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摘  要 

本文系统研究了一阶随机系数整数值二项自回归模型，在参数估计方面，分别构建了模型参数的条件最

小二乘估计量与拟似然估计量，并基于最小二乘估计量进一步引入经验似然方法，构造了具有辅助信息

的最大经验似然估计量。最后，通过仿真实验，在不同样本量、参数设置与数据生成机制下，综合比较

了上述估计方法的有限样本性能，为离散时间序列数据的建模提供了更丰富的估计工具与理论参考。 
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Abstract 
This paper systematically studies the first-order random coefficient integer-valued binomial auto-
regressive model. In parameter estimation, it constructs the conditional least squares estimator 
and the quasi-likelihood estimator for the model parameters, and further introduces an empirical 
likelihood method based on the least squares estimator to construct the maximum empirical likeli-
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hood estimator with auxiliary information. Finally, through simulation experiments under different 
sample sizes, parameter settings, and data generating mechanisms, it comprehensively compares 
the finite-sample performance of the above estimation methods, providing more estimation tools 
and theoretical references for modeling discrete time series data. 
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1. 引言 

在计量经济学、生物统计学与社会学等领域，计数型时间序列的建模具有重要意义。此类数据通常

取值为非负整数，且序列内部存在显著的自相关性。传统连续型时间序列模型因假定数据连续且服从正

态分布，难以直接适用于此类离散数据。为此 McKenzie [1]、Al-Osh 和 Alzaid [2]提出了整数值自回归

(Integer-Valued Autoregressive, INAR)模型。其核心在于引入了由 Steutel 和 van Harn [3]提出的二项稀疏算

子作为传统自回归算子的离散化替代，详细内容参考 WEIß [4]。具体而言，算子“ ”定义为： 

 
1

,
X

i
i

X Bα
=

=∑  (1) 

其中， [ )0,1α ∈ ， X 为非负整数值随机变量， { }iB 是一列独立同分布(i.i.d.)的伯努利随机变量，满足

( )1iP B α= = ，并且与 X 独立。然而，标准的一阶整数值二项自回归(First-order Integer-Valued Binomial 
Autoregressive, BAR(1))模型α 是一个固定常数，该模型具体内容可以参考 Weiß [5]，这隐含了过程的同

质性假设。在实际应用中，许多计数序列的动态性往往受到未观测到的时变因素影响，导致其依赖强度

α 可能随时间发生随机波动。固定系数模型难以刻画这种内在的异质性与过度离散现象。为了增强模型

的灵活性与现实描述能力，研究者将随机系数的思想引入 INAR 框架，即假设α 本身是一个随机变量或

随机过程，从而得到一阶随机系数整数值二项自回归(First-order Random Coefficient Integer-Valued Bino-
mial Autoregressive, RCBAR(1))模型。该类模型由 Zheng 等人[6]提出，允许自回归系数随时间随机变动，

能更灵活地捕捉计数序列的波动聚集与厚尾特征。虽然 RCBAR(1)模型更具一般性，但其统计推断也面

临更多挑战。现有研究已初步探讨了模型性质并发展了基础估计方法，但仍存在以下不足：首先，不同

估计方法在有限样本下的性能缺乏系统比较；其次，在更一般的模型设定下，如何构建更高效、更稳健

的估计量仍不明确；最后，已有研究对估计量在不同数据生成机制下的稳健性关注不足。 
本文主要研究 RCBAR(1)模型，首先给出了模型的基本性质，在参数估计方面，提出了条件最小二乘

与拟似然估计量，并引入经验似然(Empirical Likelihood, EL)方法，具体可参考 Owen [7]-[9]、Qin 和 Lawless 
[10]，而 Chuang 和 Chan [11]，以及 Chan 和 Ling [12]将经验似然方法应用于自回归模型。本文构建了可

融合辅助信息的最大经验似然估计量，该方法不依赖扰动项分布且具有更高理论效率。最后，参考 Zhang 
[13]和 Yang [14]通过模拟研究比较了各估计量在不同场景下的有限样本表现。 

本文余下部分的结构安排如下：第二节正式给出模型设定并详述其基本性质；第三节逐一阐述三种

估计量的构造方法；第四节展示并分析模拟实验结果；第五节总结全文并展望未来研究方向。 
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2. RCBAR(1)模型定义及基本性质 

RCBAR(1)模型由以下方程定义： 

 ( )1 1 , 1t t t t tX X n X tα β− −= + − ≥   (2) 

其中， ( ){ },t tα β 是一列取值于 ( ) ( )0,1 0,1× 上的独立同分布二元随机变量序列。且 ( ),t tα β 和 t 时刻所有的

稀疏算子及它们的计数序列包括初始值 0X 都是相互独立的， 0X 满足 ( )2
0E X < ∞，同时 ( ),t tα β 也与所有

稀疏算子及历史状态序列{ },sX s t< 相互独立。 
由式(2)定义的 RCBAR(1)是一个有限状态空间上的齐次马尔可夫链。类似于 Zheng [6]中的式(4)，其

一步转移概率具有如下形式： 

( )

( )

( )
( ) ( )

| 1

min ,

,0 0
max 0

1 1

,

: |

1 1 d 0,

k l t t

k l
l j n l k jj k j

t t t t
j k l n

p P X k X l

l n l
P

j k j α βα α β β

−

− − − +−

= + −

= = =

−  
= × − − >  −  

∑ ∫ ∫
 

其中， ,Pα β 是二元随机变量 ( ),t tα β 的累积分布函数(CDF)。因此 ( )| , 0, ,k l k l n
P p

=
=



是一个本原矩阵(不可约

且非周期的)，这意味着过程{ }tX 是遍历的且存在唯一平稳解。 

参考 Weiß [15]、Ma [16]和 RCBAR(1)模型的定义可得，自相关函数为 ( ) ( )kkρ α β= − (当 0k ≥ 时)。
最重要的回归性质是： 

( ) ( )1 1E | ;t t tX X X nα β β− −= − +  

( ) ( )2 2 2 2 2 2
1 1 1Var | 2 .t t t tX X X n X nα β β βσ σ σ σ− − −= + − +  

其中 

( ) ( ) ( ) ( )2 2, Var , , Var .t t t tE Eα βα α σ α β β σ β= = = =  

高阶联合矩和累积量的闭式表达式由 Weiß 和 Kim [17]给出。 

3. 参数估计 

设 ( )1 2, , , NX X X 是从模型(2)中获得的观测值，其中参数向量 ( )T,α β=θ ， ( )T2 2,α βσ σ=γ 。 

3.1. 条件最小二乘(CLS)估计 

首先给出参数向量θ 的 CLS 估计，CLS 准则函数定义如下： 

 ( ) ( )( )2
1

2
|

N

t t t
t

S X E X X −
=

= −∑θ  (3) 

CLS 估计量可通过最小化该准则函数(3)得到，关于α 和 β 的最小二乘估计量为： 

( )CLS 12 2
CLS

12

ˆ
ˆ ,

N N
t tt t

N
tt

X n X

X

β
α −= =

−=

− −
= ∑ ∑

∑
 

( ) ( )

2
1 1 12 2 2 2

CLS 2
1 1 1 1 12 2 2 2

.ˆ
N N N N

t t t t tt t t t
N N N N

t t t t tt t t t

X X X X X

n X X X X n X
β − − −= = = =

− − − − −= = = =

−
=

− − −
∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

正如 Klimko 和 Nelson [18]的定理 3.1 和 3.2 所示，记参数真值为 0θ ， CLSθ̂ 是强相合且渐近正态的，

即 

https://doi.org/10.12677/aam.2026.152069


陈志非，卢飞龙 
 

 

DOI: 10.12677/aam.2026.152069 284 应用数学进展 
 

( ) ( )1 1
CLS 0 0, , ,ˆ dN N N− −− → →∞Q RQθ θ  

其中 

( ) ( )( )2

0 0 1 0 0 0, .E X X E X X X X= = −Q R  θ  

下面再给出参数向量 γ 的 CLS 估计，首先定义一步向前的残差为： 

( )CLS 1 CLS 1: ,ˆˆ 2, , .ˆt t t tX X n X t Nε α β− −= − − − =   

基于此构造 CLS 准则函数： 

 ( ) ( )
222 2 2 2

1 1
2

ˆ ,
N

t t t
t

S X n Xα βε σ σ− −
=

 = − − − ∑γ  (4) 

其中 ( )T2 2,α βσ σ=γ 为待估参数向量。对 ( )S γ 关于 γ 最小化，可得 CLS 估计量： 

12
,CLS 2

CLS 2
2 2,CLS

ˆ
ˆ

,
ˆ

ˆ
N N

t t t t
t t

α

β

σ
ε

σ

−

= =

     
= =           

∑ ∑z z zγ  

其中向量 ( )( )22
1 1,t t tX n X− −= −z


。进一步地，两个方差参数的显式估计公式的展开式为： 

( )( )( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

4 2 22 2 2 2
1 1 1 1 12 2 2 22

,CLS 24 24 2
1 1 1 12 2 2

,
ˆ ˆ

ˆ
N N N N

t t t t t t tt t t t

N N N
t t t tt t t

n X X X n X n X

X n X X n X
α

ε ε
σ

− − − − −= = = =

− − − −= = =

− − − −
=

− − −

∑ ∑ ∑ ∑

∑ ∑ ∑
 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )

2 24 2 2 2 2
1 1 1 1 12 2 2 22

,CLS 24 24 2
1 1 1 12 2 2

.
ˆ ˆ

ˆ
N N N N

t t t t t t tt t t t

N N N
t t t tt t t

X n X X n X X

X n X X n X
β

ε ε
σ

− − − − −= = = =

− − − −= = =

− − −
=

− − −

∑ ∑ ∑ ∑

∑ ∑ ∑
 

在模型设定正确且观测序列{ }tX 满足平稳性与遍历性等基本假设的前提下，所提出的 CLS 估计量

CLSγ̂ 具有强相合性。具体而言，随着样本长度 N 趋于无穷，该估计量以概率 1 收敛至真实参数向量 0γ ，

即 
a.s.

CLS 0 , .ˆ N→ →∞当γ γ  

这一定理不仅从理论上保证了估计方法在大样本情形下的可靠性，也为其在实际数据分析中的稳定

性提供了坚实支撑。 

3.2. 拟似然(MQL)估计 

首先，在模型定义部分已经给出 RCBAR(1)模型的条件方差，记： 

( ) ( ) ( )2 2 2 2 2 2
1 1 1 1| : Var | 2t t t t t tV X X X X X n X nα β β βσ σ σ σ− − − −= = + − +γ  

标准的 MQL 估计方程具有如下形式： 

( )( )1
1 1 1

2
0,

N

t t t t
t

V X X n X Xα β−
− − −

=

− − − =∑ γ  

( )( )( )1
1 1 1

2
0.

N

t t t t
t

V X X n X n Xα β−
− − −

=

− − − − =∑ γ  

因为条件方差表达式中包含参数 γ 会导致相应的估计方程在一般情况下变得复杂且难以处理。因此

https://doi.org/10.12677/aam.2026.152069


陈志非，卢飞龙 
 

 

DOI: 10.12677/aam.2026.152069 285 应用数学进展 
 

采用通过其他方法获得的关于 γ 的合适一致估计量 γ̂ 来代替 γ ，然后求解由此得到的 MQL 估计方程，

以估计主要感兴趣的参数θ 。这种方法导出了以下θ 的闭式估计量： 

( )

( ) ( ) ( )

1
1 2 1 1

1 1 1 1
MQL 2 2 2

21 1 1MQL
1 1 1 1

2 2

ˆ ˆ ˆ

ˆ ˆ
2

ˆ

ˆ
ˆ

N N N

t t t t t
t t t

N N N

t t t t t
t t t

V X V X n X V X X

V X n X V n X V n X X

α

β

−
− − −

− − − −
= = =

− − −
− − − −

= = =

   
−        = ×        − − −   

   

∑ ∑ ∑

∑ ∑ ∑

γ γ γ

γ γ γ

 

作为一种替代方法，本文将使用 CLS 估计量来估计 2
ασ 和 2

βσ 。因为上述估计量不能保证对所有样本

都为正，因此可能不适用于 2
ασ 和 2

βσ 的正性要求，记 0θ 为参数真值，公式中 MQL 估计量的渐近正态性

由以下定理建立， 

( ) ( ) ( )( )MQL 1 1
0 0 0

MQL

0ˆ , ,
ˆ

dN N T K T
α α

β β
− −

−  ′→  − 
θ θ θ  

其中， 

( ) ( ) ( )
( ) ( ) ( ) ( ) 1 1 32 0 3 0 1 2

0 0 1 2 3
3 23 0 1 0

, ,
T TT T

K T TT T
T TT T

−−  − 
= = −     −  

θ θ
θ θ

θ θ
 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2 1
1 0 0 1 0

2 1
2 0 0 1 0

1
3 0 0 0 1 0

| ,

| ,

| .

T E n X V X X

T E X V X X

T E X n X V X X

−

−

−

 = − 
 =  
 = − 

γ

γ

γ

θ

θ

θ

 

3.3. 最大经验似然(MEL)估计 

接下来，我们介绍 RCBAR(1)模型的最大经验似然方法。对(3)式中定义的 ( )S θ 关于参数θ 求导，可

得到估计方程： 

 ( ) ( )
2

1 0
2

N

t
t

S
m

=

∂
− = =

∂ ∑
θ

θ
θ

 (5) 

对(4)式中定义的 ( )S γ 关于参数 γ 求导，可得到估计方程：  

 ( ) ( )
2

1 0
2

N

t
t

S
m

=

∂
− = =

∂ ∑
γ

γ
γ

 (6) 

为进一步提升估计效率，从而引入一个额外的矩条件。该条件在期望为零的前提下，能够提供关于

模型结构的更多信息，其构造方法详见 Lu [19]。此条件将被纳入经验似然框架，用于构建带附加约束的

似然函数。具体而言，有： 

( )

( )
( )
( )
( )

( )
( )

( ) ( )

1
1

1
2

2 2
13

22
4 1

, 0

t t
t

t t
t

t
t t tt

t t t t

e Xm
e n Xm

m e v Xm
m e v n X

−

−

−

−

⋅      ⋅ −  = = = − ⋅        − ⋅ −   

θ
θ

θ γ
γ
γ

 

其中， 

( ) ( )22 2 2
1 1 1 1,t t t t t t te X X n X v X n Xα βα β σ σ− − − −= − − − = + −  
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根据 Mykland [20]，剖面经验似然比(ELR)函数为： 

( ) ( )
2 2 2

, max | 0, 1, , 0
N N N

t t t t t
t t t

R Np p p p m
= = =

 
= ≥ = = 

 
∏ ∑ ∑θ γ θ γ  

其中，公式(5)中 ( ) ( )1 1t t t tm X − −= − X Xθ θ 。通过采用标准的拉格朗日乘子法，可以得到最优的 tp 的取值

为： 

( ) ( )
1 1 , 1,2, ,

1t
t

p t N
N m

= =
+ b

 θ θ
 

其中 ( )b θ 是对应于拉格朗日约束条件的乘子： 

( )( ) ( )
( ) ( )2

1 0
1

N
t

t t

m
g

N m=

= =
+∑b

b
θ

θ
θ θ

 

由此，可以得到对数经验似然比统计量： 

( ) ( ) ( ) ( )( )
2

2 log 2 log 1
N

t
t

l R m
=

= − = +∑ bθ θ θ θ  

为了研究估计量的渐近性质，我们对基础过程作如下假设： 
(C1) { }tX 是一个平稳过程； 
(C2) 6

tE X < ∞。 
对于 RCBAR (1)模型，我们有以下定理：在假设(C1)~(C2)下，记 0θ 为参数真值， MELθ̂ 是θ 的最大经

验似然估计量，当 n →∞时，有 ( ) ( )
2

0 4
Ll χ→θ 。最大经验似然估计量渐近正态， 

( ) ( )( )1 1
MEL 0 0  0, ,ˆ LN N − −− → J I Jθ θ θ  

其中 ( ) ( ) ( )T
0 0 0t tE m m 

 = I θ θ θ ，且
( )0tm

E
 ∂

=  
∂ 

J
θ
θ

。 

3.4. 估计方法的渐近性说明 

本文提出的 MQL 与 MEL 估计量均依赖于 CLS 估计量提供的方差参数预估计。在渐近理论中，若

考虑 CLSγ̂ 的估计误差，则 MQLθ̂ 与 MELθ̂ 的渐近分布应修正为： 

( ) ( )0 two-stage0,ˆ ,dN N→−θ θ Σ  

其中 two-stageΣ 包含来自 CLSγ̂ 的额外变异项。由于 CLS 估计量 具有相合性，且模拟结果显示其偏差较小，

本文在理论部分给出的渐近方差矩阵可视为在 γ 已知条件下的近似。在实际应用中，建议使用 Bootstrap
方法构建置信区间以更稳健地反映估计不确定性。 

4. 模拟研究 

为了评估所提出估计方法的有限样本性质，本文设计了一系列蒙特卡洛模拟实验。数据生成基于如

下带有随机系数的二项自回归(RCBAR(1))模型： 

( )1 1 , 1,t t t t tX X n X tα β− −= + − ≥   

其中 n 为状态空间上限(固定常数)， ( )1 1~ Beta ,t a bα ， ( )2 2~ Beta ,t a bβ ，且 tα 与 tβ 相互独立。初始值 0X

服从参数为 ( ),0.5n 的二项分布。我们考虑以下四种模型设定： 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

M1: ; , , , 10;0.2,0.5,0.3,0.2 ;

M2 : ; , , , 20;0.2,0.3,0.4,0.7 ;

M3: ; , , , 30;0.3,0.3,0.2,0.4 ;

M4 : ; , , , 40;0.3,0.5,0.1,0.4 .

n a a b b

n a a b b

n a a b b

n a a b b

=

=

=

=

 

其中， 

( ) ( ) ( ) ( )
2 21 1 1 2 2 2

2 2
1 1 2 21 1 1 1 2 2 2 2

, , , .
1 1

a a b a a b
a b a ba b a b a b a b

α α β βµ σ µ σ= = = =
+ ++ + + + + +

 

本文设置了 M5 为了检验估计方法对随机系数分布形式的敏感性，考虑 ( ),t tα β 服从截断正态分布，

即： 

( ) ( ) ( ) ( )2 2
0,1 0,1~ TN , , ~ TN , ,t tα α β βα µ σ β µ σ  

其中 ( )0,1TN 表示在区间 ( )0,1 内截断的正态分布，参数设置为 ( ) ( )2 2, , , 0.4,0.16,0.7143,0.1205α α β βµ σ µ σ = ，

对应与 M1 相近的边际均值和方差，其余设定与 M1 相同。 
基于 1000M = 次重复模拟，计算偏差(Bias)和均方根误差(RMSE)以评估估计量ψ  (代表 α̂ 和 β̂ 及感

兴趣的方差估计量)的表现： 

( )( ) ( )( )2

1 1

1 1Bias , RMSE .
M M

i i

i iM M
ψ ψ ψ ψ

= =

= − = −∑ ∑  

在表格中，为系统评估不同估计方法在有限样本下的表现，本文在四种模型下开展了模拟实验。表

1 和表 2 报告了参数α 和 β 的 Bias 与 RMSE，其中 N 表示样本量， n 表示状态空间上限。我们考察了

{ }50,100,200,500N ∈ 与 { }10,20,30,40n∈ 的多种组合，以反映不同样本规模和数据结构下的估计性能。

从两表中可以看出，随着波动程度变化，各估计方法的偏差与稳定性呈现出明显差异。表 3 和表 4 则比

较了在不同模型情境下的不同组合中，报告了参数 2
ασ 和 2

βσ 的 Bias 与 RMSE，反映了方法在不确定性量

化方面的稳健性。表 5 则考虑到对随机系数分布形式的敏感性分析，假设参数服从截断正态分布并在表

格中报告了模拟结果。这些结果为选择适用于不同波动场景的估计方法提供了依据。此外，图 1 通过样

本路径图、自相关函数(ACF)图与偏自相关函数(PACF)图，直观呈现了所研究模型的动态特征与依赖结

构，为后续的参数估计与模型诊断提供了可视化基础。 
图 1 显示，RCBAR(1)模型的样本路径具有典型计数时间序列的波动特征：自相关函数在滞后一阶显

著为正并指数衰减，表明短期记忆性；偏自相关函数在滞后二阶后迅速截尾，支持二阶自回归结构的合

理性。表 1 和表 2 结果表明，随着样本量从 50 增至 500，CLS、MQL 和 MEL 三种方法的偏差与 RMSE
均显著下降，其中 MEL 表现最优，MQL 次之，CLS 相对较差但计算简便；参数α 普遍呈轻微负偏差，

β 多为正偏差，且 β 估计精度略高；各方法在不同波动水平下均稳健。表 3 和表 4 显示，方差参数 2
ασ 与

2
βσ 的估计误差亦随样本量增大而快速收敛；MEL 仍最优， 2

ασ 误差略大于 2
βσ ，验证了方差参数的可估

性与方法有效性。从表 5 结果可见，即使在随机系数服从非 Beta 分布时，CLS、MQL 与 MEL 估计量仍

保持良好精度与稳健性，Bias 与 RMSE 未见显著上升，表明方法对分布形式具有鲁棒性。MEL 在分布误

设下仍表现最优，进一步验证了其实际适用性。 

5. 总结 

本文通过扩展固定系数模型，研究了一种新的计数数据模型。该模型允许自回归参数随时间随机变

动，同时推导了过程的平稳性与遍历性，也推导了模型参数的 CLS 估计量、MQL 估计量与 MEL 估计量， 
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Figure 1. Sample path plot, ACF plot, and PACF plot of the RCBAR(1) model 
图 1. RCBAR(1)模型样本路径图、ACF 图和 PACF 图 

 
Table 1. Bias and RMSE of the parameters to be estimated under model M1, the true parameter values are  
( ) ( )2 2, , , 0.4,0.7143,0.16,0.1205α βα β σ σ =  

表 1. 模型 M1 下待估参数的偏差与均方根误差，参数真值为 ( ) ( )2 2, , , 0.4,0.7143,0.16,0.1205α βα β σ σ =  

 CLS MEL MQL 

N  Para. Bias RMSE Bias RMSE Bias RMSE 

50 

α  −0.0083 0.0801 −0.0021 0.0383 −0.0042 0.0587 

β  0.0742 0.0759 0.0230 0.0455 0.0323 0.0539 
2
ασ  0.0257 0.0124 0.0068 0.0030 0.0141 0.0069 
2
βσ  0.0375 0.0550 0.0121 0.0179 0.0164 0.0242 

https://doi.org/10.12677/aam.2026.152069


陈志非，卢飞龙 
 

 

DOI: 10.12677/aam.2026.152069 289 应用数学进展 
 

续表 

100 

α  −0.0062 0.0602 −0.0012 0.0240 −0.0034 0.0412 

β  0.0487 0.0572 0.0145 0.0367 0.0186 0.0386 
2
ασ  0.0159 0.0083 0.0043 0.0029 0.0071 0.0049 
2
βσ  0.0216 0.0281 0.0063 0.0122 0.0082 0.0168 

200 

α  −0.0032 0.0444 −0.0006 0.0207 −0.0017 0.0356 

β  0.0323 0.0443 0.0081 0.0220 0.0104 0.0285 
2
ασ  0.0093 0.0056 0.0032 0.0025 0.0056 0.0034 
2
βσ  0.0148 0.0199 0.0045 0.0089 0.0057 0.0128 

500 

α  −0.0015 0.0317 −0.0003 0.0115 −0.0009 0.0200 

β  0.0109 0.0287 0.0029 0.0087 0.0041 0.0126 
2
ασ  0.0056 0.0032 0.0016 0.0012 0.0029 0.0021 
2
βσ  0.0071 0.0110 0.0021 0.0050 0.0034 0.0073 

 
Table 2. Bias and RMSE of the parameters to be estimated under model M2, the true parameter values are  
( ) ( )2 2, , , 0.3333,0.3,0.1389,0.105α βα β σ σ =  

表 2. 模型 M2 下待估参数的偏差与均方根误差，参数真值为 ( ) ( )2 2, , , 0.3333,0.3,0.1389,0.105α βα β σ σ =  

 CLS MEL MQL 

N  Para. Bias RMSE Bias RMSE Bias RMSE 

50 

α  −0.0078 0.0721 −0.0031 0.0415 −0.0054 0.0568 

β  0.0685 0.0821 0.0196 0.0483 0.0289 0.0497 
2
ασ  0.0229 0.0115 0.0075 0.0041 0.0136 0.0072 
2
βσ  0.0342 0.0497 0.0135 0.0192 0.0179 0.0258 

100 

α  −0.0057 0.0553 −0.0016 0.0268 −0.0039 0.0379 

β  0.0438 0.0615 0.0132 0.0392 0.0173 0.0361 
2
ασ  0.0143 0.0076 0.0052 0.0034 0.0084 0.0053 
2
βσ  0.0238 0.0305 0.0078 0.0135 0.0097 0.0179 

200 

α  −0.0029 0.0398 −0.0009 0.0186 −0.0019 0.0314 

β  0.0286 0.0382 0.0074 0.0243 0.0097 0.0268 
2
ασ  0.0086 0.0051 0.0036 0.0028 0.0058 0.0037 
2
βσ  0.0159 0.0217 0.0051 0.0096 0.0062 0.0135 

500 

α  −0.0012 0.0284 −0.0004 0.0132 −0.0011 0.0189 

β  0.0094 0.0253 0.0024 0.0095 0.0038 0.0119 
2
ασ  0.0049 0.0028 0.0018 0.0014 0.0026 0.0023 
2
βσ  0.0082 0.0124 0.0025 0.0057 0.0037 0.0081 
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Table 3. Bias and RMSE of the parameters to be estimated under model M3, the true parameter values are  
( ) ( )2 2, , , 0.6,0.4286,0.16,0.1442α βα β σ σ =  

表 3. 模型 M3 下待估参数的偏差与均方根误差，参数真值为 ( ) ( )2 2, , , 0.6,0.4286,0.16,0.1442α βα β σ σ =  

 CLS MEL MQL 

N  Para. Bias RMSE Bias RMSE Bias RMSE 

50 

α  −0.0092 0.0752 −0.0028 0.0436 −0.0048 0.0621 

β  0.0714 0.0785 0.0208 0.0468 0.0301 0.0513 
2
ασ  0.0248 0.0132 0.0082 0.0045 0.0153 0.0078 
2
βσ  0.0362 0.0513 0.0128 0.0187 0.0185 0.0249 

100 

α  −0.0068 0.0581 −0.0017 0.0259 −0.0037 0.0395 

β  0.0459 0.0598 0.0139 0.0379 0.0182 0.0374 
2
ασ  0.0157 0.0091 0.0058 0.0039 0.0091 0.0057 
2
βσ  0.0227 0.0328 0.0071 0.0142 0.0092 0.0184 

200 

α  −0.0031 0.0421 −0.0008 0.0194 −0.0018 0.0335 

β  0.0305 0.0418 0.0079 0.0236 0.0101 0.0276 
2
ασ  0.0092 0.0063 0.0041 0.0032 0.0064 0.0041 
2
βσ  0.0153 0.0231 0.0048 0.0103 0.0059 0.0142 

500 

α  −0.0014 0.0302 −0.0005 0.0141 −0.0012 0.0194 

β  0.0102 0.0271 0.0026 0.0101 0.0039 0.0124 
2
ασ  0.0053 0.0035 0.0021 0.0017 0.0031 0.0025 
2
βσ  0.0078 0.0138 0.0023 0.0063 0.0033 0.0086 

 
Table 4. Bias and RMSE of the parameters to be estimated under model M4, the true parameter values are  
( ) ( )2 2, , , 0.75,0.5556,0.1339,0.1301α βα β σ σ =  

表 4. 模型 M4 下待估参数的偏差与均方根误差，参数真值为 ( ) ( )2 2, , , 0.75,0.5556,0.1339,0.1301α βα β σ σ =  

 CLS MEL MQL 

N  Para. Bias RMSE Bias RMSE Bias RMSE 

50 

α  −0.0107 0.0779 −0.0035 0.0452 −0.0052 0.0614 

β  0.0691 0.0810 0.0216 0.0491 0.0298 0.0526 
2
ασ  0.0263 0.0145 0.0091 0.0052 0.0168 0.0084 
2
βσ  0.0387 0.0539 0.0139 0.0203 0.0197 0.0267 

100 

α  −0.0074 0.0608 −0.0019 0.0276 −0.0041 0.0409 

β  0.0472 0.0625 0.0146 0.0405 0.0191 0.0391 
2
ασ  0.0172 0.0103 0.0065 0.0044 0.0098 0.0063 
2
βσ  0.0243 0.0351 0.0078 0.0156 0.0099 0.0198 

200 
α  −0.0035 0.0453 −0.0009 0.0211 −0.0020 0.0352 

β  0.0318 0.0435 0.0084 0.0253 0.0107 0.0293 
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续表 

 
2
ασ  0.0101 0.0075 0.0047 0.0037 0.0071 0.0047 
2
βσ  0.0164 0.0253 0.0053 0.0115 0.0064 0.0155 

500 

α  −0.0016 0.0328 −0.0006 0.0157 −0.0013 0.0210 

β  0.0108 0.0296 0.0028 0.0113 0.0041 0.0137 
2
ασ  0.0059 0.0042 0.0024 0.0020 0.0035 0.0029 
2
βσ  0.0085 0.0154 0.0026 0.0071 0.0037 0.0094 

 

Table 5. Bias and RMSE of the parameters to be estimated under model M5 (truncated normal distribution), the true parameter 
values are ( ) ( )2 2, , , 0.4,0.7143,0.16,0.1205α βα β σ σ =  

表 5. 模型 M5 (截断正态分布)下待估参数的偏差与均方根误差，参数真值为 ( ) ( )2 2, , , 0.4,0.7143,0.16,0.1205α βα β σ σ =  

 CLS MEL MQL 

N  Para. Bias RMSE Bias RMSE Bias RMSE 

50 

α  −0.0091 0.0825 −0.0024 0.0398 −0.0048 0.0602 

β  0.0765 0.0783 0.0243 0.0471 0.0341 0.0556 
2
ασ  0.0271 0.0138 0.0072 0.0034 0.0153 0.0076 
2
βσ  0.0392 0.0574 0.0129 0.0188 0.0171 0.0254 

100 

α  −0.0069 0.0623 −0.0015 0.0251 −0.0038 0.0427 

β  0.0512 0.0595 0.0152 0.0382 0.0195 0.0403 
2
ασ  0.0168 0.0092 0.0048 0.0032 0.0078 0.0054 
2
βσ  0.0227 0.0295 0.0068 0.0129 0.0089 0.0176 

200 

α  −0.0036 0.0459 −0.0008 0.0214 −0.0019 0.0368 

β  0.0338 0.0458 0.0086 0.0231 0.0109 0.0298 
2
ασ  0.0098 0.0061 0.0035 0.0027 0.0059 0.0038 
2
βσ  0.0155 0.0208 0.0048 0.0093 0.0060 0.0134 

500 

α  −0.0018 0.0328 −0.0004 0.0122 −0.0011 0.0209 
β  0.0115 0.0298 0.0031 0.0091 0.0044 0.0132 

2
ασ  0.0059 0.0035 0.0018 0.0013 0.0031 0.0023 
2
βσ  0.0075 0.0115 0.0023 0.0053 0.0036 0.0077 

 
并获得了它们的渐近分布。通过模拟研究，比较了 CLS、MQL 和 MEL 估计量的表现。模拟结果表明：

三种方法在大样本下均能获得良好的估计结果；CLS 方法因其简洁性值得采用，但 MEL 方法能提供比

CLS、MQL 更有效的估计量。且 MEL 方法展现出更强的稳健性，虽然 MEL 方法是计算最复杂的，但正

如预期那样，它具有最高的估计效率。因此综合来看，推荐将 MEL 方法应用于本文研究的模型。 
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