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摘  要 

锥特征值互补问题在工程与经济学中具有广泛应用，然而现有研究主要集中于对称锥情形。本文针对一

类非对称锥——椭圆锥，系统研究其平衡模型及相关的特征值互补问题。首先，基于椭圆锥与二阶锥之

间的转换关系和二阶锥的结构表示，将椭圆锥平衡模型转化为等价的非线性系统，进而分析其解的存在

条件与类型特征，包括平凡解、非平凡解、边界型解与内部型解的等价刻画。进一步，将所得理论推广

至圆锥与正椭圆锥两类非对称锥平衡模型。在应用方面，本文建立了椭圆锥特征值互补问题与二阶锥互

补问题之间的等价重构，将原问题转化为可借助半光滑牛顿法、邻近点算法等现有数值方法求解的形式。

本研究不仅统一并扩展了对称锥特征值互补问题的已有认识，也为非对称锥情形下的算法设计与数值实

现提供了理论支撑。 
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Abstract 
Eigenvalue complementarity problems over cones have wide applications in engineering and 

 

 

*通讯作者。 

https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2026.152071
https://doi.org/10.12677/aam.2026.152071
https://www.hanspub.org/


刘苗，卢越 
 

 

DOI: 10.12677/aam.2026.152071 303 应用数学进展 
 

economics, with most existing studies focusing on symmetric cones. This paper addresses a class of 
non-symmetric cones—ellipsoidal cones—and systematically investigates their equilibrium mod-
els and related eigenvalue complementarity problems. First, by exploiting the transformation rela-
tionship between ellipsoidal cones and second-order cones and the structured expression of sec-
ond-order cone, the ellipsoidal cone equilibrium model is reformulated into an equivalent nonlin-
ear system. Based on this, existence conditions and characterization of solutions are analyzed, in-
cluding trivial, non-trivial, boundary-type, and interior-type solutions. The theoretical results are 
further extended to circular cone and elliptic cone equilibrium models. In terms of applications, 
equivalent reformulations are established for ellipsoidal cone eigenvalue complementarity prob-
lems in terms of second-order cone complementarity problems, enabling the use of existing numer-
ical methods such as semismooth Newton and proximal point algorithms. This work not only unifies 
and extends known results on symmetric cone eigenvalue complementarity problems, but also pro-
vides a theoretical foundation for algorithm design and numerical implementation in the non-sym-
metric cone setting. 
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Reformulations 
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1. 引言 

锥特征值互补问题在工程与经济学领域中具有广泛的应用背景，涵盖结构动力学系统分析、振动声

学建模、电路仿真以及接触力学等多个重要方向[1]-[3]。目前，关于此问题的已有研究主要集中于对称锥

情形，包括帕累托锥[4]-[10]和二阶锥[11]-[14]。然而，在许多实际建模中，非对称锥的情形亦不可忽视。 
椭圆锥作为一类重要的非对称锥，其定义如下： 

 { }: : , 0, , 0 ,n
nx x Qx u x= ∈ ≤ ≥  (1.1) 

其中 n nQ ×∈ 为非奇异对称矩阵，具有 1n − 个正特征值和一个负特征值，该负特征值对应的特征向量记

为 n
nu ∈ ， ,⋅ ⋅ 表示定义在 n

 上的标准欧几里得内积。通过选取不同的Q 和 nu ，上述椭圆锥可以退化

为二阶锥、圆锥和正椭圆锥[15]。椭圆锥特征值互补问题具有下述形式： 

( )( ) *                                       ECEiCP , , , 0, , 1,A x Ax x x Ax x a xλ λ∈ − ∈ − = =    

( )( ) 2 * 2              ECQEiCP , , , , , 0, , 1,A B C x Ax Bx Cx x Ax Bx Cx a xλ λ λ λ∈ + + ∈ + + = =    

其中 , , n nA B C ×∈ 是给定矩阵， *inta∈  ， , 1a x〈 〉 = 是用于避免平凡解的正则化条件， *
 表示椭圆锥的

对偶锥，即 

{ }* : : , 0, .ny x y x= ∈ ≥ ∀ ∈    

基于椭圆锥与二阶锥、圆锥和正椭圆锥的关系 (见下文式 (2.4))，对于问题 ( )ECEiCP A 和

( )ECQEiCP , ,A B C 的讨论一方面可以统一关于二阶锥特征值互补问题、圆锥特征值互补问题和正椭圆锥

特征值互补问题的认识；另一方面可以将锥特征值互补问题的研究扩展至非对称锥领域。关于上述问题
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的可解性，由于文献[16]-[18]已对一般情况下的锥特征值互补问题进行了系统研究，所得结果自然可以涵

盖问题 ( )ECEiCP A 和 ( )ECQEiCP , ,A B C 这两类模型，因此本文重点讨论上述两类模型的等价重构，以便

于使用已有算法包求解。进一步，通过引入附加变量，不难发现上述两类模型可以归结为下面一类椭圆

锥平衡模型： 

 ( ) ( )*, , 0, , ,,, ,n mx y x y f x y g xλ∈ ∈ = = =   0 0  (1.2) 

其中 , nx y∈ 分别称为原始变量和对偶变量， ( )1
T

, , p
pλ λ λ= ∈  为外生变量， 2: p nnf + → ，

: n mg →  ， d0 是 d 维零向量。非线性系统(1.2)中最后一个方程通常表示对原始变量的正则化条件或结

构约束。 
本文旨在讨论上述椭圆锥平衡模型，重点分析其解的存在条件和类型特征，并建立椭圆锥特征值互

补问题 ( )ECEiCP A 和 ( )ECQEiCP , ,A B C 的等价重构，以期为相关问题的算法研究提供理论支持。 

2. 预备知识 

本节将回顾关于椭圆锥的基本背景知识，包括椭圆锥的内部与边界、对称矩阵Q 的正交分解以及后

续分析中用到的一个技术性引理，更多细节见文献[15]。 
根据式(1.1)椭圆锥的定义，其内部与边界为 

 { }T Tint : : 0, 0 ,n
nx x Qx u x= ∈ < >  (2.1) 

 { } { }T Tbd : : 0, 0 0 .n
nx x Qx u x= ∈ = > ∪  (2.2) 

考虑对称矩阵 n nQ ×∈ 具有下述正交分解 

T T

1
,

n

i i i
i

Q U U u uλ
=

= Λ =∑  

其中正交矩阵 [ ]1 2 1: , , , ,n nU u u u u−=  ，对角矩阵 [ ]1 1: diag , , ,n nλ λ λ−Λ =  ，Q 的特征对 ( ),i iuλ 满足 

 T
1 2 1

1,  
0  .

0,  
,n n i j

i j
u u

i j
λ λ λ λ−

=
≥ ≥ ≥ > > =  ≠

  (2.3) 

作为一个基本闭凸锥，椭圆锥  推广了若干重要锥体，包括二阶锥[19] [20]、圆锥[21] [22]及正椭圆

锥[23]，它们可以通过设置不同的Q 和 nu 获得： 

(1) 当 1 0
0 1
nI

Q − 
=  − 

且 n nu e= 时，  退化为二阶锥 ( ){ }1: , :n n
n nx x x x−= ∈ × ≤  ； 

(2) 当 1
2

0
0 tan
nI

Q
θ

− 
=  − 

且 n nu e= 时，  退化为圆锥 ( ){ }1: , : tann
n nx x x xθ θ−= ∈ × ≤  ； 

(3) 当
0

0 1

TM M
Q

 
=  

− 
且 n nu e= 时，  退化为正椭圆锥 ( ){ }1: , :n n

M n nx x Mx x−= ∈ × ≤  ， 

上述锥满足以下包含关系[15]： 

 ,n n n
Mθ⊆ ⊆ ⊆ ⊆      (2.4) 

其中 ( )T0,0, ,1ne =  ， x 表示 1nx −∈ 的欧几里得范数， ( )0, 2θ ∈ π 以及 ( ) ( )1 1n nM − × −∈ 是非奇异矩阵。 

下述引理刻画了椭圆锥与二阶锥之间的转换关系，该引理的证明可以参见文献[15]中的定理 2.1 和定

理 2.2。 
引理 2.1 设  和 n 分别为椭圆锥和二阶锥，其定义如上所述。则下面结论成立： 
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(1) nT=  且 1n T −=   ； 

(2) ( ) 1* T nT
−

=  且 T *n T=   ； 

(3) { }* T 1 T: 0, 0n
ny y Q y u y−= ∈ ≤ ≥ ， 

其中 :T UD= ， ( ) 1 21 2 1 2
1 1: diag , , ,n nD λ λ λ −− −

−
 = −  ，Q 的特征对 ( ),i iuλ 满足条件(2.3)。 

3. 椭圆锥平衡模型 

3.1. 模型转化 

为了进一步研究椭圆锥平衡模型(1.2)，需要对该模型进行转化。文献[24]指出，二阶锥可以表示为

{ }:n nu u u= ∈  ，其中 是 n
 上的二元运算，定义如下： 

:
,

r s
u v

rs
η ξ
ξ η

+ 
=  + 


， 

其中 u
r
ξ 

=  
 

， v
s
η 

=  
 

， 1, nξ η −∈ 且 ,r s∈，因此有 

 [ ] [ ]2 2
2 22 2

2
: : .

2
,n n

r s
u u u v v v

r s

ξ η

ξ η

   
= = ∈ = = ∈   

+ +      
    (3.1) 

根据引理 2.1， [ ]2Tu ∈  和 ( ) [ ]1 2T *T v
−

∈  。不妨设 [ ]2x Tu= ， ( ) [ ]1 2Ty T v
−

= ，即 x∈  和 *y∈  。基

于上述观察，椭圆锥平衡模型(1.2)可以重述为 

 [ ] ( ) [ ] [ ] ( ) [ ]( ) [ ]( )1 12 2 2 2 2T T, 0, , , ,, mnTu T v f Tu T v g Tuλ
− −

= = =0 0  (3.2) 

又因为 

[ ] ( ) [ ] [ ] [ ]12 2 2 2T, , ,Tu T v u v
−

=  

进一步，非线性系统(3.2)等价于 

 [ ] [ ] [ ] ( ) [ ]( ) [ ]( )12 2 2 2 2T, 0, , , , .n mu v f Tu T v g Tuλ
−

= = =0 0  (3.3) 

3.2. 平凡解与非平凡解 

定义 3.1 称椭圆锥平衡模型(1.2)的解 ( ), ,x y λ 是平凡的，如果 nx = 0 ；否则，它是非平凡的。 
为了保证椭圆锥平衡模型(1.2)的平凡解是有意义的，基于其等价刻画(3.3)的描述，需要在 ( )n mg =0 0

或函数 g 完全缺失的情况下进行讨论。由于平凡解 x 的分量必须为零，且 [ ]2x Tu= ，这意味着 [ ]2
nu = 0 ，

非线性系统(3.3)退化为 

( ) 1T
2 2

.
2

, ,n n

s
f T

s

η
λ

η
−  

  =  +   
0 0  

对于非平凡解情况，我们首先假设 

 ( ) .n mg ≠0 0  (3.4) 

这意味着 [ ]2 0u ≠ ，从而 [ ]2
nx Tu= ≠ 0 ，这确保(1.2)的每个解都是非平凡的。 
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引理 3.1 设 [ ]2x Tu= ， ( ) [ ]1 2Ty T v
−

= ，其中 [ ] [ ]2 2,u v 如式(3.1)定义。假设(3.4)成立，当且仅当出现以下

情况之一时，三元组 ( ), ,x y λ 是椭圆锥平衡模型(1.2)的解。 

(1) 0r ≠ 且 ( ), , , ,r sξ η λ 是下述系统的解： 

 ( )
( )

0
, 0

, , , ,
,

n

m

s r
rs

F r s
G r

ξ η
ξ η
ξ η λ
ξ

+ =
 + =
 =
 =

0
0

 (3.5) 

其中 

( ) ( ) ( )
1T

2 2 22 2 2

2 2 2
, , , , , , ,  , .

r s r
F r s f T T G r g T

r s r

ξ η ξ
ξ η λ λ ξ

ξ η ξ
−        

   = =        + + +             
 

(2) 10, 0  ,nr sη −= = =0 ，且 ( ),ξ λ 满足 

 
1 1
2 2, , , .

n n
n n mf T g Tλ

ξ ξ
− −      

   = =               

0 0
0 0 0  (3.6) 

证明 正交条件 [ ] [ ]2 2, 0u v = 等价于 

( )( )2 22 24 , 0,rs r sξ η ξ η+ + + =  

即 

( )22 2 2 2, , 0.r s rsη ξ ξ η ξ η ξ η+ + + + − =  

根据柯西–施瓦茨不等式，上式等价于 

 2 2 2, 0,ξ η ξ η− =  (3.7) 

 0,r sη ξ+ =  (3.8) 

 , 0.rsξ η + =  (3.9) 

因此， ( ), ,x y λ 是椭圆锥平衡模型(1.2)的解当且仅当 ( ), , , ,r sξ η λ 满足(3.7)~(3.9)和 

( )
( )

, , , ,
,

n

m

F r s
G r

ξ η λ
ξ

 =
 =

0
0

 

对于 r 值有下述两种不同的情况： 
(1) 若 0r ≠ ，由式(3.8)可以推出 s rη ξ= − ，这能够使式(3.7)成立。基于上述分析，( ), ,x y λ 是椭圆锥

平衡模型(1.2)的解当且仅当 ( ), , , ,r sξ η λ 是系统(3.5)的解。 
(2) 若 0r = ，由假设(3.4)可以推出 0ξ ≠ ，从而式(3.7)~(3.9)等价于 1, 0 n sη −= =0 。基于上述分析，

( ), ,x y λ 是椭圆锥平衡模型(1.2)的解当且仅当 ( ), , , ,r sξ η λ 是系统(3.6)的解。 
基于引理 2.1 及椭圆锥与圆锥和正椭圆锥的关系，类似得到关于圆锥平衡模型和正椭圆锥平衡模型

非平凡解的相关推论。 
推论 3.1 考虑下述圆锥平衡模型 

 ( ) ( ), , 0, , ,,  ,n mx y x y f x y g xθ θ θ θλ∗∈ ∈ = = =0 0  ,  (3.10) 
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其中 2: n npfθ
+ →  ， : n mgθ →  ， d0 是 d 维零向量。在假设 ( )n mgθ ≠0 0 的前提下，当且仅当出现以下

情况之一时，三元组 ( ), ,x y λ 是圆锥平衡模型(3.10)的解。 
(1) 0r ≠ 且 ( ), , , ,r sξ η λ 是系统(3.5)的解，此时 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 22 22 2 2 2

1 2 22 2

2 2
, , , , , , ,

tan tan

2
, .

tan

r s
F r s f

r s

r
G r g

r

θ

θ

ξ η
ξ η λ λ

θ ξ θ η

ξ
ξ

θ ξ

−

−

    
    =
 + +       

  
  =
 +   

 

(2) 10, 0  ,nr sη −= = =0 ，且 ( ),ξ λ 满足 

 
( ) ( )

1 1
1 2 1 22 22 2

, ,
tan n

,
ta

.
n n

n n mf gθ θλ
θ ξ θ ξ

− −

− −

      
      = =
            

0 0
0 0 0  (3.11) 

推论 3.2 考虑下述正椭圆锥平衡模型 

 ( ) ( ) ( ), , 0, , ,,  ,n n
M M M n M mx y x y f x y g xλ

∗
∈ ∈ = = =,  0 0  (3.12) 

其中 2: n np
Mf

+ →  ， : n m
Mg →  ， d0 是 d 维零向量。在假设 ( )nM mg ≠0 0 的前提下，当且仅当出现以

下情况之一时，三元组 ( ), ,x y λ 是正椭圆锥平衡模型(3.12)的解。 
(1) 0r ≠ 且 ( ), , , ,r sξ η λ 是系统(3.5)的解，此时 

( ) ( )
1

2 222 22

2 22
, , , , , , ,  , ,M M

UDr UDrUD s
F r s f G r g

r rs

ξ ξη
ξ η λ λ ξ

ξ ξη

−       
   = =    

  + ++           

    

 

其中U 为 1n − 阶矩阵 TM M 特征值分解中的正交矩阵， D 是对应的 1n − 阶对角矩阵，它具有下述形式 
1 2 1 2

1 1: diag , , .nD λ λ− −
− =  




 

(2) 10, 0  ,nr sη −= = =0 ，且 ( ),ξ λ 满足 

 
1 1
2 2, , , .

n n
M n n M mf gλ

ξ ξ
− −      

   = =               

0 0
0 0 0  (3.13) 

3.3. 边界型解与内部型解 

本节讨论椭圆锥平衡模型(1.2)的边界型解与内部型解的分类。 
定义 3.2 称椭圆锥平衡模型(1.2)的解 ( ), ,x y λ 是边界型(内部型)的，如果它是非平凡的且 x 属于  的

边界(内部)。 
为了给出椭圆锥平衡模型(1.2)的边界型解与内部型解的等价描述，我们需要证明下述结论。 
定理 3.1 假设(3.4)成立，当且仅当出现以下情况之一时，三元组 ( ), ,x y λ 是椭圆锥平衡模型(1.2)的解。 

(1) 1
2

n
x T

ξ
− 

=  
  

0
， ny = 0 ， ( ),ξ λ 是系统(3.6)的解。 

(2) 2

1
2x r T

ω 
=  

 
， ( ) 12 T

1
2s Ty

ω− −
=

 
 
 

， ( ), , ,r sω λ 是下述系统的解 
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( )
( )

bd

bd
2

, , ,
,

1 0

n

m

r s
r

ω λ
ω

ω

 =
 =


− =




0
0  (3.14) 

其中 

( ) ( ) ( )
12 2 T 2

bd bd, , , 2 , 2 , , ,
1 1 1

2r s f r T s T r g r T
ω ω ω

ω λ λ ω
− −        

= =        
        

   

(3) 2
21

2
x r T

ω

ω

 
=  

 +  
， ny = 0 ， ( ), ,rω λ 是下述系统的解 

 ( )
( )

, ,
,

n

m

r
r

ω λ
ω

 =
 =




0
0

 (3.15) 

其中 

( ) ( ) 2
2

2
2

2 2
, , , , , , .

1 1nr f r T r g r T
ω ω

ω λ λ ω
ω ω

      
   = =              + + 

 0  

证明 设 [ ]2x Tu= ， ( ) [ ]1 2Ty T v
−

= ，其中变量 [ ] [ ]2 2,u v 如式(3.1)定义。由 0r ≠ 和式(3.8)，可以推出

s rη ξ= − 。令 rω ξ= ，则有 sη ω= − ，因此可以得到 

 [ ] [ ]
2

2
2

22 2  
2 2

1 1
, ,u r v s

ω ω

ω ω

−   
= =   

      + +
 (3.16) 

以及 ( ) ( )2, , 1 , 1 0rs rs r s rs rs rsξ η ξ η ω ω ω+ = + = − = − = 。由于 0r ≠ ，可得 ( )21 0s ω− = ，其

中 ( ), , ,r sω λ 是下述系统的解： 

 ( )21 0,s ω− =  (3.17) 

 ( ) 2
2 2 T

2

12 2
, , ,

1 1 nf r T s T
ω ω

λ
ω ω

− −   
  =           + +

0  (3.18) 

 2
2 .

1

2
mg r T

ω

ω

  
  =     +

0  (3.19) 

注意等式(3.17)成立的条件是 1ω = 或 0s = 。下面分类讨论： 
(1) 若 1ω = ，将其代入(3.16)和(3.18)~(3.19)，可以得到情况(2)成立。 
(2) 若 0s = ，将其代入(3.16)和(3.18)~(3.19)，可以得到情况(3)成立。 
另外，如果 0r = ，由引理 3.1 的第 2 部分结论，可以得到情况(1)成立。 
基于定理 3.1 及椭圆锥与圆锥和正椭圆锥的关系，关于非线性系统(3.10)和(3.12)可以得到下述推论。 
推论 3.3 考虑圆锥平衡模型(3.10)，假设 ( )n mgθ ≠0 0 成立，当且仅当出现以下情况之一时，三元组

( ), ,x y λ 是圆锥平衡模型(3.10)的解。 

(1) ( )
1
1 2 22tan

n
x

θ ξ

−

−

 
 =
  

0
， ny = 0 ， ( ),ξ λ 是系统(3.11)的解。 
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(2) ( )
2

1 22
2

tan
x r

ω

θ
−

 
 =
  

， ( )
2

1 22
2

tan
sy

ω

θ

− 
 
 

=

， ( ), , ,r sω λ 是系统(3.14)的解，此时 

( ) ( ) ( ) ( ) ( )
2 2 2

1 2 1 2 1 2bd bd2 2 2
, , , 2 , 2 , , , 2 .

tan tan tan
r s f r s r g rθ θ

ω ω ω
ω λ λ ω

θ θ θ
− −

   −     
        = =
                

   

(3) ( ) ( )
2

1 22 21

2

tan
x r

ω

θ ω
−

 



+

=
 

， ny = 0 ， ( ), ,rω λ 是系统(3.15)的解，此时 

( ) ( ) ( ) ( ) ( ) ( )2 2
2 2

1 2 1 22 2

2 2
, , , , , , .

tan t1 1annr f r r g rθ θ

ω ω
ω λ λ ω

θ ω θ ω
− −

      
      = =
           

+ +


 0  

推论 3.4 考虑正椭圆锥平衡模型(3.12)，假设 ( )nM mg ≠0 0 成立，当且仅当出现以下情况之一时，三

元组 ( ), ,x y λ 是正椭圆锥平衡模型(3.12)的解。 

(1) 1
2

n
x

ξ
− 

=  
  

0
， ny = 0 ， ( ),ξ λ 是系统(3.13)的解。 

(2) 2

1
2

UD
x r

ω 
=  

 

 

，
1

22
1
D

sy
U ω− −

 
 

=
 

， ( ), , ,r sω λ 是系统(3.14)的解，此时 

( ) ( )
1

2 2 2
bd bd, , , 2 , 2 , , , 2 .

1 11M M
UD UDUD

r s f r s r g r
ω ωω

ω λ λ ω
−       −

= =                

    

   

(3) 2
2

2

1

UD
x r

ω

ω+

 
=  

  

 

， ny = 0 ， ( ), ,rω λ 是系统(3.15)的解，此时 

( ) ( ) 2
2

2
2

1 1

2 2
, , , , , , .M n M

UD UD
r f r r g r

ω ω
ω λ λ ω

ω ω

      
   = =   
          + +

   

 0  

本节最后给出关于椭圆锥平衡模型解的完整分类，下述定理的主要价值在于为解的类型提供了清晰

的特征描述。 
定理 3.2 假设(3.4)成立，则有如下结论成立： 
(1) ( ), ,x y λ 是椭圆锥平衡模型(1.2)的边界型解当且仅当定理 3.1 中的情况(2)出现。 
(2) ( ), ,x y λ 是椭圆锥平衡模型(1.2)的内部型解当且仅当定理 3.1 中的情况(1)或(3)出现且 1ω ≠ 。 

证明 (1) 如果定理 3.1 中的情况(2)出现，有 0r ≠ 且 2

1
2x r T

ω 
=  

 
，于是 

( )

4
T T

T T T T

T
214

4

4

4 4
1 1 1 1

0
4 4 1 0

1 0 1 1
n

x Qx r T QT r DU U U UD

I
r r

ω ω ω ω

ω ω
ω−

       
= = Λ       

       

     
= = − =     −     

 

这是由于(3.14)中的最后一个方程，并且 ( )T 1 2T 2 T 22 2 0
1n n nU Uu x Dr e r
ω

λ − 
−


== >


，满足式(2.2)，那么

( ), ,x y λ 是椭圆锥平衡模型(1.2)的边界型解。 
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反之，假设 ( ), ,x y λ 是椭圆锥平衡模型(1.2)的一个边界型的解， [ ] [ ]2 2,u v 如(3.1)定义，则有 0r ≠ 。这是

因为如果 0r = ，则有
1
2

n
x T

ξ
− 

=  
  

0
，此时， 

 ( )
T T

1 1 1 1 1 2 21T T T
2 2 2

4
2

0
0, 0

0 1
.

n n n nn
n n

I
x Qx T QT u xξ λ ξ

ξ ξ ξ ξ
− − − − −−

        
= = = − = −        −             

<
 

>
0 0 0 0

 (3.20) 

由式(2.1)，有 intx∈  ，这与定义 3.2 矛盾。因此，可以如(3.16)中那样重写 [ ] [ ]2 2,u v 。由于 bdx∈ 

且 0r ≠ ，可以推断出 

2
2

1

2
bd ,r T

ω

ω

 
∈ 

  +   

但这等价于说
22 1ω ω= + ，即 1ω = 。基于上述讨论，可以得到定理 3.1 中的情况(2)成立。 

(2) 如果定理 3.1 中的情况(1)出现，此时 0r = ，由式(3.20)可知，
1
2 int

n
x T

ξ
− 

= ∈ 
  


0

。如果定理 3.1

中的情况(3)出现且 1ω ≠ ， 2
2

2

1
bdx r T

ω

ω

 
= ∉ 

  +  ，则 2
2

2
i

1
ntx r T

ω

ω

 
= ∈ 

  +  。 

反之，设 ( ), ,x y λ 是椭圆锥平衡模型(1.2)的一个内部型的解，可以排除定理 3.1 中的情况(2)。因此，

要么情况(1)成立，要么情况(3)成立，且必有 1ω ≠ 。  
基于定理 3.2、推论 3.3 和推论 3.4，下面推论给出了圆锥平衡模型(3.10)和正椭圆锥平衡模型(3.12)的

边界型解和内部型解的等价刻画。 
推论 3.5 考虑圆锥平衡模型(3.10)，假设 ( )n mgθ ≠0 0 成立，则有如下结论成立： 
(1) ( ), ,x y λ 是圆锥平衡模型(3.10)的边界型解当且仅当推论 3.3 中的情况(2)出现。 
(2) ( ), ,x y λ 是圆锥平衡模型(3.10)的内部型解当且仅当推论 3.3 中的情况(1)或(3)出现且 1ω ≠ 。 
推论 3.6 考虑正椭圆锥平衡模型(3.12)，假设 ( )nM mg ≠0 0 成立，则有如下结论成立： 
(1) ( ), ,x y λ 是正椭圆锥平衡模型(3.12)的边界型解当且仅当推论 3.4 中的情况(2)出现。 
(2) ( ), ,x y λ 是正椭圆锥平衡模型(3.12)的内部型解当且仅当推论 3.4 中的情况(1)或(3)出现且 1ω ≠ 。 

4. 椭圆锥特征值互补问题的等价重构 

本节将建立椭圆锥特征值互补问题 ( )ECEiCP A 和 ( )ECQEiCP , ,A B C 的等价重构。 
根据引理 2.1，存在 , nx y∈   和 int na∈  使得 ( )ECEiCP A 和 ( )ECQEiCP , ,A B C 可以转化为 

 ( )T, , , 0, , 1;n n
nx y DU A I UDx x y a xλ∈ = − ∈ = =         (4.1) 

 ( )T 2, , , 0, , 1,n nx y DU A B C UDx x y a xλ λ∈ = + + ∈ = =         (4.2) 

其中 , n nU D ×∈ 的定义与引理 2.1 中一致。不难发现，系统(4.1)和(4.2)均为带有二阶锥互补约束的非线性

系统，因此可以考虑将它们重述为非线性二阶锥互补问题 ( )( )NSOCCP F  

( ) ( ), , , 0n nx F x x F x∈ ∈ =      

和二阶锥线性互补问题 ( )( )SOCLCP ,M q  

, , , 0,n nx x q xM Mx q∈ + ∈ + =      
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其中 : n nF →  是连续可微映射，向量 nq∈ ，矩阵 n nM ×∈ 。 
首先，我们考虑下述二阶锥线性互补问题 ( )SOCLCP ,0DAD  

 ( )T, , 0,n nx DADx x DADx∈ ∈ = 

      (4.3) 

其中 T:A U AU= 。对于 ( ), nx λ ∈ ×
 ，定义函数 1F 和 2F 具有下述形式 

 ( ) ( )T
1

2, : , 1 ,F x DADx D x a xλ λ= − −

      (4.4) 

 ( ) ( )T
2

2, : , 1 .F x DADx D x a xλ λ= + −

      (4.5) 

对应函数 1F 和 2F 的非线性二阶锥互补问题定义如下： 

 ( )
( ) ( )

T

2

T 2 T
1

0, 1 0,
, ,NSOCCP :

1 0,

n n

a x
x DADx D xF
x DADx D x a x

λ
λ

λ λ

 ≥ − ≥
 ∈ − ∈
 − + − =

 



  



    

   (4.6) 

 ( )
( ) ( )

T

2

T 2 T
2

0, 1 0,
, ,NSOCCP :

1 0.

n n

a x
x DADx D xF
x DADx D x a x

λ
λ

λ λ

 ≥ − ≥
 ∈ + ∈
 + + − =

 



  



    

   (4.7) 

下一个定理总结了椭圆锥特征值互补问题(4.1)与非线性二阶锥互补问题(4.6)、(4.7)及二阶锥线性互

补问题(4.3)之间的关系。 
定理 4.1 设 1F 和 2F 的定义如(4.4)和(4.5)所示。则有下述结论成立： 
(1) 若 ( )* *,x λ 是模型(4.1)的解且 * 0λ > ，则 ( )* *,x λ 是模型(4.6)的解。 

(2) 若 ( )* *,x λ 是模型(4.1)的解且 * 0λ < ，则 ( )* *,x λ− 是模型(4.7)的解。 

(3) 若 ( )* *,x λ 是模型(4.1)的解且 * 0λ = ，则 ( )*,0x 是模型(4.3)的解。 

(4) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.6)的解，则 ( )* *,x λ 是模型(4.1)的解。 

(5) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.7)的解，则 ( )* *,x λ− 是模型(4.1)的解。 

(6) 若 *x 是模型(4.3)的解且 * 0x ≠ ，则 ( )* T * ,0x a x   是模型(4.1)的解。 

证明 若 ( )* *,x λ 是模型(4.1)的解，则有 

( ) ( ) ( )* * * * * * * 2 *
1 2, , , ,0 .n nx F x F x DADx D xλ λ λ +∈ = − = − ∈ ×

    
   

(1) 若 * 0λ > ，则 ( )* *, nx λ +∈ ×
 ， ( )* *

1 , nF x λ +∈ ×
 且 

( ) ( ) ( ) ( ) ( )T* * * * * * * 2
1

* * T *, , 1 0.x F x x DADx D x a xλ λ λ λ⋅ = − + − =

        

这说明 ( )* *,x λ 是模型(4.6)的解。 
(2) 若 * 0λ < ，则 ( )* *, nx λ +− ∈ ×

 ， ( )*
2

*, nF x λ +− ∈ ×
 且 

( ) ( ) ( ) ( ) ( )T* * * * * * * 2 * * T
2

*, , 1 0.x F x x DADx D x a xλ λ λ λ− ⋅ − = − − − =

        

因此， ( )* *,x λ− 是模型(4.7)的解。 

(3) 若 * 0λ = ，则 ( ) ( )* * *, ,0 nx xλ += ∈ × 
 ， * * 2 * * nDADx D x DADxλ− = ∈ 

    且 ( ) ( )T* * 0x DADx =

  。因
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此， ( )*,0x 是模型(4.3)的解。 

(4) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.6)的解，则有 

( ) ( ) ( )

* T *

* * * 2 *

T* * * 2 * * T *

0, 1 0,
, ,

1 0.

n n

a x
x DADx D x

x DADx D x a x

λ
λ

λ λ

 > − ≥
 ∈ − ∈
 − + − =

 



  



    

   

对任意 ( ) ( )1 2 1 2,: , : ,n nx x x y y y= ∈ = ∈  ，由 n 的定义和柯西-施瓦茨不等式可得 

 T T
1 1 2 2 1 1 2 2 1 1 1 1 0.x y x y x y x y x y x y x y= + ≥ − ≥ − =  (4.8) 

由(4.8)可得， ( ) ( )T* * * 2 * 0x DADx D xλ− ≥

   且 T * 1 0a x − = 。因此， ( )* *,x λ 是模型(4.1)的解。 

(5) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.7)的解，则有 
* *

* * * 2 *

* * * 2 * * *

0, 1 0,
, ,

( ) ( ) ( 1) 0.

T

n n

T T

a x
x DADx D x
x DADx D x a x

λ
λ

λ λ

 > − ≥


∈ + ∈
 + + − =

 



  



    

   

由(4.8)可得， ( ) ( )T* * * 2 * 0x DADx D xλ+ ≥

   且 T * 1 0a x − =  。因此， ( )* *,x λ− 是模型(4.1)的解。 

(6) 若 *x 是模型(4.3)的解且 * 0x ≠ ，则 ( )* T * ,0x a x   是模型(4.1)的解。 
接下来，为了重新表述模型(4.2)，需要定义其他函数。对于 ( ), nx λ ∈ ×

 ，定义函数 3F 和 4F 如下： 

 ( ) ( )T
3

2, , 1 ,F x DADx DBDx DCDx a xλ λ λ= + + − 

       (4.9) 

 ( ) ( )T
4

2, , 1 ,F x DADx DBDx DCDx a xλ λ λ= − + − 

       (4.10) 

其中 T T T: , : , :A U AU B U BU C U CU= = =  。考虑对应函数 3F 和 4F 的非线性二阶锥互补问题 

 ( )
( ) ( )

3

T

2

T 2 T

0, 1 0,
, ,NSOCCP :

1 0,

n n

a x
x DADx DBDx DCDxF
x DADx DBDx DCDx a x

λ
λ λ

λ λ λ

 ≥ − ≥
 ∈ + + ∈
 + + + − =

 

 

   

 

     

   (4.11) 

 ( )
( ) ( )

4

T

2

T 2 T

0, 1 0,
, ,NSOCCP :

1 0,

n n

a x
x DADx DBDx DCDxF
x DADx DBDx DCDx a x

λ
λ λ

λ λ λ

 ≥ − ≥
 ∈ − + ∈
 − + + − =

 

 

   

 

     

   (4.12) 

以及下述二阶锥线性互补问题 ( )SOCLCP ,0DCD  

 ( )T, , 0.n nx DCDx x DCDx∈ ∈ = 

      (4.13) 

下述定理总结了椭圆锥特征值互补问题(4.2)与非线性二阶锥互补问题(4.11)、(4.12)及二阶锥线性互

补问题(4.13)之间的关系。 
定理 4.2 设 3F 和 4F 的定义如(4.9)和(4.10)所示。则有下述结论成立： 
(1) 若 ( )* *,x λ 是模型(4.2)的解且 * 0λ > ，则 ( )* *,x λ 是模型(4.11)的解。 
(2) 若 ( )* *,x λ 是模型(4.2)的解且 * 0λ < ，则 ( )* *,x λ− 是模型(4.12)的解。 
(3) 若 ( )* *,x λ 是模型(4.2)的解且 * 0λ = ，则 ( )*,0x 是模型(4.13)的解。 
(4) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.11)的解，则 ( )* *,x λ 是模型(4.2)的解。 
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(5) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.12)的解，则 ( )* *,x λ− 是模型(4.2)的解。 
(6) 若 *x 是模型(4.13)的解且 * 0x ≠ ，则 ( )* T * ,0x a x   是模型(4.2)的解。 
证明 该定理的证明与定理 4.1 的证明非常相似。但为了完整性，我们给出详细证明过程。若 ( )* *,x λ

是模型(4.2)的解，则有 

( ) ( ) ( )( )3 4

2* * * * * * * * * *, , , ,0 .n nx F x F x DADx DBDx DCDxλ λ λ λ +∈ = − = + + ∈ × 

     
   

(1) 若 * 0λ > ，则 ( )* *, nx λ +∈ ×
 ， ( )* *

3 , nF x λ +∈ ×
 且 

( ) ( ) ( ) ( ) ( )T 2* * * * * * * * * * * T *
3, , 1 0.x F x x DADx DBDx DCDx a xλ λ λ λ λ⋅ =  

  
+ + + − = 

         

因此， ( )* *,x λ 是模型(4.11)的解。 
(2) 若 * 0λ < ，则 ( )* *, nx λ +− ∈ ×

 ， ( )*
4

*, nF x λ +− ∈ ×
 且 

( ) ( ) ( ) ( ) ( )T 2* * * * * * * * * * * T
4

*, , 1 0.x F x x DADx DBDx DCDx a xλ λ λ λ λ 
  

− ⋅ − = + + − − = 

         

因此， ( )* *,x λ− 是模型(4.12)的解。 

(3) 若 * 0λ = ， 则 ( ) ( )* * *, ,0 nx xλ += ∈ × 
 ， ( )2* * * * * * nDADx DBDx DCDx DCDxλ λ+ + ∈=  

     且

( )T* * 0x DCDx =

 。因此， ( )*,0x 是模型(4.13)的解。 

(4) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.11)的解，则有 

( )
( ) ( ) ( )

* T *

2* * * * * *

T 2* * * * * * * T *

0, 1 0,

, ,

1 0.

n n

a x

x DADx DBDx DCDx

x DADx DBDx DCDx a x

λ

λ λ

λ λ λ

 > − ≥

 ∈ + + ∈
  + + + − =   

 

 

   

 

     

   

由(4.8)可得，( ) ( )T 2* * * * * * 0x DADx DBDx DCDxλ λ 
  

+ + ≥ 

    且 T * 1 0a x − =  。 因此，( )* *,x λ 是模型(4.2)

的解。 
(5) 若 * 0λ ≠ 且 ( )* *,x λ 是模型(4.12)的解，则有 

( ) ( )
( ) ( ) ( ) ( )

* T *

2* * * * * *

T 2* * * * * * * T *

0, 1 0,

, ,

1 0.

n n

a x

x DADx DBDx DCDx

x DADx DBDx DCDx a x

λ

λ λ

λ λ λ

 > − ≥

 ∈ − + − + ∈
  − + − + + − =   

 

 

   

 

     

   

由(4.8)可得，( ) ( ) ( )T 2* * * * * * 0x DADx DBDx DCDxλ λ− + − 
 

+ ≥


 

    且 T * 1 0a x − =  。因此，( )* *,x λ− 是模型

(4.2)的解。 
(6) 若 *x 是模型(4.13)的解且 * 0x ≠ ，则 ( )* T * ,0x a x   是模型(4.2)的解。 

5. 数值实验 

本节中将采用半光滑牛顿法求解转化后的椭圆锥特征值互补问题(4.1)，即求解非线性二阶锥互补问

题(4.6)、(4.7)及二阶锥线性互补问题(4.3)。回想一下，若映射 : n n nφ × →   满足如下等价关系： 

( ), 0 , , , 0,n nx y x y x yφ = ⇔ ∈ ∈ =        

则称其为与 n 相关的互补函数。自然残差函数是一类常见的二阶锥互补函数，它的定义如下： 
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( ) ( )NR , : , nx y x x y x yφ
+

= − − ∀ ∈      
  

文献[25]已证明该函数具有全局 Lipschitz 连续性和强半光滑性。利用二阶锥互补函数 NRφ ，我们可以

将系统(4.3)、(4.6)及(4.7)重新表述为下述方程组 

 ( ) ( )
( )NR

1 1

,
, : 0,

, 1

x y
x y DADx y

a x

φ
ψ ω ψ

 
 = = − = 
 − 

 



   

 

 (5.1) 

 ( ) ( )
( )

( )
NR

2 2 1

,
, , : , 0,

, 1

x y
x y F x y

a x

φ
ψ ω ψ λ λ

 
 = = − = 
 − 

 

   

 

 (5.2) 

( ) ( )
( )

( )
NR

3 3 2

,
, , : , 0.

, 1

x y
x y F x y

a x

φ
ψ ω ψ λ λ

 
 = = − = 
 − 

 

   

 

 

其中 , 1 0a x − =  是用于避免平凡解的正则化条件，这里取 n
na e= ∈  。另外，由于函数 1F 和 2F 的结构极

其相似，只是关于 λ 的符号发生了改变，因此，我们这里仅展示对系统(5.1)和(5.2)应用半光滑牛顿法进行

数值实验的结果。所有数值实验代码采用 MATLAB 语言编写，实验环境配置 Intel(R) Core(TM) Ultra 5 
125H 3.60 GHz 和 32.0 GB 内存。 

在数值实验中，设置 ( ) 2, 1 1,2, , 1 , tann i nU I i nλ λ θ= = = − = − ，此时椭圆锥退化为圆锥，A A= 。对

于系统(5.1)，设置初始点 ( )00 0,x yω =   ，其中 ( )0 0 0 0
1 2, , , nx x x x=   

 ，每个元素 0
ix 在区间 [ ]1,1− 内均匀分布，

0 0y DADx= 

  。对于系统(5.2)，设置初始点 ( )00 0 0, ,x yω λ=   ，其中 ( )0 0 0 0
1 2, , , nx x x x=   

 ，每个元素 0
ix 在区间

[ ]1,1− 内均匀分布， 

0 0
0 0 0 0 2 0

2 0 0

,
, ;

,

DADx x
y DADx D x

D x x
λ λ= = −



 



  

 

 

终止准则采用 ( ) ( )810 1,2k
i iψ ω −≤ = ，算法允许的最大迭代步数为 1000。设矩阵 n nE ×∈ 是一个随

机矩阵，其每个元素服从区间 [ ]1,1− 上的均匀分布。我们安排了下述两组实验： 

在第一组实验中，取 A E= ，即 A 的非对称形式。针对 6θ = π 和 3θ = π 两种情形测试半光滑牛顿法

在求解系统(5.1)和(5.2)时的数值性能，见表 1 和表 2。 
在第二组实验中，取 ( )T 2A E E= + ，即 A 的对称化形式。针对 6θ = π 和 3θ = π 两种情形测试半光

滑牛顿法在求解系统(5.1)和(5.2)时的数值性能，见表 3 和表 4。 
 

Table 1. Convergence percentage and average iteration count for solving system (5.1) under asymmetric matrices 
表 1. 非对称矩阵下求解系统(5.1)的收敛百分比及平均迭代次数 

旋转角度 θ 维度 n 收敛百分比 平均迭代次数 平均 CPU 时间(s) 

θ = π/6 

50 99.0 50.2 0.011 

100 98.8 52.4 0.027 

150 98.6 53.5 0.065 

200 97.3 54.6 0.126 
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续表 

θ = π/3 

50 99.1 55.7 0.012 

100 98.7 56.4 0.028 

150 98.2 56.9 0.062 

200 97.4 58.1 0.135 

 
Table 2. Convergence percentage and average iteration count for solving system (5.2) under asymmetric matrices 
表 2. 非对称矩阵下求解系统(5.2)的收敛百分比及平均迭代次数 

旋转角度 θ 维度 n 收敛百分比 平均迭代次数 平均 CPU 时间(s) 

θ = π/6 

50 99.4 44.6 0.008 

100 98.2 71.9 0.041 

150 97.6 96.3 0.148 

200 95.6 132.8 0.470 

θ = π/3 

50 60.3 197.7 0.036 

100 55.8 254.8 0.145 

150 48.0 318.9 0.676 

200 42.6 360.1 1.858 

 
表 1 和表 2展示了矩阵 A 为非对称矩阵时，应用半光滑牛顿法求解系统(5.1)和(5.2)的数值实验结果，

使用 103 对随机样本 ( )0,A ω 估计求解上述两种系统的收敛百分比、平均迭代次数和平均 CPU 时间。可以

得出如下结论：半光滑牛顿法求解二阶锥线性互补问题的成功收敛率几乎不受旋转角度θ 和问题维数的

影响，平均迭代次数也不会随维数的增加而显著增加。但是半光滑牛顿法求解非线性二阶锥互补问题的

性能受旋转角度θ 的影响较大，θ 取 3π 时算法的成功收敛率及平均迭代次数远低于θ 取 6π 时的算法结

果。 
 
Table 3. Convergence percentage and average iteration count for solving system (5.1) under symmetric matrices 
表 3. 对称矩阵下求解系统(5.1)的收敛百分比及平均迭代次数 

旋转角度 θ 维度 n 收敛百分比 平均迭代次数 平均 CPU 时间(s) 

θ = π/6 

50 99.5 58.3 0.014 

100 98.3 60.1 0.027 

150 97.6 63.9 0.189 

200 96.1 65.9 0.208 

θ = π/3 

50 99.3 63.4 0.021 

100 98.5 66.3 0.066 

150 97.3 68.0 0.192 

200 96.8 69.9 0.235 
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Table 4. Convergence percentage and average iteration count for solving system (5.2) under symmetric matrices 
表 4. 对称矩阵下求解系统(5.2)的收敛百分比及平均迭代次数 

旋转角度 θ 维度 n 收敛百分比 平均迭代次数 平均 CPU 时间(s) 

θ = π/6 

50 99.2 107.1 0.019 

100 96.2 202.8 0.125 

150 84.8 281.0 0.389 

200 69.4 358.4 1.318 

θ = π/3 

50 54.2 237.0 0.042 

100 50.6 306.4 0.818 

150 48.0 377.6 1.531 

200 45.5 410.7 2.358 

 
表 3 和表 4 展示了矩阵 A 为对称矩阵时，采用半光滑牛顿法求解系统(5.1)和(5.2)的数值实验结果，大致

结论与非对称情形相同。另外，通过观察可以发现半光滑牛顿法求解对称矩阵下非线性二阶锥互补问题

的性能远不如非对称矩阵的情形。 
对于转化后的椭圆锥特征值互补问题(4.2)，即非线性二阶锥互补问题(4.11)、(4.12)及二阶锥线性互补

问题(4.13)，我们仍可以利用半光滑牛顿法进行数值求解，非线性二阶锥互补问题(4.11)、(4.12)中涉及到

的变量 λ 依然可以得到显示表达式，二阶锥线性互补问题(4.13)与之前所讨论的二阶锥线性互补问题(4.3)
结构基本一致，只是涉及到的相关矩阵有所不同。由于具体实现流程与前述实验部分类似，此处不再展

开详细的数值实验。 

6. 总结 

本文聚焦一类椭圆锥平衡模型，分析了该平衡模型解的存在条件，非平凡解及其边界型解与内部型

解的等价刻画，这些结果可视为二阶锥平衡模型的自然推广。借助圆锥、正椭圆锥与椭圆锥之间的相互

关系，上述结果推广至圆锥平衡模型与正椭圆锥平衡模型这两类非对称锥情形。另外，还讨论了该平衡

模型在椭圆锥特征值互补问题中的应用。利用椭圆锥与二阶锥之间的转换关系，建立两类椭圆锥特征值

互补问题基于二阶锥互补系统形式的等价重构，为数值求解提供了理论基础。文中采用半光滑牛顿法对

所构建问题进行了数值实验，验证了所提模型与算法的可行性与有效性。关于上述模型求解算法的进一

步理论分析及与其他数值方法的比较，可作为后续深入研究的方向。 
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