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Abstract

Eigenvalue complementarity problems over cones have wide applications in engineering and
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economics, with most existing studies focusing on symmetric cones. This paper addresses a class of
non-symmetric cones—ellipsoidal cones—and systematically investigates their equilibrium mod-
els and related eigenvalue complementarity problems. First, by exploiting the transformation rela-
tionship between ellipsoidal cones and second-order cones and the structured expression of sec-
ond-order cone, the ellipsoidal cone equilibrium model is reformulated into an equivalent nonlin-
ear system. Based on this, existence conditions and characterization of solutions are analyzed, in-
cluding trivial, non-trivial, boundary-type, and interior-type solutions. The theoretical results are
further extended to circular cone and elliptic cone equilibrium models. In terms of applications,
equivalent reformulations are established for ellipsoidal cone eigenvalue complementarity prob-
lems in terms of second-order cone complementarity problems, enabling the use of existing numer-
ical methods such as semismooth Newton and proximal point algorithms. This work not only unifies
and extends known results on symmetric cone eigenvalue complementarity problems, but also pro-
vides a theoretical foundation for algorithm design and numerical implementation in the non-sym-
metric cone setting.
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1. 818
HERPOEE B ) BAE TR S &5 wigrh BT 2 KN TS 5, MR @it sl /e R a0, IRsh s
SERRL. LR H UL K R ) A 2 AN T I [1]-[3]. HAT, KT CA T 3 B AR T AR HE
15T, AAEM RFCHE[4]-[1LOTF1 B E[11]-[14]. 2RT, 7EVFZ SEPREA T, JERTFREERI IS T IR AS v 2R
WRIIAEE Dy — R EE WA FRAE, HoE .
K, :={x eR":(x,Qx) <0, (un,x)zo}, (1.1)

Hep Qe R™ NARFF FXIFRAFE, BA -1 N IERSAAEA NGRS, 2GR AR (0 R RFAE i B
AU, eR", () FoRE AL R" EFIFFAER LRGN S0 EBORFEI Q My, »  FR MR 4 T LUk
ABrHE BSEAT AR BIHE[15] . AU A TLAN LR IR

(ECEICP(A)) xe K, Ax—AxeKs, (X, Ax=2x)=0, (a,x)=1,

(ECQEICP(A,B,C)) XKy, A°AX+ABX+Cxe Ky, (X, A°Ax+ABx+Cx)=0, (a,x)=1

Hrf AB,CeR™ZEZEME, acintky, (& x) =142 T8 % T JURIK IENLAAE, K 2t B 4 )
WHEHE, RP

K :={yeR“ 1(X,y)=0, VXeICg}.
B W HE S5 e B R I R D A R 0% AR (LR XN (2.4)), X T ] ECEICP(A) A

ECQEICP(A,B,C) My i€ —J7 1l LAGE— % T B ARG AL AR T AN (L [52 SE  0 TE i RBURI LA 5]
REAE B B AN DR AR 53— 7 T A) DURE SRR AL EL AN ) R BIF T8 e 2R AR X RIS 50 T bk )
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R ARPE, BT SCER[16]-[18] Cxd— B B BOHERAIE (B HAMA B RET 7 RGRTAL, Prigas R B R vl LUK
i [7] {1 ECEICP (A) A1 ECQEICP (A, B,C) X PSR, [A A S i il IR PSR Y (1 S5 4 i ply, LA
T A FECRM. 28, @5 NI, AR R AR ] LRSSy T — 28 R
BT AR
xek,, yeke, (xy)=0 f(xy,4)=0,, g(x)=0,, (1.2)

Horb x,y e R" 43 il BR g Ji 0 A8 B8 R x4 A8 & /1=(/11,---,/1P)T eR° NAMEZE, f:R™P SR,
g:R">R", 0,2 d4EF [ . LM RG(1.2) i n — M7 AR B 2R IR 4R A8 5 1 IR Ak 2% s
LAEA

A BAEDT Ve _EOR AR AT, S R AT SR B AR AR SR AR AN SR TURRAE S SN B HE R ALE (B
#iMA) L ECEICP (A) F1 ECQEICP (A, B,C) FIAEANEE Y, LA AAH G In) 8 (1 SL02 0 9 SR A1 B0 S Ff
2. FEEIR

AT B SG T A 5 HE Y R AT SR, BRSO B S A RPRRHE R Q IR AE 4 il B AR
o B — N EORYE S B, 5 2 4075 WL SCHR[15] .
RGN D) MRS € L, KNSR N
int &, :={X€Rn :x'Qx <0, u:x>0}, (2.1)

bd K, = {x e R":x"Qx=0,ulx>0} L{0}. (2.2)
FIEMHERE Q e R™ HA ik IER /iR
Q=UAUT=Zn:/1.uiuiT,
HAIERZ R FEU =[u, Uy, Uy U, ] SRR A=diag[A, - 4,1, 4] Q BIRHEXS (4, u;) W2

1, i=]j
W2 Ay =2 >0> 4, ufujz{o e (2.3)

FER— A LA A e, BRI K, T T 25 T EE MO, 3% —IMHE[L9] [20] FIHE[21] [22) B TEHAI
HE[23], EATAT BB BE R R Q A u, 675

M, 0
(1) %Q-= gl _Jﬂuﬁenaqﬂ Ko JBAL9 ZBTHE K7 = {(X, %, ) e R xR:[[X] < %, 5
W 0 S o (o -l
) élQ=_ 01 _tanze}ﬂuﬁenw, K, SBACNTAHE £, = {(X,%,) e R xR :[X]< x, tan 6} ;
‘MM 0 ‘
@) =Q= 0 _Jﬂun:enﬂﬂ‘, Ko BALI IERBAHE K = {(X, %, ) e R™ xR [MX| < .} »

FRHE 2 LA ALK R [15]:
K'c L, cKy =K cR", (2.4)

Hrre, =(0,0,-,1)", |X|FRX R HIBILEATER, 0e(0,n/2) LAl M e R"ICY R R2 R
Tk 7B TR A L R R, %) BRI B AT LA WL SCHR[15] P R B 2.1 A

2.2,
FI1EE 2.1 B A" 70 A EHE A B, HoE S ERTA . TR T 2518 R L.
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) K =TK"HK" =TK, ;

@ K =(TT) K" HK" =Tk

(3) ng{yeR”:yTQ’lyso,uIyzo},
ﬁ¢?ﬂm,D;mwpﬂ%nﬂfGAW1,QW%EEM&J%E%#@QG

3. WAIRHEFEHRE
3.1 REWE

KT DT A RSP ATAE (1.2), 7R EIZA A BT Ak . SCHR[24148 H, B HERT AROR N
K" ={UOUZU eR”} , Ho £ R" R —Jtis5H, & XnT:

_ rn+sé
Uov._[<§,n>+rs ,

AEPU:F}’ V:K} EneR"™HrseR, Hitf
2 2
ul? =uou:= 2r§ ek, V¥ —vov:= 2377 e k" (3.1)
&l +r? [ +5°

s 2.0, Tul? ek, A (TT)AV[Z] ek . Ak x=Tu?, y=(TT)7lv[2] s Blxek, Myeky . 3
T EIREE, R AR (1.2) T LA IR

<TU[2],(TT)71V[Z]>:O, f(Tu[z],(TT)’lv[Z],/i)zon, g(Tu[z])=0m, (3.2)

MHH
<TMﬂ(TT)4¢ﬂ>=<UPL¢ﬂ»
=, JEZME RS (3.2)5% M T

<um,¢4>=0,f(TuVL(TT)AvPLﬂ)=On,g(Tdﬂ)zom. (3.3)

3.2. FBRSIEFENIR

5E X 3.1 BRI HEF A (L2)HIAR (X, y, A) SR FUR, SR x=0,; &, R ILH.
9T AR AN - 5 T8 (1.2) F T PR A 7 S, S T4 00 20 (3.3) ik, 7 2i4E (0,) =0,
SRR g e AR R T I R, BT UR x RSN E, Hx=Tu?, xEwkEu?=o,,

Pk RS(3.3)1B kN
4 2
f10,,(T7) f" A |=0,
Il +s*

ST AR LRI, T4 e
9(0,)#0,. (3.4)
sk U 20, Wi x=Tul? 20, IXHEQ.2) AR 2T S .
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31231 #x=Tull, y=(T7)" v, St u? Vs E ) . BEE AR, M HCG I
W2 — I, ZIE4L(x,y, ) MR T G B (1.2) AR
(1) r=0H(&rs2) 2 FIERGHE:

s&+rn =0
(Em)+rs -0
F(&rmsA) =0, (3.5)
G(¢.r) =0,

2ré v 2sm oo 2rg
Hlanma - f(T[n:u%rz}’(T ) [nnu%sz}’l]' s Q(T[MfuZHZD

(2 r=0,7=0,,,s=0, H(&A)MHE

f[T[Onl}O /1] 0 [T[O“D 0 (3.6)
2 |"¥ny =Vns g 2 =V b
¢l Il
) IER A (0 V) = 0 4

ars(&n)+(Jelf + ) (Inlf +5) =0,
Rp

[rn-+¢lf +((gum)+vs) +lelf Jalf - (&) =0.
BURITT - IR, 16T

6l ~(¢.2)" =0, 37)
rp+sé =0, (3.8)
(Em)+rs=0. (3.9)

BRI, (XY, A) A AR B P A SR (1. 2) PRI 24 HLA > (&, v,y s, A) W6 2 (3.7)~(3.9) Al

{F(g,r,n,s,/l) =0,
G(&r) =0,

XFF rAEA TR PR AS [E] I L

(1) ZHr#0, HRAE8) WM n=—s&/r, KEEBMAERG.7)HL. FET ERDHT, (X, y,4) 2B HE
ST (1. 2) IR 24 HA 2 (£,r,m,8,A) /& R4 (3.5) ik«

(2 #r=0, HEEEGAITUHEHR E£0, NMAEB.7)~GB9%EM T n=0_,s=0. FEF LB,
(X, y, A) FEMAIE 4 PR (1.2) M 2 BAL Y (&1, 4) 52 R 5:(3.6) NI fif -

BT oI H 2.1 AR HE S BHERT AR B HE R OC 2R, ST 31 50 T 5B ~F~ 18 A5 7R 0 A [5R] ~F- f  2Y
e FUAE AR 18

HEW 3.1 H T IR A HE T A A

xeLly, yel, (xy)=0, f,(xy,4)=0, 9,(x)=0,, (3.10)
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Hp £, . R*™P > R", g,:R">R", 0, &d Tk, /EfBg,(0,)=0, FATHR T, HGHMCYHBLT
Wz —m, =Jedl(x,y,A) & B HET A5 (3.10) (i .
(1) r=0H(&rm,54) R RS(3.5) 1M, BLR

[(tanw)ir(gufnﬂrZ)H(ta“Z9>”2:<7ﬁ’7"2*Szﬂ'ﬂ}
o)

(2 r=0,7=0,,,s=0, H(&A)MHE

On—l On—l
f, e 5 10,4 1=0,, g, L a2y 2| [= 0 3.11
H(tanw)” ||§||] J ’ U(tan o) D -

HER 3.2 58 T I IEAM B A~ i 5 1Y
xeky, ye(IChj, )(x y)=0, fy (x,¥,4)=0,, gy (x)=0,, (3.12)

Hep f, R*™P 5 R", g, :R">R", 0, 2&d4EFmE. £/E g, (0,)=0, WHTHE T, 2 HACSHI
TEZ R, ZI0H (X, y, A) A2 AR T8 (3.12) i A«
(1) r£0H(&rm,s,2) RRGEGEMIME, ILET

2UDré | | 20D 'sp 2UDré
F(fyryﬂxsxl):fm 2 s | 2 2 A G(gir):gM 2 2
el ] Ll +s I+

HA U An—1AFE MM RRHE(E R (K IE A HERE, D %R n—1 st AAERE, & B FidE
I5:=diag[ﬂl”/2,~-,/1gﬂ2].

F(&rm,s,4)=1,

G(é:nr):ge

(2 r=0,7=0,,,s=0, H(&A)HL
0, 0,4
A ﬂn:nz}'o"’”] O ﬂllélIZD o o
3.3. MABBMERNIRE MR

AR I VAN B T AR AR (1.2) (Y32 5 R 5 PO R TR AR ) KK

5B X 3.2 FRMFEIHET ST (L.2) HIAE (X, y, 4) AL SR (WAL Y, e P FLR H x J& T K 1
WF ().

N T 4 R HE P AT (1.2) R0 SRR 5 P R TR A A AN i, JRATT 7R IR IR 45

B 3.1 B4 ML, 2 HAHHILL RSBl — I, =l (X, y, A) 2 B HEP A 2 (1.2) F A -

0
@ x=T{ } y=0,, (&) RA%EO)MIR.

I
@) x:2r2T{ﬂ, y:ZSZ(TT)l[_lw}, (@,r,5,1) 2 Pk RG R
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Fog(@,r,5,2) =0,
Gog (a), r) = Ym (3.14)
of -+ -

Horp
Fog(@1,5,2) = f[zrzT[ﬂ,zsz(TT) [_ﬂﬂj gbd(w,r)=g[2r2TﬁD
2w
®) x:rzT{ 2}, y=0,, (@rA)E TFRRGEKM
L[]

F(w,r,2) =0,
R,

20 20
o[y oo ool i

W wx=Tul?, y=(T7) v, s ol VP iR @) . dir£0 IR 3.8), LA
nfs=—E/r. L w=E/r, WHn/s=-m, FETLEE

2 2
U2 — r{ @ 2} W2 = Sz[ “’2}, (3.16)
L[] L+

LUK (£,m) 415 =rs (&1 n/s)+ 1s = 1s(1-(@,0)) = rs(1-[of ) =0 . thF r =0, w4t s(1-[e] |0, It
(.15, 2) 1 Fik REHOM:

(3.15)

b
+H

s(1-Jef) =0, (3.17)

f[ ZT{ 2o } 2(TT)ll e }AJ 0 (3.18)
r , 1S , LA [=0,, .
1+ ]| 1+

{ZT[ % D 0 (3.19)
ag|r 2 | [=Yne .
L+

ERSREANBL I o] =185 =0. FHSEE:

(1) # || =1, KHALN(3.16)F1(3.18)~(3.19), I LAFFEI 1 (2) i L

(2) #s=0, HHAN(3.16)F1(3.18)~(3.19), A LAFSFIHE I (3) kAL .

Fi4k, e =0, W51 3.1 2 HA, AT BE (L) L

T 3.1 RARBHE S B HERERGEIHERSC R, o0 T AR R 50(3.10) F1(3.12) m) AR 2 MRS -

#it 3.3 BEEHET I (3.10), B g,(0,)# 0, HOL, HHACH B FILL —1f, =jod
(x,y, A) 2 BUHET- BB (3. 10) I -

0n—1
(1) x= [(tanz 0),]/2 "5"2] » y=0,, (&) ZRF(BIDWM.
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(4] -
(2) x:2r2[(tan29)yz}, y=252[( } (o,r,8,2) 2 R G (3.14)[Ff#, LLIS

Fog(@,1,5,2) = f9[2r2[<tanza;)]/Z:I'ZSZ{(IQH_ZO;)M},lJ, Gog (0,7) = gg{zrzl(tan:;)wﬂl

20
= 2 = ’ = ’ , Iy E/\é . N 77’ N
(3) x=r {(tanza)w(H"a)”z)} y=0,, (orA)RR5Q3.15)1fE,
20 20
B Ty B W (C MR
e 3.4 HEIEMREIHETAEER(3.12), B gy (0,) %0, AL, A HACAHIIL PR i, =

TEAL (X, y, 2) 2 MR HE A 1 (3.12) O

1

0
(! X=L|;"2}, y=0,, (&4)ZFRG(B13)HIE.

Flor2)="1,

@ x=2r{u?w}, y=25{_u?lw}, (.1,5.4) & RG G, Jeit

Falo,5.)= 1, [z[uf“’}z{ufﬂa} G (1) =0 [z[uﬂj

2UDw

Lol

Flar,2)=1, [rzlzmja;},on,i} G(o,r)=0, {r{ZUf)CZD.
1+ ] L+ ]o]

AATRE S TR HE P AR A AR R 5E B0, T IR B T BN AT T O MR SRR O T e
FRRFAE A o

SEBE 3.2 B (BA)MAL, WA W R S5 L

(1) (X, y, A) A I ST Hi R 20 (1. 2) g S B 2 ELA 5 7 3.1 TP A 8 (2) H B

(2) (%Y, A) R HEP-Biris 724 (1.2) i P AL A 2 LA s B 3.1 eh % 0 (1) B 3) L HL o] %1 -

WERH (1) Wi 3.1 PRER QI Hr=-0H x=2rT {ﬂ T

T T
XTOX = 4r* {ﬂ T7QT {ﬂ — 4 {ﬂ DUTUAU TUDKJ}

el S

SR T (3.14) P AT, ﬁﬂu:x:zrzegwuomzer(-zn)'“>o, WER(22), WA

(3) x=r? » y=0,, (@.r,2)RFRFB1IS)NIM, L

(X, y, A) S A 50 HfE P BT R (1. 2) i S 2L A
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S22 ABBE (X, y, A) RGBT AR (L.2) AN A g, WP VP ) S A r2 0. X

Fovim# r=0, mUﬁxﬂ[ } Bt

5

T l: ‘|T I:O :l |:On_1 :IT |: . 0 :||:O ‘| " " 0, T ( 1 )*1/2 ” "2 0 (3.20)
X QX Q | 2 = g < L,In X=(— . ;‘: >0. '

HRQ2.1), B xeintk,, X5% X 3.2 F/F. Fit, afLinE.16)hBRES u? V. BT xebdk,
Hr=0, wrlHER

(S T |20] =1+ o BT |0 =1, BT Fikidie, WTEMIEIE 3.0 b QM.

(2) e 3.1 FrER Q) HBL, s r=0, H(B.20)7 A, x= T{ eintk, . WA ER 3.1

et

. . . 2w — 20 .
TR ERE I H |0 =1, x=rT Lo fof gbd /., M x=rT cint, -
+|[®@

Lt|e]

2

[y BE(X, Y, A) REMGEIHETATBAL (L)) — DA ERBL AR, W LR E L 3.1 PO ALQ). R,
EANERO) R, BANERE)RL, HMH ||o]#1-

BT E R 3.2, HEW 3.3 ANHER 3.4, MRS T BIHE-TH 1A (3. 10) AT IR I3 4 PT84 714 (3.12) )
A0 R R AT P TR AR PR S5 A0 22

e 3.5 H B EMET A (3.10), fR1% g,(0,)#0, B, WA U R 45 aar:

(1) (x,y,A) ZBEAET- AR (3.10) 34 S AR 24 HLACA 418 3.3 s L (2) i B

() (X, y,A) SEBHET-Hr 55 (3.10) ) Py S AL 2 ELAX 4418 3.3 P A 1o (1) 3 (3) HE L HL. ||| 1 -

HEWR 3.6 BB IEMARIHET-#71584(3.12), fBiL gy, (O, ) =0, AL, WA QIR &8 KL

(1) (x,y,A) R IEMAIE HEFHTRE R (3.12) A1 S AU AR 2 HLAL S 4G 3.4 TP BL(2) i 3.

(2) (XY, A) A2 IEA I HE T ALY (3.1.2) ) Py B 2L 24 ELA 4 41 3.4 v (RIS 9L (1) 8 (3) B EL || ]| 1 -

4. WERHESHEE BN FM ER

AT A G LA B HERFE A B4 i) 8 ECEICP (A) A1 ECQEICP( A, B,C) [f1%: 4 B A .
MAEGI L 2.1, 74E X, e K" M aecint K" §4F ECEICP(A) fll ECQEICP(A,B,C) mJ LLEE (LA

xeK", §=DUT(A-Al,)UDxeK", (%,¥)=0, (& %)=L (4.1)
Xek", §=DUT(A*A+iB+C)UDReK", (%,§)=0, (4%)=1 (4.2)

HU,DeR™ e X551 2.1 h—5. AR, RE@G.DFA(4.2)X 84 H e BN R IEZR 14
ARG, HULET LB R E AT IR 9 L B 4 EL RN 7 B (NSOCCP (F))

xeK", F(X)ek", (XF(x))=0
AN e 2 B4R ) (SOCLCP (M, q))

xeK", MX+qeK", (XMg+q)=0,
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HPFR" > R" Z2&ESAMIS, MEqeR", EEMeR™,
B, A RE TR LR @E%Muﬂ%ﬂsoc:LCP(DAD,o)
XeK", DADXeK", X'(DADX)=0, (4.3)

Her A=UTAU . XF(X,1)eR" xR, & XRH R F, B FRER
F. (X, 4):=(DADX- D%, a"x-1), (4.4)

F,(%,4):=(DADZ+AD’%, a"%-1). (4.5)

o R F R F, AR 2R M I RN ) SR

1>0,a"%-1>0,

NSOCCP(F,):{%< K", DADX - 1D’k K", (4.6)
>”(T(DADX—),DZX)+/1(€1TX—1):O,

1>0,8"%-1>0,

NSOCCP(F,):{% €K', DADX+1D*% e K", 4.7)
XT(DADX+/1D2>?)+/1(51T>?—1)=0.

NN EHLEGS T AM  ER AR AR AN ) R (4.1) S AR LA TR HE EAR 1) (4.6) (4.7) K R HES A HL
I ] 5 (4.3) 2 6] (19 K 2R

SEH 4.1 W FAF, € X4 R@4.5) R, WA NRE R KoL

(1) & (X, 27) RAEHED)HAE 2" >0, W(K,A7) ZBEL(4.6)fE -

(2) # (X, 27) REH@DIEE 2" <0, W (X°,-27) REH AR
(3) # (X, A7) REH@DIEE 2" =0, W (%,0) REH(4.3)HIfE.
@) #2220 H(,27) R (4.6)HfF, W (x,47) B4 K.
(5) A A" %0 H (X, A7) RBH@ M, N (X7, -4") B4 1) IR
(6) 4 X RBI(AI)HIMH X #0, N (%/a'%",0) RARTH(4.L)HIfE
R A (X /1) 1‘%&”(4.1)5’\]%, lEs)
eK", F(X,2")=F,(X,-2")=(DADX - A'D’X",0)e K" xR..
(1) #2 >0, M(X,2")ek xR, , F(X,4")ek xR, H
(¥.4)-F(x.2")=(x') (DADX ~2'D*X" )+ 4" (a7%" ~1) =0,
XYL (%7, A7) A (4.6) 1A -
(2 #A <0, )rlU(X*,—i*)elC”xR+, FZ(X*,—/l*)eIC”xR+H
(¥,-2")-F,(X',~4")=(x") (DADX 4D )~ 4" ("% ~1)=0.

UL, (,-2") BRI
(3) # A =0, M (%, 27)=(%,0)e K" =R, , DZ\Dx*—/l*sz*zDADx*e/c”ﬂ(x*)T(DADx*)=oo
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B, (%,0) B3R,

(4) A =0 H (X, A7) 2B @A.6) i, WA

A>0,a"% -1>0,

% e K", DADX - A'D*X" e K",

(%) (DADE 2D )+ 4" (7% ~1) =0.
IHMER x=(%. %) e K",y =(y,,Y,) e K" B K" B SR F6-jiti FL kAN S5 AT 15

XY =X Y1+ % Y, 2 %Y~ %[l 2 %y — %y, =0. (4.8)

H48)aH, (

x) (DADx D% )>oaaTx"—1=oo B, (X,47) REBALA.D) AR
(5) %I;&OE(X

) RBAAT) R, WA

A>0,a"% -1>0,

K e K", DADX + A'D*K e K",

(X)) (DADK" + ’D*)+ A" (&' X" —1) = 0.
H1(4.8) I 15, ()?*)T(DADX*JHI*DZX*)ZOEéTX*—l 0. Kk, (X,-4")RBA A1),
(6) #i X RBAAI) M X 20, W (X/aK,0) RHEL(4.1) AR
FNOR, N T ERTRARIN(4.2), TFEE SR X T (X,4)eR" xR, & XEBFME, U1F:
F, (% 2)=(A°DADX+ ADBDX + DCDX,&'x 1), (4.9)
F,(% 4) = (A’DADX - ADBDX+ DCD%,a"x -1}, (4.10)

i A:=UTAU,B:=U"BU,C:=U"CU . &t %L F, Al F, AR R 1 b )

A>0,8"%-1>0,

NSOCCP(F,):{%X K", A’DAD% + 2DBDX + DCD% € K", (4.11)
X" (1°DADX + 2DBDX + DCDR)+4(&'%-1) =0,
1>0,8"%-1>0,

NSOCCP(F,):{%€Kk", 2’DADX - ADBDX + DCDX e ", (4.12)

4 (AZDADY(—J.DL%DTH DCD)”()+/1(€\T>"<—1) =0,
PAK iR B AR 1 AN ) @SOCLCP(DCD,O)
xek", DCDxeKk", xT(DéDx)=0. (4.13)

R E RS TG R AR AN ) (4.2) LR R HE AN R (4.11) (4.12) K RS I
A 5 (4.13) Z A 56 R o

B 4.2 W FF, € LaN(4.9) M (4.10) iR . WA NREE 18O

(1) # (X, A7) REAEDMME A >0, Ul'J()”(* A7) RBRAD)

() # (X, A7) RBHEDMMBEL L <0, W (K,-4") B (4.12) 7.

(3) #5 (X, A7) RBH@ MM A" =0, W (X,0) KR (4.13) 1A

(4) #2"=0 H (X, A7) RER@1) MM, T (X, A7) RE5A.2) 1.
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(5) # 4 =0 H (X, A7) RBAAIHM, W (X,-27) B (4.2

(6) #5 X BIHMAI)MEL X 20, W (X/aTK,0) B (4.2) Hfi.

AER % L OE ) 5 5 4.0 (IE DR R AL, (EDA T SR, AN R AIRE IR AL 35 (%, 27)
RBR (42N, WA

X ek, F(X,27)= F4(>z*,—/1*)=((,1*)2 DADX*+[DE§D>~<*+DéDx*,o)eiC"xK.
(1) #F#2>0, W(L,2)ek xR, F(X,4)ek xR, 1

(. 27)Fy (X, 27) = (% )T[(ﬂ,*)zDADX*+J,*DI§D>”<*+DCDX*}+/1*(€1T>”(*—1):O.
B, (X,27) REEE.11) 1A
(@) #A <0, M(X,-4")ek" xR, , F(X,-2)eK"xR, H

(', -2)-Fy (3 -27)=(x) [(1")2 DAD)?*+/1*DI§D>~<*+DCDT}—I(&TX ~1)=o.
ik, (X,-47) A E.12) 1 .
@) # A'=0, M (X,27)=(X.0)ek"xR, , (;:’)2 DADX" +1'DBDX" + DCDX = DEDX e K" H.

(x) DCDR =0. [Hit, (X',0) RHBLA(4.13)IH.
(4) #5240 H (X, 47) &EAE@ID I, WA
A>0,d'% -1>0,

ek (,1) DADX" +A'DBDX" + DCDX" e K",

DADX*+/1*D|§D>~<*+DCD>~<* +A7(a"% -1)=0.
( )[ |+ (@7 )

H1(4.8) I 15, (x)T ( ) DADx*+,1*DE§D>~<*+DéDi*}zOﬂéW*-l:Oo i, (X,27) 2HR4.2)

I o
(6) HA ¢OH X, ﬂ;-:ift@ 12)1fi, WA
2 >o a's —1>0,
e eIC” DADx +( ) )DI§ +DCDX e k",
- * * DADX’ +( A )DE?D)?*+DC~ID>~<*:|+/1 (aTx —1):0.
th@8)a, ( ) DADx +(-2 )DENBDX*+DC~D)~(*}20E€1TX*—1 0. ik, (X,-4")RHi
(4.2)HIfR

(6) #7 X RBIMA) MM X =0, W (X/aX,0) ZHEL(4.2)fR.
5. B

AT R SR FH 2 T 2B SR A A A S RN 50 R R AR ELR 7] R (4.1), B SR AR 2 1 i R 1)
(4.6)s (4.7) S B HELR M B AN B(4.3). [BIAE—TF, FHWU 4:R"xR" - R" AW FENKR:
$(%9)=0 & xeK", yeK", (%,¥)=
MFRFH A S KM FHRR EANRE . BRTR Z R EOR — 280 R e b ek 2, & )sE LR
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b (X 9)=%—(X-F), VX JeR
SCHR[25] CF B i R BB G 42 ) Lipschitz SR A8 I PE . R B 4E TR SR 3L g » FRATTRT LA
HR5(4.3)s (46) @D EHTRA N Nk T4

)
j|=0, (5.1)

v,(0)=vy,(%,¥,4)=| F(X4)-¥|=0, (5.2)

Horr (&, %)-1=0 2 Tk LA IEN 0, XERa=e K" H5b, BT HREFR A F, MK
HAL, JURKT A RS R T S0R, Fl, BATIX AR ZRN RE(5.1)F(5. 2);*}%%4:7@%!:%/%1&
A SLIG SR . B SUE SEI0 DR A MATLAB B 545, KA BERCE Intel(R) Core(TM) Ultra 5
125H 3.60 GHz 1 32.0 GB 117
FEHES S, WEU=1,4=1(i=12,,n-1),4, =—tan* @, ULIHHEIHEIREHE, A=A. XF
TREGL, REWGEL S =(L,5°), W2 =(0.8,, %), BAILE LAEX A [-11] 557,
§° = DADK’ . X FH%i(5.2), WEMMA o =(%,9°2°), Hir % =(%, %, %), FATTE & X
[-11] W55 10 s
(DADZ, %)
(D2, %)
AL |, ()| <20 (1=1.2) » SHERVFHIRKIEILHD 1000 BHERFE e R £
BURERE, HAEEATTRIRAX I [-11] RM38 5504 BATZHE T FRBI415
EH—HTR, WA=E, B AREAEFRIEA. B4 0 = n/6 Fll 0 = /3 DA TE A 6 A= i
FESRMF AR G0(5.1) (5. 2) I IAUE PERE, W& 1A 2.
fES ALk, A= (E+ET) /2, M1 A BIFRILE R, §%F 0= /6 F16 = /3 AR TR ot
T FIELE SRR R GE(5. )M (5.2)I BB MERE, W7 3 FIk 4.

A0 = §° = DADX® - 2°D?%°;

Table 1. Convergence percentage and average iteration count for solving system (5.1) under asymmetric matrices

= 1 AEXFRIERE TR BR R G (5.1) U B 57 b R IR OR B

fighe fa 1 0 4ESE n WS E 3 b P EEAUCEL P-4 CPU [ (s)
50 99.0 50.2 0.011
100 98.8 524 0.027
0=n/6
150 98.6 535 0.065
200 97.3 54.6 0.126
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50
100
150
200

6=7/3

99.1
98.7
98.2
97.4

55.7
56.4
56.9
58.1

0.012
0.028
0.062
0.135

Table 2. Convergence percentage and average iteration count for solving system (5.2) under asymmetric matrices

2. IEXIFRAERE T RAR R G (5.2) U5 B 79 b R PR OR B

WedE B 0 HfEn WS E 4y L PR IEARIREL P15 CPU ] (s)
50 994 44.6 0.008
100 98.2 71.9 0.041
6=n/6
150 97.6 96.3 0.148
200 95.6 132.8 0.470
50 60.3 197.7 0.036
100 55.8 254.8 0.145
0=n/3
150 48.0 318.9 0.676
200 42.6 360.1 1.858

LR 2 R T HERE A T REBRARE I, [V 2 eV AR AR R GE(5.1) (5. 2) M K (1 Sk B 45
165 FH) 10° S BEHUREAR (A, @ ) Al o R LR W RN RGOS ET 43 by P ARURELRIT 4 CPU AL, 7T L
TR R G508 e PG AR A e T o L P D AR T L P AN B2 A3 FE 0 780 i R4
SN, P YSEARVCOSUBR S2 BRSO ST 5235 00 (FLR 3 2 SR A W FL A B g
kB SZ RS 11 0 BSEIAEOR, 0 B /3 I ST s DA 2P B IRV T 0 B /6 I 1 503245

R

Table 3. Convergence percentage and average iteration count for solving system (5.1) under symmetric matrices

= 3. IFREERE T RAEFR G (5. 1) RIS B 40 B R T OR B

e F R 0 i WA 7 L SERIERIREL S35 CPU B [E](s)
50 995 58.3 0.014
100 98.3 60.1 0.027
0=m/6
150 97.6 63.9 0.189
200 96.1 65.9 0.208
50 99.3 63.4 0.021
100 98.5 66.3 0.066
0=mn/3
150 97.3 68.0 0.192
200 96.8 69.9 0.235
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Table 4. Convergence percentage and average iteration count for solving system (5.2) under symmetric matrices

4. IFREERE TR AR FR G0 (5.2) RIS & 40 BE R T OR B

TR 0 YEE n WS 4y b SRR AR S “F-15 CPU I [E(S)
50 99.2 107.1 0.019
100 96.2 202.8 0.125
6=7/6
150 84.8 281.0 0.389
200 69.4 358.4 1.318
50 54.2 237.0 0.042
100 50.6 306.4 0.818
0=n/3
150 48.0 377.6 1531
200 45.5 410.7 2.358

1 3 AR 4 JEoR TAERE A RS FRAERERY,  SRATOGH A W0E SRR R 50(5.1) M(5.2) M B E SLIR 45 R, K3
R SR IRE AR . 5350, 0 AT DU B A6 A W0 SR A PR AR R T AR bk — 7 #E EL A 17 /&t
Pk RE I A AR R FRAE R T -

Xt A PO I AR MR T A ) f0(4.2) , RIVARZAE — [ HE T AN R (4.11) (4.12) B — B2 T AR
1] 2(4.13), ATV AT CUM FE 6 AP WA AT BUE R AR, ARZedh — I HE TN A (4.10) (4.12)hi8 K 3
MR A HOARTT A B BoRRAB T, BT HEZR I TAR ) B (4.13) 5 Z RIS ) — B4 2 1 T AP 1) 2 (4.3)
SRR B, WY LB REA T AFE . T BARSCILRR 5 AR st iR il 70 8L, AR
THPEAH B 556 -

6. B&

ISR M BT BB, AT 1% T BB AR A AE 25 A, AR LR R L R 5 N Y
S 2, XS IR AT I HE T AR A B AR A ISR L TR I A (5 4 TR AR L
KA, RS RHE A R 5 A B AP A ALK PURAERI AR HE IS T . 53 4h, IR 1%t
A5 7R A 0 AR A i R PR SE P o M) LAV (B2 4 5 — 4 2 TR RO RGO AR 5 8 7 7 RS M [ 5 (L
HAMA LT i AN R GRS A, DV BUER RSO T B IEAS . SO R A I AR 2o
Ik )RR BEAT 7 B S, BRAE T TR S ENAR P AT IR A R . R T R BE R R R S i —
AR T S 5 HAEAE T iR RO LB, AT R SRR AT TR T 1]

SE
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