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摘  要 

本文研究了由双倍权(doubling weight)诱导的加权Dirichlet空间 2Dω 上加权复合算子 ,Wϕ ψ 的有界性与紧

性。我们首先回顾Liu和Lou (2013)在幂权Dirichlet空间 2Dα 上的经典结果，其利用Nevanlinna计数函数

与Carleson测度给出了算子有界与紧的完整刻画。在此基础上，借助Chen (2023)关于双倍权Bergman
空间上加权复合算子差分的Carleson测度理论，我们将Liu和Lou的结果推广到更一般的双倍权Dirichlet
空间 2Dω 中。我们建立了 ,Wϕ ψ 在 2Dω 上有界(紧)的充分必要条件，这些条件分别用相关的拉回测度是(消失

的) s-Carleson测度，以及Nevanlinna计数函数的加权积分增长行为来表述。本文的结果不仅扩展了经

典幂权情形的理论，而且为研究双倍权Dirichlet空间上算子性质提供了新的工具。 
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Abstract 
This paper investigates the boundedness and compactness of weighted composition operators 
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,Wϕ ψ  on weighted Dirichlet spaces 2Dω  induced by doubling weights. We first review the classical 

results of Liu and Lou (2013) on power-weighted Dirichlet spaces 2Dα , where they provided a com-
plete characterization of operator boundedness and compactness using Nevanlinna counting func-
tions and Carleson measures. Building on this foundation, we extend Liu and Lou’s results to the 
more general setting of doubling-weighted Dirichlet spaces 2Dω  by leveraging Chen’s (2023) the-
ory of Carleson measures for differences of weighted composition operators on doubling-weighted 
Bergman spaces. We establish necessary and sufficient conditions for the boundedness (compact-
ness) of ,Wϕ ψ  on 2Dω , which are formulated in terms of the pullback measures being (vanishing) s-
Carleson measures and the weighted integral growth behavior of Nevanlinna counting functions. 
The results of this paper not only extend the classical theory for power-weighted cases but also pro-
vide new tools for studying operator properties on doubling-weighted Dirichlet spaces. 

 
Keywords 
Weighted Composition Operator, Weighted Dirichlet Space, Carleson Measure, Nevanlinna 
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1. 引言 

设表示复平面上的单位开圆盘， ( )H  为上全体解析函数构成的线性空间。给定 ( ), Hϕ ψ ∈  满

足 ( )ϕ ⊆ ，加权复合算子 ,Wϕ ψ 定义为 

( )( ) ( ) ( )( ) ( ), , .W f z z f z f Hϕ ψ ψ ϕ= ∈   

当 1ψ ≡ 时， ,Wϕ ψ 即为通常的复合算子Cϕ 。加权复合算子作为复合算子与乘法算子的乘积，在函数

空间算子理论中扮演着重要角色，其有界性、紧性、谱性质等已被广泛研究(参见[1] [2])。 
本文关注的函数空间是加权 Dirichlet 空间。对给定的权函数ω ，定义 

( ) ( ) ( ) ( ) ( ){ }2
2 222 : 0 d ,DD f H f f f z z A z

ωω ω= ∈ = + ′ < ∞∫  

其中 dA 是上的规范面积测度。当 ( ) ( ) ( )21 1z z
α

ω α= − > − 时，即为经典的加权 Dirichlet 空间 2Dα 。Liu

和 Lou [3]在 2Dα 上建立了 ,Wϕ ψ 有界与紧的充要条件，其表述涉及 Nevanlinna 计数函数与 s-Carleson 测度。 

另一方面，近年来由双倍权(doubling weight)诱导的 Bergman 空间 pAω 上的算子理论得到迅速发展。

所谓双向双倍权ω ，是指满足双向双倍条件 ˆ ˇD D Dω∈ = ∩ 的径向权(定义见第 2 节)。这类权包含了幂权、

指数权等广泛类别，其对应的函数空间具有丰富的结构与良好的实变性质(参见[4] [5])。Chen [6]最近研

究了双倍权Bergman空间上加权复合算子差分的有关问题，其核心工具是联合Carleson测度(joint Carleson 
measure)及其在双倍权下的刻画。 

本文的目标是将 Liu 和 Lou 在幂权 Dirichlet 空间上的结果，推广到双倍权诱导的加权 Dirichlet 空间
2Dω 。我们利用 Chen 文中关于双倍权下 Carleson 测度的刻画理论，重新表述 Nevanlinna 计数函数与

Carleson 条件，并建立 ,Wϕ ψ 在 2Dω 上有界性与紧性的等价条件。这一推广不仅扩大了原结果的适用范围，

Open Access

https://doi.org/10.12677/aam.2026.152072
http://creativecommons.org/licenses/by/4.0/


董利英 
 

 

DOI: 10.12677/aam.2026.152072 320 应用数学进展 
 

而且为进一步研究双倍权 Dirichlet 空间上算子的差分、分量连通性等问题提供了理论基础。 
本文结构如下：第 2 节介绍双倍权、加权 Dirichlet 空间及相关 Carleson 测度的预备知识；第 3 节陈

述主要结果，即有界性(定理 3.1)与紧性(定理 3.2)的等价刻画；第 4 节给出主要定理的详细证明。 

2. 预备知识 

2.1. 双倍权与加权函数空间 

设 [ ): 0,ω → ∞ 是径向权，即 ( ) ( )z zω ω= 。定义 

( ) ( )1ˆ d ,0 1.
r

r s s rω ω= ≤ <∫  

若存在常数 ( ) 1C C ω= > 使得 

( ) 1 ,0 1,ˆ ˆ
2

rr C rω ω + ≤ ≤ < 
 

 

则称ω 属于双倍权，记作 ̂；若存在常数 0K > 与 0C > 使得 

 ( )ˆ ˆ 1  1 ,0 1,rr C r
K

ω ω − ≥ − ≤ < 
 

 

则称ω 属于反向双倍权，记作 ̌。若 ˆ ˇω∈ = ∩∶  ，则称ω 为双向双倍权。 
对双倍权ω ，存在常数 ( ) ( )0 α ω β ω< ≤ < ∞与 1C ≥ 使得 

 ( )
( )

ˆ
,1 1 1 0 1.

1 1ˆ
rr rC r t

C t t t

α βω
ω

− −   ≤ ≤ ≤ ≤ <   − −   
 (2.1) 

定义扭曲权(twisted weight) ( ) ( )
1

z
z

z
ω

ω =
−



 。由([7] Proposition 5)知，若ω∈，则 

 ( )2 2 , .A Af f f H
ω ω

∈


  (2.2) 

2.2. Carleson 测度 

设ω∈， µ 为上的正 Borel 测度。若存在常数 0C > 使得 

( ) ( ) 2
2 2 2d , ,Af z z C f f A

ω ωµ ≤ ∀ ∈∫  

则称 µ 是 ( )2 , 2Aω -Carleson 测度。若对任意满足 2 1n A
f

ω
≤‖ ‖ 且在的紧子集上一致收敛于 0 的序列

{ } 2
nf Aω⊂ ，有 

( ) ( )2
lim d 0,nn

f z zµ
→∞

=∫  

则称 µ 是消失的 ( )2 , 2ωA -Carleson 测度。 
对 ( )0,1r∈ ，定义加权均值函数 

( ) ( )( )
( )( ),

,
ˆ , ,

,r

z r
z z

z rω

µ
µ

ω
∆

= ∈
∆

  

其中 ( ),z r∆ 表示以 z 为中心、 r 为拟双曲半径的拟双曲圆盘。由([6] Theorem 3.1) (取 2p q= = )知： µ 是

( )2 ,2Aω -Carleson 测度当且仅当 ( ),ˆ r Lωµ
∞∈  ；µ 是消失的 Carleson 测度当且仅当 ( ),1 ˆlim 0rz zωµ→ = 。这里
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r 可取某个(任意)属于 ( )( )0 ,1r ω 的值，其中 ( )0r ω 由(2.3)给出。 

2.3. 加权复合算子与相关测度 

设 2, Dωϕ ψ ∈ 满足 ( )ϕ ⊆ 。定义两个拉回测度： 

 ( ) ( ) ( ) ( )( ) ( )1

2
, d ,

E
E z z z A zϕ ψϕ ϕ

µ ψ ϕ ω−′ ′= ∫  (2.3) 

 ( ) ( ) ( )( ) ( )1

2
, d ,

E
E z z A zϕ ψ ϕ

ν ψ ω−′ ′= ∫  (2.4) 

其中 E ⊂为 Borel 集。 

3. 主要结果 

以下两个定理给出了加权复合算子 ,Wϕ ψ 在 2Dω 上有界性与紧性的完整刻画。 

3.1. 有界性刻画 

定理 3.1 (有界性等价条件)。设ω∈， 2, Dωϕ ψ ∈ 满足 ( )ϕ ⊆ ，且 ,ϕ ψν ′ 是 ( )2 , 2Dω -Carleson 测度。

则下列条件等价： 
(i) 2 2

, :W D Dϕ ψ ω ω→ 有界； 

(ii) 
( ) ( )( ) ( ) ( )( ) ,,, 0,1

1sup d
, S rr

N w A w
S r ϕ ψζζ ω ζ∈∂ ∈

< ∞∫


，其中 ( ) ( ) ( )( )
2

, zN w z zϕ ψ ϕ ω ψ ω
=

=∑ 为加权 

Nevanlinna 计数函数； 
(iii) ,ϕ ψϕµ ′是 ( )2 , 2Aω -Carleson 测度。 

3.2. 紧性刻画 

定理 3.2 (紧性等价条件)。在定理 3.1 的相同假设下，下列条件等价： 
(i) 2 2

, :W D Dϕ ψ ω ω→ 紧； 

(ii) 
( )( ) ( ) ( )( ) ,,0

1lim sup d 0
, S rr

N w A w
S r ϕ ψζζ ω ζ→ ∈∂

=∫


； 

(iii) ,ϕ ψϕµ ′是消失的 ( )2 , 2Aω -Carleson 测度。 

注 3.3. 当 ( ) ( )1log 1z
z

α

ω α
 

= > −  
 

时，定理 3.1 与定理 3.2 即退化为 Liu 和 Lou [3]的原有结果。本 

文的推广将权函数的范围从幂权扩大到了全体双倍权，并利用双倍权下的 Carleson 测度理论给出了统一

表述。 

4. 定理证明 

4.1. 几个引理 

首先，我们给出一个关键引理，它将 2Dω 上加权复合算子的有界性(紧性)转化为 2Aω 上另一算子的有界

性(紧性)。 

引理 4.1 设ω∈， 2, Dωϕ ψ ∈ 满足 ( )ϕ ⊆ 。若 ( ) ( ) ( )( )1

2
, d

E
z z A zϕ ψ ϕ

ν ψ ω−′ ′= ∫ 是 ( )2 , 2Dω -Carleson 测

度，则 
(i) 2 2

, :W D Dϕ ψ ω ω→ 有界当且仅当 2 2
, :W A Aϕ ψϕ ω ω′ → 有界； 
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(ii) 2 2
, :W D Dϕ ψ ω ω→ 紧当且仅当 2 2

, :W A Aϕ ψϕ ω ω′ → 紧。 
证明. 我们仅证明有界性的等价性，紧性的证明类似。 
必要性：假设 ,Wϕ ψ 有界。对任意 2g Aω∈ ，令 

( ) ( )
0

d ,
z

f z g ζ ζ= ∫  

则存在 2f Dω∈ ，使得 f g′ = ， ( )0 0f = ，则 2 2D Af g
ω ω
= 。 

因为 ,ϕ ψν ′ 是 ( )2 , 2Dω -Carleson 测度，我们有 

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

2 2

2

2 22
,

22 2
,

d

d d

A A

D

W g g z z g z z A z

z g z z A z g z z C f

ω ω

ω

ϕ ψ

ϕ ψ

ψ ϕ ψ ϕ ω

ψ ϕ ω ν

′

′

= =

= = ≤

′ ′

′

∫

∫ ∫



 

 

因为 ,Wϕ ψ 有界，故 2 22, D AD
W f C f C g

ω ωω
ϕ ψ ≤ = 。由定义知 

( )( ) ( ) ( )( ), ,W f z z f zϕ ψ ψ ϕ=  

( )( ) ( ) ( )( ), ,W f z z f zϕ ψ ψ ϕ′ = ′  

( )( ) ( ) ( )( ) ( ), , .W f z z f z f Hϕ ψϕ ψϕ ϕ′ ′= ∈   

计算 

( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

( )

22
2

2 2
2 2

2 22 2

2
2 2

,

22
22

, ,

2 2 2 2
, ,

2 2

2

AA
A

A A
A A

D AD A

W g g f f f f

f f W f W f

W f W f C f C g

ωω
ω

ω ω
ω ω

ω ωω ω

ϕ ψϕ

ϕ ψ ϕ ψ

ϕ ψ ϕ ψ

ψϕ ϕ ψ ϕ ψ ϕ ψ ϕ ψ ϕ

ψ ϕ ϕ ϕ

′

′

′

′= + − = −

   ′′≤ + = +        

= +

′ ′ ′ ′

=

′

≤

    

   

结合以上估计得 22, AA
W g C g

ωω
ϕ ψϕ′ ≤ ，即 ,Wϕ ψϕ′有界。 

充分性：假设 ,Wϕ ψϕ′有界，且 ,ϕ ψν ′ 是 ( )2 , 2Dω -Carleson 测度。对任意 2f Dω∈ ，计算 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

2

2
22

, ,

2 22

2

0 0 d

2 0 0 2 d

2 d .

D
W f f W f z z A z

f z f z z A z

z z f z z A z

ω
ϕ ψ ϕ ψψ ϕ ω

ψ ϕ ψ ϕ ω

ψ ϕ ϕ ω

′= +

≤ +

′

′

′+

∫

∫

∫







 

第一项由点赋值有界性控制：存在 0C > 使得 ( ) ( )( ) 2

22 20 0 Df C f
ω

ψ ϕ ≤ 。第二项等于 2

2
, A

W f
ω

ϕ ψ ′ ，因

,ϕ ψν ′ 是 Carleson 测度而被控制。第三项等于 2

2
,2

A
W f

ω
ϕ ψϕ′ ′ ，由假设有界，故 

2 22

2 2 2
,2 .A DA

W f C f C f
ω ωω

ϕ ψϕ′ ≤ ′ ≤′  

综上得 22, DD
W f C f

ωω
ϕ ψ ≤ ，即 ,Wϕ ψ 有界。 

下一个引理给出了 2Aω 上加权复合算子有界(紧)的 Carleson 测度刻画，它是[6]中相关结果的直接推论。 
引理 4.2 ( 2Aω 上的加权复合算子)。设ω∈， 2Dωϕ ∈ 满足 ( )ϕ ⊆ ， 2Aωψ ∈ 。则 2 2

, :W A Aϕ ψ ω ω→ 有界
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(紧)当且仅当测度 

( ) ( ) ( ) ( )( )1

2
, d

E
µ E z z A zϕ ψ ϕ

ψ ω−= ∫  

是(消失的) ( )2 , 2Aω -Carleson 测度。 
证明. 这是([6] Theorem 1.1)在 2p q= = 且仅考虑单个算子(非差分)时的特例。 

4.2. 定理 3.1 的证明 

我们证明(i) ⇔(iii) ⇔ (ii)。 
(i) ⇔ (iii)：由引理 4.1， ,Wϕ ψ 在 2Dω 上有界当且仅当 ,Wϕ ψϕ′在

2Aω 上有界。再由引 4.2，后者有界当且仅

当 ,ϕ ψϕµ ′是 ( )2 ,2Aω -Carleson 测度。故(i) ⇔ (iii)。 
(iii) ⇒ (ii)：假设 ,ϕ ψϕµ ′是 ( )2 ,2Aω -Carleson 测度。固定ζ ∈∂与 ( )0,1r∈ ，令 ( )1a r ζ= − 。考虑测试函

数 

( )
( )
( )

2 21
, ,

1

t

a t

a
z z

az
κ

−
= ∈

−
  

其中
( )  1

2
t

γ ω +
> ， ( )γ ω 为[6]中定义的常数。由([6] (2.5))知 

 2 1.a Aω
κ   (4.1) 

因为 ,ϕ ψϕµ ′是 Carleson 测度，故 

 ( ) ( ) 2
2 2

,d .a a Aw w C C
ωϕ ψϕκ µ κ′ ≤ ≤∫  (4.2) 

另一方面，由引理 4.1 的测度变换公式， 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
22 2

,  d d .a aw w z z z z A zϕ ψϕκ µ ψ ϕ κ ϕ ω′ = ′∫ ∫ 
 (4.3) 

考虑函数 , aWϕ ψκ 的 Dirichlet 范数： 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )2

2
22

, 0 0 d .a a aD
W z z z A z

ω
ϕ ψκ ψ κ ϕ ψ κ ϕ ω′= + ∫  

展开导数项并利用 Cauchy-Schwarz 不等式，可得 

( ) ( )( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

2

2

2 2

d

d

1 d d .
2

a

a a

a a

z z z A z

z z z z z z A z

z z z z A z z z z A z

ψ κ ϕ ω

ψ κ ϕ ϕ ψ κ ϕ ω

ψ κ ϕ ϕ ω ψ κ ϕ ω

′ ′ ′

′ ′

′

= +

≥ − ′

∫

∫

∫ ∫





 

 

由于 ,ϕ ψν ′ 是 Carleson 测度，且 2 1a Aω
κ  ，第二项有界。结合(4.2)与(4.3)，并注意到当 1ω → 时 0aκ →

在紧子集上一致，可推得 

 ( ) ( )( ) ( ) ( ) ( )
2

d .az z z z A z Cψ κ ϕ ϕ ω′ ′ ≤∫  (4.4) 

现在计算 ( ) ( ) ( )
22 1: 1 1

t t
a a w ta a awκ κ − −= − − −′ ′ 。 
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对 ( ),w S rζ∈ ，由扇形区域定义 

( ) { }, :S r w w rζ ζ= ∈ − < . 

点 ( )1a r ζ= − 位于从原点指向ζ 的半径上，距离边界恰好为 r 。对于任意 ( ),w S rζ∈ ，点 w 在边界点

ζ 附近。由于 ( )1a r ζ= − ，有 ( )1a r ζ= − ，故 

( )1 1 1aw r wζ− = − − . 

下界估计： 
利用三角不等式： 

1 1aw w w awζ ζ− ≥ − − − . 

第一项： 1 w w rζ ζ− = − < 。 

第二项： w aw a w r w rζ ζ− = − ⋅ = ≤ 。 

因此 1 1aw w rζ− ≥ − − 。当 w 沿径向靠近ζ 时，即 ( )1w p ζ= − ，其中 0 p r≤ < ，则 

( )( )1 1 1 1aw r p r p rp− = − − − = + − . 

由于 p r< ，有 r p rp r+ − ≥ ，故 1 aw r− ≥ 。 
上界估计： 

1 1 2aw w w aw r r rζ ζ− ≤ − + − < + = . 

因此 1 aw r− ≈ 。 

( )
( )
( )

( ) ( ) ( )
2 2 2 2 2 2

1 1 1 2
2 .

1

t t t

t t
a t t t

a a a r
w r

r raw
κ −

−  − + + ⋅ = =
−

   

所以 ( ) 2t
a w rκ − ， ( ),w S rζ∈ 。 

计算导数： 

( )
( )
( )

22

1

1

1

t

a t

a
w ta

aw
κ +

−
= −

−
′  

故 ( ) ( ) 21 11
tt

a w r a rκ − − −≈ − ≈′ 。代入(4.4)得 

 ( ) ( ) ( ) ( )( )( )1

2 2
,

d .
S r

z z z A z Cr
ϕ ζ

ψ ϕ ω− ≤′∫  (4.5) 

另一方面，由 Cauchy 估计， 

( )
( )

( ) ( ) ( )( ) ( )( )0

2 2

2 ,
0

1d .
,1 z r

Cz A
z rz

ψ ψ ξ ω ξ ξ
ω∆

≤ ⋅
∆−

∫  

结合双倍权的性质(2.1)~(2.3)，可进一步推出 

( ) ( )( ) ( )( ),,
d , .

S r
N w A w C S rϕ ψζ

ω ζ≤∫  

此即条件(ii)。 
(ii) ⇒ (iii)：假设(ii)成立。要证 ,ϕ ψϕµ ′是 ( )2 ,2Aω -Carleson 测度，只需验证 
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 ( )
2

,2

1
sup d

1

t

a

a
w

aw
ϕ ψϕµ ′

∈

 −
  < ∞
 − 

 (4.6) 

对某个 1t > 成立(参见([6] Theorem 3.1))。 
固定 a∈，令 a a aζ =  (若 0a = 则取 1aζ = )， 1ar a= − 。将积分区域按与 aζ 的距离分解：对 1n ≥ ，

定义 

( ) { }1: 2 2 .n n
n a a aa w r w rζ−= ∈ ≤ − <∆   

则 

( ) ( )( )

( )
( )( )

2 2

, ,2 2
1

,2
1

1 1
d d

1 1

1 .
2

n

t t

a
n

ntnn
a

a a
w w

aw aw

a
r

ϕ ψϕ ϕ ψϕ

ϕ ψϕ

µ µ

µ

∞

=

∞

=

′ ′∆

′

   − −
   =
   − −   

∆

∑∫ ∫

∑




 

由条件(ii)及双倍权的性质(2.1)， 

( )( ) ( )( ) ( )( ) ( ), , ˆ, 2 , 2 1 2 2 .n n n n
n a a a a a aa S r C S r C r rϕ ψϕ ϕ ψϕµ µ ζ ω ζ ω′ ′∆ ≤ ≤ ≤ − ⋅  

又由(2.1)知 ( ) ( )ˆ1 2 2 1ˆ n n
a ar C rβω ω− ≤ − ，故 

( )( ) ( ) ( )1
, 2 1 .ˆn

n a aa C r rβ
ϕ ψϕµ ω′

+∆ ≤ −  

代入级数得 

( )
( )( ) ( ) ( )1 21 2

,2
1 1

1 1 .
2

ˆ 2n tt
n a atnn na

a C r r
r

β
ϕ ψϕµ ω′

∞ ∞
+ −−

= =

∆ ≤ −∑ ∑  

取
1

2
t β +
> ，则级数收敛，且由 ( ) ( )( )0ˆ 1 ,ar a rω ω− ∆ 知上界与 a 无关。故(4.6) 成立，从而(iii) 得证。 

综上，定理 3.1 得证。 

4.3. 定理 3.2 的证明 

紧性刻画的证明思路与有界性类似，主要区别在于将“一致有界”条件替换为“趋于零”条件。 
(i) ⇔ (iii)：由引理 4.1 的紧性版本， ,Wϕ ψ 紧当且仅当 ,Wϕ ψϕ′紧；再由引理 4.2，后者紧当且仅当 ,ϕ ψϕµ ′

是消失的 ( )2 ,2Aω -Carleson 测度。 
(iii) ⇒ (ii)：若 ,ϕ ψϕµ ′是消失的 Carleson 测度，则对测试函数 ( )( )1a a rκ ζ= − ，有 

( ) ( )2
,1

lim d 0.aa
w wϕ ψϕκ µ

→
′ =∫  

仿照定理 3.1 的证明，可推出 

( )( ) ( ) ( )( ) ,,1

1lim sup d 0.
, S rr

N w A w
S r ϕ ψζζ ω ζ→ ∈∂

=∫


 

(ii) ⇒ (iii)：利用条件(ii)和双倍权的性质，类似定理 3.1 的级数估计可证得 ,ϕ ψϕµ ′是消失的 Carleson 测

度。具体地，对任意序列 na →∂，有 
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( )
2

,2

1
d 0,

1

t

n

a
w

a w
ϕ ψϕµ ′

 −
  →
 − 

∫  

这正是消失性刻画(参见([6] Theorem 3.1))。 
证毕。 
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