
Advances in Applied Mathematics 应用数学进展, 2026, 15(2), 270-280 
Published Online February 2026 in Hans. https://www.hanspub.org/journal/aam 
https://doi.org/10.12677/aam.2026.152068 

文章引用: 马家靓, 丁洁玉. 基于几何平滑动量的大规模线性方程组自适应确定性块 Kaczmarz 方法[J]. 应用数学进展, 
2026, 15(2): 270-280. DOI: 10.12677/aam.2026.152068 

 
 

基于几何平滑动量的大规模线性方程组自适应

确定性块Kaczmarz方法 
马家靓1*，丁洁玉2# 
1青岛大学数学与统计学院，山东 青岛 
2青岛大学计算机科学技术学院，山东 青岛 
 
收稿日期：2026年1月10日；录用日期：2026年2月4日；发布日期：2026年2月10日 

 
 

 
摘  要 

为高效求解大规模相容线性方程组，本文在已有自适应确定性块Kaczmarz (ADBK)方法的基础上，引入

几何平滑动量加速机制，提出了基于几何平滑动量的自适应确定性块Kaczmarz方法。该方法继承了

ADBK通过残差范数自适应选取块索引、避免显式计算子矩阵伪逆的计算优势，并在不增加额外计算复

杂度的前提下进一步提升了收敛速度。数值实验结果表明，与原始ADBK方法及多种典型算法相比，所提

出的方法在迭代次数、计算时间和收敛速度方面均具有明显优势。 
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Abstract 
To efficiently solve large-scale consistent systems of linear equations, this paper proposes an adap-
tive deterministic block Kaczmarz method based on geometric smooth momentum, building upon 
the existing Adaptive Deterministic Block Kaczmarz (ADBK) method. The proposed method inherits 
the computational advantages of ADBK in adaptively selecting block indices through residual norms 
and avoiding explicit computation of submatrix pseudoinverses. Furthermore, by introducing a ge-
ometric smooth momentum acceleration mechanism, the convergence speed is enhanced without 
increasing additional computational complexity. Numerical experimental results demonstrate that 
compared with the original ADBK method and various typical algorithms, the proposed method ex-
hibits significant advantages in terms of iteration count, computational time, and convergence rate. 
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1. 引言 

线性方程组的高效求解是大数据分析、机器学习和图像处理等领域中高性能数值算法和软件开发的

核心环节，常常受到问题规模、不相容等因素制约。因此，构造格式简单、内存耗费低和收敛速度快的

迭代方法在大规模线性方程组、线性反问题和优化等问题中尤为重要。 
波兰数学家 Stefan Kaczmarz 于 1937 年提出 Kaczmarz 方法[1]，用于求解线性方程组和线性不适定问

题，如电子计算机断层扫描和信号处理[2]等。然而，Kaczmarz 方法的收敛性质依赖于行指标的选择顺序，

收敛速度慢且很难做出收敛分析结果。在此方法基础上，2009 年 Strohmer 和 Vershynin [3]提出了基于工

作行指标随机选取的随机 Kaczmarz (RK)方法，并证明了其依期望指数收敛，但是 RK 方法易受大型矩阵

稀疏度的影响。 
块 Kaczmarz (BK)方法最早可以追溯到 Elfving [4]的工作，是 Kaczmarz 方法的自然推广。理论分析

和数值实验表明构造块 Kaczmarz 类方法是提升 Kaczmarz 方法和 RK 方法数值性能的有效途径。目前国

内外学者主要从两方面来设计新型高效的块方法：一种是基于投影思想建立的 BK 方法[5]-[7]，这类方法

在每一次迭代过程中都需要计算伪逆或求解一个最小二乘问题，且难以实施并行计算。另一种是基于免

伪逆思想建立的 BK 方法，该类方法能避免投影类方法的主要缺陷。比较典型的方法有求解相容线性方

程组的随机平均块 Kaczmarz (RaBK)方法[8]和快速确定块 Kaczmarz (FDBK)方法[9]。 
本文研究基于免伪逆思想建立的 BK 方法，在自适应确定性块 Kaczmarz 方法的基础上将几何平滑动

量运用到该方法中得到基于动量的块 Kaczmarz 方法。利用数值实验验证带几何平滑动量的自适应确定性

块 Kaczmarz 方法的有效性和高效性。 

2. 自适应确定性块 Kaczmarz 法 

考虑如下的大规模线性方程组： 
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 =Ax b ， (1) 

其中 m n×∈A  ，未知向量 n∈x  和右端项 m∈b  。对于相容的线性方程组，若解不唯一，往往关注方程

组(1)的最小欧式范数解 

2arg min
n

LN
∈

=
x

x x


，使得 =Ax b ， 

其中 2⋅ 表示欧几里得范数。对于不相容的线性方程组，一般考虑最小二乘解 

2arg min
n

LS
∈

= −
x

x b Ax


， 

重点研究的是最小二乘最小范数解： †
∗ =x A b 。对于相容线性方程组，其最小二乘最小范数解就是

它的最小范数解[10]。 

2.1. 块 Kaczmarz 型方法 

设 [ ]m 表示集合 { }1,2, , m ，如果一组索引集 1 2, , , pJ J J 满足：对于任意 ( ), 1, 2, ,i j i j p≠ =  ，有

i jJ J =∅ ，并且 [ ]1

p
ii

J m
=

=


，那么可以称这组集合 1 2, , , pJ J J 是对集合 [ ]m 的一个划分。给定一个正

整数 p，可以将矩阵 A的行索引划分为 { }1 2, , , pJ J J J=  ，即将 A表示为
1 2

T
T T T, , ,

pJ J J
 =  A A A A ，同时将

向量 b 表示为
1 2

T
T T T, , ,

pJ J J
 =  b b b b 。在第 1k + 次迭代中，选择一个子矩阵

ikJA 和对应的子向量 ,
ikJb 其中

( )mod , 1ki k p= + 。在该步中，当前迭代点 kx 被正交投影到解空间{ }:
i ik k

n
J J∈ =x A x b 上。因此从初始

向量 0x 出发，块 Kaczmarz 方法的迭代格式可以表示为： 

 ( )†
1 i i ik k kk k J J J k+ = + −x x A b A x ， 0,1,2,k =   (2) \ 

其中 †
ikJA 表示矩阵

ikJA 的 Moore-Penrose 伪逆。 

在给定集合 [ ]m 的一个预定划分 J 之后，Needell 和 Tropp [5]提出随机块 Kaczmarz (RBK)方法。为降

低计算复杂度，Necoara [8]提出了一个统一的随机平均块 Kaczmarz (RaBK)方法，该方法不需要计算伪逆，

其迭代格式如下： 

 
( ) ( )

( )
( )( )T

1 2

2
ik

i i
ik k

k k k i
ii J

α ω+
∈

 
− = +  

 
 

∑ b A xx x A
A

， (3) 

其中 [ ]0,1k
iω ∈ 为权重，满足 1

ik

k
i

i J
ω

∈

=∑ ， ( )0,2kα ∈ 为步长。为了进一步提高收敛速度，Chen 和 Huang 提

出了一个快速确定性块 Kaczmarz (FDBK)方法[9]，数值实验表明，FDBK 方法在性能上优于 RaBK 方法。 

2.2. 自适应确定性块 Kaczmarz 方法 

首先提出一种基于残差向量的欧几里得范数的新指标集序列 

 ( ) ( )
2

2
2| k k ki i

k k kU i
m

 − = − ≥ 
  

b Ax
b A x ， (4) 

上述指标序列 kU 非空，具体内容见算法 1。 
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算法 1. ADBK 方法[10] 

1：输入： ( )T
0, , ,l range∈A b x A ； 

2：输出： lx  

3：for 0,1, , 1k l= −  do 

4：确定指标集序列 

( ) ( )
2

2
2| k k ki i

k k kU i
m

 − = − ≥ 
  

b Ax
b A x ； 

5：计算 

 ( ) ( )( )k k
k

k k

i i
k k i

i U
η

∈

= −∑ b A x e ； (5) 

6：计算 

 ( )T
T

1 2T
2

.k k
k k k

k

η
η

η
+

−
= +

b Ax
x x A

A
 (6) 

7：end for 

 
定理 2.2.1. 对 TA 列空间中的任意初始猜测向量 0x ，由 ADBK 方法生成的迭代解序列{ } 0k k

∞

=
x 收敛到

相容线性方程组(1)的最小范数解 †
∗ =x A b ，且迭代解序列{ } 0k k

∞

=
x 的误差满足 

 
( )T

min2 2
1 2 2

max

1k kblockm

µλ

λ+ ∗ ∗

 
 − ≤ − −
 
 

A A
x x x x ，  (7)  

其中 ( ){ }inf kk
N Uµ = ， ( )kN U 表示指标集 kU 中所含元素的个数以及 ( ){ }T

max maxmax
k k k

block
U U Uλ λ= A A 。 

3. 基于几何平滑动量的自适应确定性块 Kaczmarz 方法 

考虑使用几何平滑动量来加快 ADBK 方法的收敛速度。类似于文献[11]中的工作，对于参数 [ )0,1β ∈
和 [ ]0,1M ∈ ，定义几何平滑动量 Kaczmarz 方法的算法，其迭代形式如下： 

 

 

( ) ( )

( )
( )( )

( )( )

T

1 2

2

1 11

k k
k

k

i i
ik

k k k
i

k k k k

M

β β

+

+ +







−
= + +

= + − −

b A xx x A y
A

y y x x

， (8) 

下面给出几何平滑动量 Kaczmarz (KGSM)方法的收敛理论。 
定理 3.1. 固定参数 [ )0,1β ∈ ， [ ]0,1M ∈ ，以及 { }1, ,l n∈  。设 lv 是矩阵 A 的第 l 大奇异值 lσ 所对应

的右奇异向量。假设 kx 是由 KGSM 方法所定义的。那么对于所有 0,k ≥ 有 

( )

T

1 0

1
, , ,

1 11

k

k l l

r r ς
βς β+

    
− = −     − −−     

x x v x x v  

其中 

( ) ( )
2

2
2: 1 1 , : 1l

F

r M Mσ β ς β= − + − = −
A

。 
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当 β 接近于 1 时，动量项会变得高度平滑。所以将几何平滑动量更新公式嵌入 ADBK 方法的更新迭

代公式中有 

 

( )

( )( )

T
T

1 2T
2

1 11

k k
k k k k

k

k k k k

M
η

η
η

β β

+

+ +

−
= + +

= + −





 −

b Ax
x x A y

A

y y x x

  (9) 

综上，可得带几何平滑动量的 ADBK (gsmADBK)方法，具体内容见如下算法 2。 
 
算法 2. gsmADBK 方法 

1：输入： , , ,0 1l β≤ ≤A b ，并且 ( )T
0 range∈x A ， 0 0=y x ； 

2：输出： lx   

3：for 0,1, , 1k l= −  do 

4：确定指标集序列 

( ) ( )
2

2
2| k k ki i

k k kU i
m

 − = − ≥ 
  

b Ax
b A x ； 

5：计算 
( ) ( )( )k k

k
k k

i i
k k i

i U
η

∈

= −∑ b A x e ； 

6：计算 

( )T
T

1 2T
2

k k
k k k k

k

M
η

η
η

+

−
= + +

b Ax
x x A y

A
 

7：计算 

( )( )1 11 .k k k kβ β+ += + − −y y x x  

8：end for 

 
注记 3.1. 当参数 0M = 时，gsmADBK 方法退化为 ADBK 方法。 
gsmADBK 方法的收敛性分析由于 kη 的选择不确定，因此给出一个准确的收敛速度的上界是困难的，

有待今后的进一步研究。 

4. 数值实验 

下面通过几组数值算例来验证 gsmADBK 方法求解大规模相容线性方程组的有效性以及高效性，实

验均通过 MATLAB (版本 R2020b)编程实现，初始向量均设为 ( )0 ,1zeros n=x 。停机准则是相对解误差满

足 

32

2

10kRSE ∗ −

∗

−
= ≤

x x
x

 

或者迭代次数超过 100,000 次，或者计算时间超过 3600 秒。在后两种情况下，相应的 IT 迭代次数和

CPU 时间记为“--”。IT 和 CPU 是 50 次重复计算所需迭代步数和 CPU 时间的平均值(单位：秒)。令右

端向量 , n
∗ ∗= ∈b Ax x  由 MATLAB 函数 randn 随机生成。 
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4.1. 超定和欠定线性方程组 

首先考虑第一类系数矩阵高斯矩阵，由 MATLAB 函数 randn 随机生成，即 ( ),randn m n=A 。使用

RaBK、FDBK、ADBK 和 gsmADBK 方法求解大规模相容线性方程组 =Ax b ，其中 RaBK 方法的采样方 

式为分块采样，块大小为
2
2m 

 A ，步长 1.95k kLα = ，

( ) ( )( )
( ) ( )( ) ( )( )

2
 

22 T 

2

i

k

i

k

ik
i ki J

k
i ik

i ki J

b
L

b

ω

ω

∈

∈

−
=

−∑

∑ A x

A x A
，

( ) 2

2

k
k i
i

i

ωω =
A

。 

数值结果由表 1 和表 2 给出，其中 gsmADBK 方法采用的参数是数值实验过程中确定的最优参数，即通

过 CPU 值最小获取。为了显示收敛程度，gsmADBK 方法对其他方法的加速定义为 
CPU of Methodspeed-up_ADBK

CPU of gsmADBK
= 。 

由表 1 和表 2 的数值结果可以看出，RaBK、FDBK、ADBK 和 gsmADBK 方法求解超定及欠定线性

方程组(1)都是有效的。从迭代步数和计算时间来看，gsmADBK 方法优于 RaBK、FDBK 和 ADBK 方法，

speed-up_RaBK、speed-up_FDBK 和 speed-up_ADBK 的取值范围分别为 895.56~5419.41、8.69~103.16、
1.05~3.39，即增加动量项给 ADBK 方法的收敛特性带来有效的改进并且优于传统方法。 
 
Table 1. Numerical results of four iterative methods when ( ),randn m n=A , m n>  

表 1. ( ),randn m n=A ， m n> 时四种迭代方法的数值结果 

m  1000 3000 5000 7000 9000 12,000 15,000 

n  500 1000 2000 3500 5000 6500 8000 

RaBK 
IT 12,085 12,606 32,123 86,189 >105 >105 >105 

CPU 2.1848 16.6574 173.0970 1243.2086 -- -- -- 

FDBK 
IT 278 128 230 446 689 636 650 

CPU 0.0289 0.1617 1.2585 5.2504 15.0544 23.5612 36.3798 

ADBK 
IT 70 32 42 70 100 87 88 

CPU 0.0062 0.0378 0.2238 0.8485 2.1926 3.2254 4.9407 

gsmADBK 

IT 23 15 17 23 29 28 28 

CPU 0.0022 0.0186 0.0915 0.2919 0.6470 1.0641 1.6170 

optM  0.5 0.3 0.4 0.5 0.6 0.6 0.5 

optβ  0.2 0.2 0.1 0.2 0.1 0.1 0.2 

speed-up_RaBK  993.09 895.56 1891.77 4259.02 -- -- -- 

speed-up_FDBK  13.14 8.69 13.75 17.99 23.27 22.14 22.50 

speed-up_ADBK  2.82 2.03 2.45 2.91 3.39 3.03 3.06 

 
Table 2. Numerical results of four iterative methods when ( ),randn m n=A , m n<  

表 2. ( ),randn m n=A ， m n< 时四种迭代方法的数值结果 

m  500 1000 2000 3500 5000 6500 8000 

n  10,000 3000 5000 7000 9000 12,000 15,000 

RaBK IT 11,740 12,467 32,609 86,022 >105 >105 >105 
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续表 

 CPU 4.3706 39.2750 319.8674 1764.5594 -- -- -- 

FDBK 
IT 320 174 269 506 753 709 721 

CPU 0.2579 0.3220 1.7888 6.4280 17.2074 26.1081 40.1144 

ADBK 
IT 70 32 42 70 100 87 88 

CPU 0.0065 0.0372 0.2247 0.8590 2.1213 3.3347 4.7675 

gsmADBK 

IT 23 15 17 23 29 28 28 

CPU 0.0025 0.0226 0.1096 0.3256 0.7025 1.1920 1.7674 

optM  0.5 0.4 0.4 0.5 0.6 0.6 0.5 

optβ  0.3 0.2 0.2 0.2 0.2 0.1 0.3 

speed-up_RaBK  1748.24 1737.83 2918.50 5419.41 -- -- -- 

speed-up_FDBK  103.16 14.25 16.32 19.74 24.49 21.90 22.70 

speed-up_ADBK  2.60 1.65 1.05 2.64 3.02 2.80 2.70 

 
图 1 展示了两个不同参数 M 和 β 对 gsmADBK 方法计算效率的影响。确定 gsmADBK 方法的最优参

数主要是通过计算不同参数对应的 CPU 值进行选择的。 
 

 
(a) 7500, 3000m n= =                                (b) 3500, 7000m n= =  

Figure 1. CPU values of solving overdetermined and underdetermined linear systems using gsmADBK method with different 
( ),M β  

图 1. 不同 ( ),M β 的 gsmADBK 方法求解超定和欠定线性方程组的 CPU 值 

 
在图 2 和图 3 中，对于超定和欠定线性方程组，有 RSE 与迭代步数(左)和计算时间(右)的关系曲线。

从中反映出 gsmADBK 方法收敛最快，综上所述，gsmADBK 方法的数值性能表现优秀。 

4.2. 稀疏线性方程组 

考虑第二类系数矩阵稀疏矩阵，均是从 SuiteSparse 矩阵集合[12]中选取的。表 3 和表 4 分别列出了六个

细长满秩矩阵和六个扁平满秩矩阵的相关信息，表 5 列出了六个秩亏稀疏矩阵的相关信息。使用 RaBK、

FDBK、ADBK、和 gsmADBK 方法求解初始向量为 0x 的大规模相容线性方程组 =Ax b 。数值结果由表
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6，表 7 以及表 8 给出，其中不同方法中采用的参数是数值实验过程中确定的最优参数，即通过 CPU 值

最小获取。 
 

 
Figure 2. The relationship of RSE with IT (left) and CPU (right) for RaBK, FDBK, ADBK and gsmADBK methods of

( )7000,3500randn=A  

图 2. ( )7000,3500randn=A 的 RaBK、FDBK、ADBK 和 gsmADBK 方法的 RSE 与 IT (左)和 CPU (右)的关系 

 

 
Figure 3. The relationship of RSE with IT (left) and CPU (right) for RaBK, FDBK, ADBK and gsmADBK methods of

( )3500,7000randn=A  

图 3. ( )3500,7000randn=A 的 RaBK、FDBK、ADBK 和 gsmADBK 方法的 RSE 与 IT (左)和 CPU (右)的关系 

 
Table 3. Related properties of full-rank sparse matrices, m n≥  
表 3. 满秩稀疏矩阵的相关性质， m n≥  

Name Cities ash219 ash331 ash608 cage9 cage10 

m n×  55 × 46 219 × 85 331 × 104 608 × 188 3534 × 3534 11,397 × 11,397 

density 53.04% 2.35% 1.92% 1.06% 0.33% 0.16% 

cond(A) 207.15 3.02 3.10 3.37 12.60 11.02 
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Table 4. Related properties of full-rank sparse matrices, m n<  
表 4. 满秩稀疏矩阵的相关性质， m n<  

Name Trec8 crew1 bibd_17_8 model1 nemsafm flower_5_4 

m n×  23 × 84 135 × 6469 136 × 24,310 362 × 798 334 × 2348 5226 × 14,721 

density 39.44% 5.38% 20.59% 1.05% 0.36% 0.057% 

cond(A) 26.89 18.20 9.04 17.57 4.77 14.9 

 
Table 5. Relevant properties of low-rank sparse matrices 
表 5. 秩亏稀疏矩阵的相关性质 

Name relat5 relat6 rel5 rel6 Sandi_sandi flower_4_4 

m n×  340 × 35 2340 × 157 340 × 35 2340 × 157 314 × 360 1837 × 5529 

density 8.89% 2.21% 5.51% 1.39% 0.54% 0.20% 

cond(A) Inf Inf Inf Inf 1.47e+17 1.05e+19 

 
Table 6. Numerical results for full-rank sparse matrices A , m n≥  
表 6. 满秩稀疏矩阵 A ， m n≥ 时的数值结果 

Name  Cities ash219 ash331 ash608 cage9 cage10 

RaBK 
IT 112488 846 814 1970 31,359 >105 

CPU 0.1753 0.0111 0.0138 0.0810 438.8697 -- 

FDBK 
IT 45593 46 30 50 356 290 

CPU 0.4229 4.7216e−04 3.6335e−04 7.6797e−04 0.0698 0.6507 

ADBK 
IT 67770 21 19 23 252 107 

CPU 0.1366 5.5380e−05 7.2638e−05 8.5800e−05 0.0140 0.0187 

gsmADBK 

IT 2084 12 11 13 52 37 

CPU 0.0045 3.2180e−05 3.3107e−05 5.5590e−05 0.0032 0.0063 

optM  0.9 0.2 0.2 0.3 0.7 0.7 

optβ  0.6 0.1 0.1 0.2 0.4 0.4 

speed-up_RaBK  38.96 344.93 416.83 1457.10 137146.78 -- 

speed-up_FDBK  93.98 14.67 10.98 13.81 21.81 103.29 

speed-up_ADBK  30.36 1.72 2.19 1.54 4.38 2.97 

 
Table 7. Numerical results for full-rank sparse matrices A , m n<  
表 7. 满秩稀疏矩阵 A ， m n< 时的数值结果 

Name  Trec8 crew1 bibd_17_8 model1 nemsafm flower_5_4 

RaBK 
IT 2303 7478 1293 11,357 2614 >105 

CPU 0.0046 2.0872 2.4240 1.5826 1.1650 -- 

FDBK 
IT 1333 808 257 646 136 3501 

CPU 0.0111 0.1113 2.5492 0.0136 0.0036 0.9751 

ADBK 
IT 1240 319 119 375 56 463 

CPU 0.0019 0.0182 0.0492 0.0021 0.0007 0.0515 
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续表 

gsmADBK 

IT 134 92 38 69 24 57 

CPU 0.0004 0.0055 0.0174 0.0004 0.0003 0.0063 

optM
 0.8 0.8 0.6 0.8 0.5 0.8 

optβ
 0.5 0.2 0.1 0.2 0.1 0.2 

speed-up_RaBK  11.50 379.49 139.31 3956.50 3883.33 -- 

speed-up_FDBK  27.75 20.24 146.51 34.00 12.00 154.78 

speed-up_ADBK  4.75 3.31 2.83 5.25 2.33 8.17 

 
由表 6 和表 7 的数值结果可以得出以下结论： 
1) RaBK、FDBK、ADBK 和 gsmADBK 方法求解满秩稀疏线性方程组 =Ax b 都是有效的。 
2) RaBK、FDBK、ADBK 和 gsmADBK 方法呈现出与表 1 和表 2 中类似的数值结果。在所有测试算

例求解中，gsmADBK 方法消耗的迭代步数和计算时间优于 RaBK、FDBK 和 ADBK 方法，speed-up_RaBK、

speed-up_FDBK、speed-up_ADBK 的取值范围分别为 11.50~137146.78、10.98~154.78、1.54~30.96，表明

添加动量后加速效果显著且优于传统方法。但搜索不同稀疏矩阵的最优参数是较为耗时的。 
 
Table 8. Numerical results of low-rank sparse matrices 
表 8. 秩亏稀疏矩阵的数值结果 

Name  relat5 relat6 rel5 rel6 Sandi_sandi flower_4_4 

FDBK 
IT 75 252 79 322 505 561 

CPU 0.0009 0.0122 0.0008 0.0117 0.0059 0.0481 

ADBK 
IT 58 84 70 192 353 147 

CPU 0.0002 0.0010 0.0002 0.0019 0.0011 0.0048 

gsmADBK 

IT 22 28 34 38 88 39 

CPU 6.6070e−05 0.0004 8.4310e−05 0.0004 0.0003 0.0014 

optM  0.4 0.6 0.4 0.7 0.8 0.6 

optβ  0.3 0.2 0.2 0.1 0.3 0.3 

speed-up_FDBK  13.62 30.50 9.49 29.25 19.67 34.36 

speed-up_ADBK  3.03 2.50 2.37 4.75 3.67 3.43 

 
由表 8 的数值结果可以得出以下结论： 
1) RaBK 方法无法有效求解病态秩亏稀疏线性方程组，问题在于秩亏系数矩阵使 RaBK 方法步长的

选择失效。其他 FDBK、ADBK 和 gsmADBK 方法都能够有效求解病态秩亏稀疏线性方程组。 
2) 在所有测试算例求解中，gsmADBK 方法消耗的迭代步数和计算时间优于 FDBK 和 ADBK 方法，

speed-up_FDBK、speed-up_ADBK 的取值范围分别为 9.49~34.36 和 2.37~4.75，表明添加动量加速效果显

著且优于传统方法。但搜索不同稀疏矩阵的最优参数是较为耗时的。 

5. 结论 

本文基于数值代数与随机优化等领域的理论知识，在自适应确定性块 Kaczmarz (ADBK)方法的基础
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上结合动量思想提出了基于几何平滑动量的自适应确定性块 Kaczmarz (gsmADBK)方法。将该方法应用

于超定、欠定及稀疏线性方程组的求解问题，数值实验结果表明该方法能够有效求解大规模相容线性方

程组并且引入动量项能够显著改善 ADBK 方法的收敛特性，在迭代次数、计算时间以及收敛速度方面

均取得提升。 
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