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Abstract

This paper investigates the boundedness and compactness of weighted composition operators
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W, on weighted Dirichlet spaces D2 induced by doubling weights. We first review the classical

results of Liu and Lou (2013) on power-weighted Dirichlet spaces th , Wwhere they provided a com-

plete characterization of operator boundedness and compactness using Nevanlinna counting func-
tions and Carleson measures. Building on this foundation, we extend Liu and Lou’s results to the

more general setting of doubling-weighted Dirichlet spaces D? by leveraging Chen’s (2023) the-

ory of Carleson measures for differences of weighted composition operators on doubling-weighted
Bergman spaces. We establish necessary and sufficient conditions for the boundedness (compact-

ness)of W, on Dj, , which are formulated in terms of the pullback measures being (vanishing) s-

Carleson measures and the weighted integral growth behavior of Nevanlinna counting functions.
The results of this paper not only extend the classical theory for power-weighted cases but also pro-
vide new tools for studying operator properties on doubling-weighted Dirichlet spaces.
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B DR AT I ER R AL, H (D) A D kA AR R BRI 226, 4472 gy < H (D) i
Ep(D)cD. MBS AHTW,, LA

W, F)(2)=v(2) f((2)). f €H (D).
Sy =10, W, BSBHNEAHTC, . B A FIEAE & T HRE TIORR, fERH

2 ) H T B *%@i%ﬁxﬁ%@ HoAg . B, MRS O RS )] [2]).
RS B B B ES 1) 2 N Dirichlet 28], WA EFINBE R 0, EX

b =[O +[|f'(2)f o (z)<oo},
Hor dA R D EMBRETTBINE . 2 o(2)=(1-2f ) (a >-1) M, EIRZ LI Dirichlet %14 DZ . Liu

Al Lou [3/E D; RESL T W, A 95 BRI FRE A, HRIAR W K Nevanlinna 114 %55 s-Carleson Il % .

A= I, AR XS (doubling weight)is 5 /) Bergman =5 (8] AP b (1) 5 3845 2108 K & -
FITAE L] AU o 5 2 FE JE XU U 26 @ € D = D A D IR IAALGE SLUILES 2 ) X RBUE T T TR
FRBOBUEE) 2200, o B 1 s B0 AL B A 8 450 5 RSB M5 (2 0[4] [5])- Chen [6]5 i A
T WAL Bergman 25 [8] _E IR & 57 22 73 196 J% 0]/, Hoz 0 T B2 B4 Carleson Wl & (joint Carleson
measure) & HAE XS BT 1 % i o

ALY H FRA2K Liu 1 Lou 7E 7L Dirichlet 73 [8] EZE 5L, ) BIXUE LS S IIAL Dirichlet #%[A]
D2 . BATFIAH Chen SCHKFIAAUR Carleson W ()% H# i, FHRAE Nevanlinna THER %5
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2. MR
2.1 MRS MR E == ]
B o:D—>[0,0) REMK, Bl o(z)=0(z]). EX
(r)=[ o(s)ds,0<r <1.
FAEERHC =C (o) > 1878
é)(r)scc?)(“Trj,OSrd,

TR o JBTAUGK, CIED; HHEAEHK>05C>0H5

aB(r)ZCa}[l—l_Trj,Osr<l,

A o J8 TR IAXUER, 2ED . #oeDi=DAD, WK o WRFREH.
MU 0, TAEH 0 < a(0)< f(0) <o 5 C 21 {7

a =~ s
i[l_rj s‘i’(r)sc(l_rj 0<r<t<l, @.1)
Ccl1-t a(t) 1-t
& SCHL A (twisted weight) cb(z)=f)_(|zz)| - HI([7] Proposition 5)%1, # weD, N
[l <[], feH(D). (2.2)

2.2. Carleson U
W weD, pANDLWIE Borel MIfE., FA7AEHEC >0 15
[T (2 du(z) <[, 9t e A,
PR w1 fri:(A,i,Z) -Carleson Il . 25 AT & 2 | fnl\% <1HAEDMETE L —3IET 0 )75
{(fjcAl, A

lim [ |, (2)[ du(z) =0,

MIFR 1 RETH SR (Af, 2) -Carleson Jl J& .

Xtre(01), &ESCIBUIAME R

. u(A(zn)
:uw,r (Z) - C()(A(Z, r))

Horbr A(z,r) Rl z A, r 30U AR R B A . H1([6] Theorem 3.1) (X p=q=2)%1: w2

(A2,2)-Carleson 4 HAX Y 1, e L" (D)5 4 %A Carleson IR HAL K limy, , 2, (2)=0. IXH.

,2eD,
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r AR )BT (1, (0),2) 045, 3611, (0) H2.3)% .
2.3. MEEEFSHEXNIE
W,y e DXL (D) D . 5 LA
Hoyg (E)=] o v (2)0' (2)] w(2)dA(2), (2:3)
Voo (E) =, s v (2)] @(2)dA(2), (2.4)
Hr E DN Borel 4.
3. EEZR
DL A5 B L T AU A 50T W,,, 75 D2 EA S 5 b i 5 3 2
3.1 AAMEZIE

3L (FIMENAM). BoeD, oy eDlHip(D)cD, Hy,, (D],2)-Carleson .
R ) 2 A5 A

() Ww,w : Daz; - Diﬁ%{;

i 1

(") Cea?;jrg(o,l)mjs(g r) sou/(
Nevanlinna 145 % %4 ;

(iii) 4, 7 (A2, 2)-Carleson Jil .

3.2. JiEZiE

TR 3.2 (BMWEMEM). £ 31 WMHEEE T, THI%&EZEN:
(i) W,,:D? - D?%;

wydA(w) <o, JEHIN,, (W)=Y lw(2) @(2) Ahni

(ii) limsup

1
fﬁogeama)(S(é’,r))L(“) ww( )
(i) u,,, I FRH (A2, 2)-Carleson JlIJE .

dA(W)=0;

*33. Yoz [log| J a>-1)I, EH 31 5EH 3.2 MR Liu M Lou [BIEAHLR. A

ST K BURR By R R B T ARG, FFRIFIXUREAUT ) Carleson IR 45 HY 1 48—

4. EFBIERA
4.1. NLANS[EE

G, BAVE AT B, ek D2 IR A A S (R oy A2 ES—H IR R
PECEME).

5l#41¥%weD, pyeDlififloD)cD. #v,, = J‘¢_1(E)|I//(z)|2 w(z)dA(z) 72 (Df, 2)-Car|eson Ml
FE,

(i) W, :D2 > D2 AL HAHEW,, AL —> A5
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AW, f 5 W, f
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(W, F)(2)=w(2) f (o(2).
(W¢~v'f)(z)=‘/”(z) f(o(2)),

(W, f)(2)=we'(2) f (2(2)). f <H (D).
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(27
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(55) 24 B
o (E)= [ o (2 0(2)dA(2)
(M RI) (A2,2)-Carleson JIlE .
UEBH. IXAZ([6] Theorem 1.1)7E p=q =2 HAYH & AT (AR 2 40) I IR
4.2. 7EIE 3.1 BYERA
FANERH () e (i) o (ii).
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g, 7% (AL, 2)-Carleson JIFE. (i) & (iii).
(iii) = (ii): fBBE p,,,, 7 (A2, 2)-Carleson JUEE. [ ¢ edD Hre(01), a=(1-r)¢ . HEMKK

"
(2-[a )
K, (2)= —,zeD
(1-az)
ﬁqm@, () 6] E XK. (6] (25)

e =1 4.1)

BN u,,, 7 Carleson JJE,
[obea (W dt s (W) < C i, [} <C. (4.2)

F—J7H, B 4.1 AR R A

[ W[ At (W) = [ | (2) 0 (2)] 5, | o(2)dA(z). (4.3)
W, «, f] Dirichlet fi 4L
W, . =l (@) (2 () +[|(v (2)5(0(2) | @(2)dA(2).
JE T S BRI H Cauchy-Schwarz 255, #l75
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|1—§w|£|1—fw|+|fw—§w|<r+r=2r.
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e
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TS
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i (= (1l < A
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E X
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1-la® = 1-|a
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H A (i) SRS BRI 2 (2.2)
s (8 (@)% 0 (5(60:270)) <Co(s (62:2'0)) <Cfa- 272,
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RNFH AT
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