.39, RIsGnzh&Emigs ADBK 77 i I W SICRr M Aty AT 80 sk I BAR TA& 420772 .

Table 1. Numerical results of four iterative methods when A= randn(m, n) , m>n
# 1 A=randn(m,n), m>nEROFERTERBELR

m 1000 3000 5000 7000 9000 12,000 15,000
n 500 1000 2000 3500 5000 6500 8000
IT 12,085 12,606 32,123 86,189 >105 >105 >105
RaBic CPU  2.1848 16.6574  173.0970 1243.2086 - - -
IT 278 128 230 446 689 636 650
FDBK CPU  0.0289 0.1617 1.2585 5.2504 15.0544 235612  36.3798
ADBK IT 70 32 42 70 100 87 88
CPU  0.0062 0.0378 0.2238 0.8485 2.1926 3.2254 4.9407
IT 23 15 17 23 29 28 28
CPU  0.0022 0.0186 0.0915 0.2919 0.6470 1.0641 1.6170
gsmADBK M gt 0.5 0.3 0.4 0.5 0.6 0.6 0.5
Bopt 0.2 0.2 0.1 0.2 0.1 0.1 0.2
speed-up_RaBK 993.09 895.56 1891.77 4259.02 -- -- --
speed-up_FDBK 13.14 8.69 13.75 17.99 23.27 22.14 22.50
speed-up_ADBK 2.82 2.03 2.45 2.91 3.39 3.03 3.06

Table 2. Numerical results of four iterative methods when A= randn(m, n) , m<n

# 2. A=randn(m,n), m<nREMIERTTEREELER

m 500 1000 2000 3500 5000 6500 8000
n 10,000 3000 5000 7000 9000 12,000 15,000
RaBK IT 11,740 12,467 32,609 86,022 >105 >105 >105
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R
CPU 43706 302750 319.8674 1764.5594 - - -
CDEK IT 320 174 269 506 753 709 721
CPU  0.2579 0.3220 1.7888 6.4280  17.2074 261081  40.1144
IT 70 32 42 70 100 87 88
ADBK
CPU  0.0065 00372  0.2247 08500  2.1213 3.3347 47675
IT 23 15 17 23 29 28 28
CPU  0.0025 00226  0.1096 0.3256 0.7025 1.1920 1.7674
gsmMADBK
M o 05 0.4 0.4 05 0.6 0.6 05
Bt 0.3 0.2 0.2 0.2 0.2 0.1 0.3
speed-up_RaBK 174824  1737.83 291850  5419.41 - - -
speed-up_FDBK 103.16 14.25 16.32 19.74 24.49 21.90 22.70
speed-up_ADBK 2.60 1.65 1.05 2.64 3.02 2.80 2.70

1R THADAFEZEM M B4 gsmADBK J5 it HALR IR . 2 gsmADBK J5 kK iL 2
Kb ER A T E AR S HON B CPU E B AT 15861

0.9 T T T T T =g R BT 0.9 — . : : T T TTYVY
‘\\\\\ 15 A e 5 (AN
L g2 EEEEES R i ol Sl T "W 16
88 F 2 P Eag 08 r T N e e TR '\
I e RS SRS LS 0 s s Ty N 1
i 7z Sy P g b \g Y op 7 ~ \\\\ ‘Y‘
o7t 53 - R Wy 07h | ¢ 4 R \\\\ \\ \ 1.4
b 4 > S VS I i o > 1"
\ 7 ~ N i \ 1 \ L NS, N x
A \ ~ S N I \ \ ~ o O e R 1
{ AT ™ T \ 1 L S T
06 } 1 ~ \ 06} i ; N \ !
{1 Tl & RN \ / 1 8 5l NN i 1.2
g u mewd N A \\ \ r ¥ ,' o 8 T s
1 N NN 1 i 1 3 vy
X 05 b Al b S T SR A T L NN R
LA 7 N S w Y A ! . v s \ 1
iy 0 \ \ L
X g5 8 2 R N i g } . o L ¥ A
04r i & g 1 7 \ SRR I 041 \ 1 1 7’ s 1 v H ik
1 / \ \ ! y b o 1 \
> A \ SR \ 1 \ 1
&« ¢ ¥ T 1 v wit & o4 g A v ¥y gt 0.8
08 & o o od P ‘\ 8 Wi 03F , ¢ /\ v om \ “ “‘n‘l
1
roioa g 67 a3 ¢ YA Py G W \ L i i)
/B T | N L e 1 Yiha n 1oy d " 06
2K § wou g @ 0 0(0.5,\0.2)‘ 17y 05 02 /) S~ %05 0.2)I 1
by N v 17 y
IR O S S S | 1 v 1l ,,,l I % 20 il 1 Vi Lok /
oqL L4 0 ! L 1 o B S . ) 44 04
0.1 0.2 0.3 0.4 0.5 0.6 0 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M M
(@) m=7500,n=3000 (b) m=3500,n=7000

Figure 1. CPU values of solving overdetermined and underdetermined linear systems using gsmADBK method with different
(M.5)
1. TE(M, B) # gsmADBK 7735K B E T 2 E 4 1 77 724R /Y CPU &

EE 2 FE 3, X FEEMRGELIE TR, B RSE SiARBE(L) Mt E I 18 (7)< R 2k .
MA S gsmADBK AN SRR, 48 LATiA, gsmADBK LRI EUE M RER IS

4.2. &M S1EE

85 R RBUEMEM AR, YJ0& M SuiteSparse HFFEAL2] R . % 3 F1Z 4 2 RF1H T A4
YIS RRRE B RN 7N A i P FRAE B AR (5 B, 22 5 91 H T /SR BRI B AR 5515 B, . 1] RaBK.
FDBK. ADBK. Fl gsmADBK % RMEVIMGE BN X, FIKHUSA A 2ot #2420 Ax =b o EfH 25 Sl
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CF S/ G ES

6, %7 LAk 8, HAAFINET R NS HRBE SRR P #E RIS, il CPU A

=]
/NI
10° v 10° T T
-6 - RaBK --©-- RaBK
-+4-- FDBK --+4-- FDBK
ADBK ADBK
- - % - gsmADBK - - % - gsmADBK
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Figure 2. The relationship of RSE with IT (left) and CPU (right) for RaBK, FDBK, ADBK and gsmADBK methods of
A= randn(7000,3500)

2. A=randn(7000,3500) 4 RaBK. FDBK. ADBK #1 gsmADBK 753&#J RSE 5 IT (%)% CPU (B)M%FR

100 T T T T 10° T
-©-- RaBK -©-- RaBK
-+ - FDBK --+4 - FDBK
ADBK ADBK
- - % - gsmADBK - - % - gsmADBK
107" 107
L L
(7] -2 2] 2
¥ 10 ¥ 10
ks
X
*
i
103 10°
104 . . . . 104 . . . . . . .
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Figure 3. The relationship of RSE with IT (left) and CPU (right) for RaBK, FDBK, ADBK and gsmADBK methods of
A=randn(3500,7000)

& 3. A=randn(3500,7000) # RaBK. FDBK. ADBK %1 gsmADBK 753%#) RSE 5 IT (Z)#1 CPU (H)HI%F&

Table 3. Related properties of full-rank sparse matrices, m>n
= 3. WRARRERAEPERME R MR, m=>n

Name Cities ash219 ash331 ash608 cage9 cagel0

mxn 55 x 46 219 x 85 331 x 104 608 x 188 3534 x 3534 11,397 x 11,397
density 53.04% 2.35% 1.92% 1.06% 0.33% 0.16%
cond(A) 207.15 3.02 3.10 3.37 12.60 11.02
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Table 4. Related properties of full-rank sparse matrices, m<n

= 4. HIARIAERERIMERMRR, m<n

Name Trec8 crewl bibd_17_8 modell nemsafm flower_5 4
mxn 23 x 84 135 x 6469 136 x 24,310 362 x 798 334 x 2348 5226 x 14,721
density 39.44% 5.38% 20.59% 1.05% 0.36% 0.057%
cond(A) 26.89 18.20 9.04 17.57 4.77 14.9
Table 5. Relevant properties of low-rank sparse matrices
= 5. BT IRERAEFE R HE S ME R
Name relats relat6 rel5 rel6 Sandi_sandi flower_4 4
mxn 340 x 35 2340 x 157 340 x 35 2340 x 157 314 x 360 1837 x 5529
density 8.89% 2.21% 5.51% 1.39% 0.54% 0.20%
cond(A) Inf Inf Inf Inf 1.47e+17 1.05e+19
Table 6. Numerical results for full-rank sparse matrices A, m=>n
= 6. WIARERIERE A, mxnFRHBESR
Name Cities ash219 ash331 ash608 cage9 cagel0
RaBK IT 112488 846 814 1970 31,359 >105
a
CPU 0.1753 0.0111 0.0138 0.0810 438.8697 --
IT 45593 46 30 50 356 290
FDBK
CPU 0.4229 4.7216e—04 3.6335¢-04 7.6797¢-04 0.0698 0.6507
IT 67770 21 19 23 252 107
ADBK
CPU 0.1366 5.5380e-05 7.2638e—05 8.5800e—05 0.0140 0.0187
IT 2084 12 11 13 52 37
CPU 0.0045 3.2180e—-05 3.3107e—05 5.5590e—-05 0.0032 0.0063
gsmADBK
M g 0.9 0.2 0.2 0.3 0.7 0.7
Bop 0.6 0.1 0.1 0.2 0.4 0.4
speed-up_RaBK 38.96 344.93 416.83 1457.10 137146.78 --
speed-up_FDBK 93.98 14.67 10.98 13.81 21.81 103.29
speed-up_ADBK 30.36 1.72 2.19 154 4.38 2.97
Table 7. Numerical results for full-rank sparse matrices A, m<n
F 7. BHBEBIERE A, m<nBTRBESER
Name Trec8 crewl bibd_17_8 modell nemsafm flower_5 4
RaBK IT 2303 7478 1293 11,357 2614 >105
a
CPU 0.0046 2.0872 2.4240 1.5826 1.1650 -
IT 1333 808 257 646 136 3501
FDBK
CPU 0.0111 0.1113 2.5492 0.0136 0.0036 0.9751
IT 1240 319 119 375 56 463
ADBK
CPU 0.0019 0.0182 0.0492 0.0021 0.0007 0.0515
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IT 134 92 38 69 24 57

CPU 0.0004 0.0055 0.0174 0.0004 0.0003 0.0063

gsmADBK Mgt 0.8 0.8 0.6 0.8 0.5 0.8
Bopt 0.5 0.2 0.1 0.2 0.1 0.2

speed-up_RaBK 11.50 379.49 139.31 3956.50 3883.33 -
speed-up_FDBK 27.75 20.24 146.51 34.00 12.00 154.78
speed-up_ADBK 475 331 2.83 5.25 2.33 8.17

% 6 R 7 MBUE S5 BT LIS H LR 466

1) RaBK. FDBK. ADBK Al gsmADBK J7 V2R i Rk Ffi i 4k P4 77 24 Ax = b #=2H 2.

2) RaBK. FDBK. ADBK Hl gsmADBK J77% 28 tH 5% 1 13 2 B E 45 R . A2 pr A a5
3K fig . gsmADBK 75 15 H FEIE AP HORI T N [R]E T RaBK L FDBK #1 ADBK 7772, speed-up_RaBK.
speed-up_FDBK. speed-up_ADBK [1JHU{E i [ 4 324 11.50~137146.78. 10.98~154.78. 1.54~30.96, K]
TN INZ) B JE I SO B35 AR TR S0 7532 AR 2 AN 5] A i R R 1 5 8 S MU B RERT 11

Table 8. Numerical results of low-rank sparse matrices

8. MSHIMAEMFHRESR

Name relatb relaté rel5 rel6 Sandi_sandi flower_4 4
IT 75 252 79 322 505 561
FDBK
CPU 0.0009 0.0122 0.0008 0.0117 0.0059 0.0481
IT 58 84 70 192 353 147
ADBK
CPU 0.0002 0.0010 0.0002 0.0019 0.0011 0.0048
IT 22 28 34 38 88 39
CPU 6.6070e—05 0.0004 8.4310e-05 0.0004 0.0003 0.0014
gsmADBK
My 0.4 0.6 0.4 0.7 0.8 0.6
Bont 0.3 0.2 0.2 0.1 0.3 0.3
speed-up_FDBK 13.62 30.50 9.49 29.25 19.67 34.36
speed-up_ADBK 3.03 2.50 2.37 4.75 3.67 3.43

H13% 8 IBUE A AT LIS L R 4518

1) RaBK Jji: ik BORMEmRAS TR T M e e rfedl, v @irE 75 REUE MRS RaBK J7iB K1)
PR AL, HAth FDBK. ADBK Fl gsmADBK 77V e 45 ROR A A1k 7 Mg 2 1 7 24

2) {ERTA M R AFEH, gsmADBK J7 V271 FE %A D HORI T 506 (8] 48T FDBK F1 ADBK 5%,
speed-up_FDBK. speed-up_ADBK ] HUE i [ 4373l v 9.49~34.36 F1 2.37~4.75, 3BV N2 & s S5 1 i
= HARTALG 75 AR AR B 1 B 2 BUR BN FERT .

5. &

AT HUA A BENL AL WU EAR FIR, £E B IE R 5E B Kaczmarz (ADBK) /5 (1 A fi
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LEE, TiE

EEEE R BAEIR 7ET LA B S B & B E PR Kaczmarz (gsmADBK) 5 i%. 1% 7% M
THEE  RE M AT R SRAR 8, K SE 0 45 R W2 T VA BE U A ORI AR R 2 177
FEALIF B NS E T AEYS 10 2 2% ADBK J7 ik ISRV, AR AR H ., TS0 ] LA R Wie Sk P2 7 T

KA Tt
eI
X AR #3E 4:(12172186: 11772166).
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