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摘  要 

Yamada多项式是刻画空间图拓扑特征的重要多项式不变量。本文以顶点数与交叉点数为分类维度研究

特殊空间图的Yamada多项式，推导了一类特定单顶点螺旋图、2个顶点含0~3个交叉点的特殊空间图的

Yamada多项式表达式，为复杂空间图的多项式计算提供了参考案例。 
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Abstract 
The Yamada polynomial is a crucial polynomial invariant for characterizing the topological features 
of spatial graphs. Taking the number of vertices and crossings as the classification dimensions, this 
paper investigates the Yamada polynomials of special spatial graphs, deduces the expressions of the 
Yamada polynomials for special spatial graphs with one vertex and n crossings and those with two 
vertices and 0~3 crossings, and provides reference cases for the polynomial calculation of complex 
spatial graphs. 
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1. 引言 

纽结理论与图论的交叉研究是拓扑学领域的前沿方向之一，空间图作为纽结概念的高维推广，其拓

扑分类问题因在低维拓扑、量子拓扑等领域的应用价值，始终是学者关注的核心议题。多项式不变量作

为刻画空间图拓扑本质的关键工具，能将空间图的几何结构转化为代数表达式，且在同痕变换下保持不

变，为空间图的等价判别提供了有效途径。其中，Yamada 多项式是空间图特有的多项式不变量，相较于

着色多项式等经典图不变量，它更能精准反映空间图的三维交叉与嵌入特征，其计算规则与拓扑意义的

研究已成为该领域的重要课题。 
本文主要研究特殊空间图的 Yamada 多项式：在梳理 Yamada 多项式基本性质与计算规则的基础上，

推导一类特定单顶点螺旋图的 Yamada 多项式；进一步针对 2 个顶点且交叉点数为 0、1、2、3 的空间图，

分析其拓扑结构并计算对应的 Yamada 多项式具体表达式，以期为特殊空间图的多项式不变量研究提供

具体案例参考。 

2. 预备知识 

2.1. 图的基本概念 

定义 2.1 [1]图G 是指一个有序三元组 ( ) ( )( ), , GE G V G ψ 。其中 ( )V G 是图G 的顶点集， ( )E G 是图 G
的边集且 ( ) ( )E G V G∩ =∅， ( )Gψ 是关联函数，它将G 的每条边对应于G 的无序顶点对(可以是相同顶

点)。若边 e和两个顶点 u 和 v满足 ( )G e uvψ = ，则称边 e联结顶点 u 和 v，顶点 u 和 v称为边 e的端点。 
定义 2.2 G 中顶点 v的度是指G 中与顶点 v关联的边的数量(其中环边算作两条边)。 
注释 2.1 如果一条边连接相同顶点，那么我们称这样的边为环边(loop)，联结两个点可以有不止一条

边，这些边称为多重边。 

2.2. 空间图 

定义 2.3 [1]设G 属于 3R 为空间图，若投影 2 3:p R R→ ，满足 ( )p G 的每个多重交点均为横截边的二

重点，则 g 为G 对应的正则投影。此时，并不考虑交叉点的上下位置关系。若对其考虑上下位置问题，

将图记作 g 。 
引理 设 1G 与 2G 为空间图，则 1G 与 2G 分别可展同痕于 1G 与 2G ，当且仅当 1G 的某一图可通过可弯

形变化为 2G 的某一图。 
定义 2.4 设G 属于 3R 为空间图，如果将空间图投影到一个平面上，某些弧线(边)在投影中可能会看

起来交叉。如果省略了在交叉点处哪条弧线在上方的信息，这种投影被称为空间图的阴影(shadow)。如果

在每个明显交叉点处记录哪条弧线在上方，这种投影或平面表示被称为空间图的图式(diagram)。 
定义 2.5 对于空间图图式中任意一个二重交叉点 c，记穿过该点的两条弧分别为上交叉弧α 与下交

叉弧 β 。以右手规则判定交叉符号：将右手大拇指沿上交叉弧α 的定向伸直，其余四指自然弯曲，若弯

曲方向与下交叉弧 β 的定向一致，则称 c为正交叉点；若弯曲方向与下交叉弧 β 的定向相反，则称 c为负

交叉点。 
定义 2.6 [2]设 ( ),G V E 是嵌入在 3R 中的空间图，若对G 的每个顶点 v，都存在 v的一个邻域 vB 和一
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个小的平面 vP ，使得 v vG B P∩ ∈ ，则称 G 为平顶点图。若两个平顶点图 G 与 G′ 之间存在同痕

[ ]( )2 3: 0,1th R R t→ ∈ 满足 0h id=  (恒等映射)且 ( )1h G G′= ，同时对任意 [ ]0,1t∈ ， ( )th G 均为平顶点图，

称G 与G′为平顶点同痕。 
定义 2.7 设 ( ),G V E 是嵌入在 3R 中的空间图，若对G 的每个顶点 v，存在 v的邻域 vB 与 3R 中的一个

弯曲曲面 vS (非平面的光滑曲面)，使得 v vG B S∩ ∈ ，且顶点 v处的边可沿𝑆𝑆𝑣𝑣发生连续的弯曲形变而不改变

图的拓扑结构，则称G 为可弯顶点图。若两个可弯顶点图G 与G′之间存在同痕 [ ]( )2 3: 0,1th R R t→ ∈ ，满

足 0h id=  (恒等映射)且 ( )1h G G′= ，称G 与G′为可弯同痕。 

2.3. Reidemeister 移动 

给定一个抽象图 G，我们可以利用空间图图式来开始枚举G 的空间嵌入。两个图表示同位嵌入当且

仅当它们通过有限序列的基本 Reidemeister 移动( 0R 到 6R ) [3]相关联(图 1)。 
 

 
Figure 1. Reidemeister moves 
图 1. Reidemeister 移动 

2.4. 洛朗多项式 

定义 2.8 [2]设 ( ),G V E 为图，其中V 为顶点集， E 为边集。记 ( )Gµ 为G 的连通分支数， ( )Gβ 为G
的第一贝蒂数，令 ( ) ( ) ( )G Gf G x yµ β= ，并定义二元洛朗多项式： 

( ) ( )( ) ( ) ( ), Fh G h G x y x f G F= = − −∑  

其中 F 是遍历 E 的子集族， F 为 F 的元素个数， ( ),G F V E F− = − ， x 与 y 为不定元。特别地，规定空

图的 ( ) 1h ∅ = 。 

2.5. Yamada 多项式 

定义 2.9 设G 为空间图G 的图，对G 的每个交叉点C ，定义 3 种旋向： S+ ， S− ， 0S ，将G 的每个

交叉点替换为某一旋向后，得到的平面图称为G 的一个状态，记为 S 。所有状态构成的集合记为 ( )gς 。 
定义 2.10 Yamada 多项式定义为： 

( ) ( )( ) { } ( )
( )

|
S g

R g R g A g S H S
ς∈

= = ∑  
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注释 2.2 [4]若两个图示 g 与 g′对应的平顶点图G 与G′同痕，则存在整数 n ，使得 ( ) ( ) ( )nR g A R g′ = −

若每个顶点的度数均不超过 3，则两个图示 g 与 g′对应的空间图 G 与同痕当且仅当存在整数 n ，使得

( ) ( ) ( )nR g A R g′ = − ，若两个图示 g 与 g′对应的带状图G 与G′同痕，则 ( ) ( )R g R g′ = 。 

3. Yamada 多项式性质 

空间图 Yamada 多项式可通过以下递归性质[5]计算： 

1A . R ( ) AR= ( ) 1A R−+ ( ) R+ ( )， 

2A . R ( ) R= ( ) R+ ( )，当 e是一个非环边， 

3A . ( ) ( ) ( )1 2 1 2R g g R g R g= ， 

4A . ( ) ( ) ( )1 2 1 2g g R g R gR = −∨ 。 

由之前的关系，可推导出 Yamada 多项式的以下重要计算性质： 

1B . R ( ) B= ， 11B A A−= + + ， 

2B . R ( ) BR= − ( )， 

3B . R ( ) AR= − ( ) 2( )A A R− + ( )， 

4B . R ( ) AR= − ( ) 2 1( )A A R− −− + ( )， 

5B . R ( ) AR= − ( )， R ( ) 1A R−= − ( )， 

6B . R ( ) 2A R= ( )， R ( ) 2A R−= ( )， 

7B . 把一条边拆成两段，不会改变对应的多项式： R (
21 3

) R= (
1 2

)， 

8B . 把花瓣状的双环变成“同心自环”，对应的多项式不变： 

R ( ) R= ( ) 2 1 2( )B A A−= − = − + 。 

4. 一类特定单顶点螺旋图的 Yamada 多项式计算 

4.1. 正交叉螺旋图的 Yamada 多项式计算 

R ( ) 11B A A−= = + + ， 

R ( ) 2A R= ( ) 2 2 1 3 2( 1 )A B A A A A A A−= = + + = + + ， 

R ( ) 2A R= ( ) 2 2A A R= ⋅ ( ) 4 5 4 3A B A A A= ⋅ = + + ， 

由以上规律推导可得 n 个正交叉点螺旋图的 Yamada 多项式： 

R ( ) 2 2 1 2 2 1n n n nA B A A A+ −= ⋅ = + + 。 

4.2. 负交叉螺旋图的 Yamada 多项式计算 

R ( ) 11B A A−= = + + ， 
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R ( ) 2A R−= ( ) 2 2 1 1 2 3( 1 )A B A A A A A A− − − − − −= = + + = + + ， 

R ( ) 2A R−= ( ) 2 2A A R− −= ⋅ ( ) 4 3 4 5A B A A A− − − −= ⋅ = + + ， 

由以上规律推导可得 n 个负交叉点螺旋图的 Yamada 多项式： 

R ( ) 2 -2 1 2 2 1n n n nA B A A A− + − − −= ⋅ = + + 。 

5. 2 个顶点空间图不同交叉数的 Yamada 多项式计算 

5.1. 无交叉点空间图的 Yamada 多项式 

情况 1：空间图( )的 Yamada 多项式计算如下： 

将性质 2A 应用到中心边位置， 

R ( ) H= ( ) H= ( ) H+ ( ) 

由性质 7B ， 

H ( ) H= ( ) 

由性质 8B ， 

H ( ) H= ( ) 

所以 

R ( ) H= ( ) H+ ( ) 2 1 1 2( 1 ) ( 1 )B B A A A A− −= − = + + − + +  
1 2 2(2 )A A A A− −= − + + + +  

情况 2：空间图( )的 Yamada 多项式计算如下： 

将性质 2A 应用到中心边位置， 

R ( ) H= ( ) H= ( ) H+ ( ) 

由情况 1， 

R ( ) 2 3 1 2 2 1 3(2 ) ( 1 )B B B A A A A A A− − −= − + = − + + + + + + +  
3 2 1 2 32 5 5 5 2A A A A A A− − −= + + + + + +  

5.2. 1 个交叉点空间图的 Yamada 多项式 

情况 1：空间图( )可通过 6R 变换与标准 θ图同痕，它的 Yamada 多项式计算如下： 

通过性质 1A ， 
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R ( ) AR= ( ) 1A R−+ ( ) R+ ( ) 

由于割边的存在， 

R ( ) 0= ， 

R ( ) R= ( ) H= ( ) H+ ( ) 2B B= −  

R ( ) H= ( ) 

由性质 2A ， 

H ( ) H= ( ) H+ ( ) 

H= ( ) H+ ( ) H+ ( ) 
3 2 2( ) ( )B B B B= + − + + −  
3 22B B B= − +  

R ( ) 1 2 3 2(0) ( ) ( 2 )A A B B B B B−= + − + − +  

R ( ) [ ]3 2 12 1 ( )A A A A A R θ−= + + + + = −  

情况 2：空间图( )的 Yamada 多项式计算如下： 

由性质 6B ， 

R ( ) 2A R−= ( ) 2A R−= ( ) 
2 1 2 2(2 )A A A A A− − −= − + + + +  

2 1 3 4(2 )A A A A− − − −= − + + +  

5.3. 2 个交叉点空间图的 Yamada 多项式 

空间图( )的 Yamada 多项式计算如下： 

由性质 1A ， 

R ( ) AR= ( ) 1A R−+ ( ) R+ ( ) 

由性质 5B ， 
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R ( ) AR= − ( ) 

由性质 6B ， 

R ( ) 2A R−= ( ) 2A R−= ( ) 

由性质 4B ， 

R ( ) 1A R−= − ( ) 2 1( )A A R− −− + ( ) 

= + + + +  
3 2 2( ) ( )B B B B= + − + + −  

1 3 1 2 1( 1 ) 2( 1 ) ( 1 )A A A A A A− − −= + + − + + + + +  
2 33 1 23 2 3A A A AA A− − −+ + + + + +=  

R ( ) 2 2 1 3( )A A A A R− − −= − − − + ( ) 1A R−− ( ) 
2 2 1 3 1 2 2( )(2 )A A A A A A A A− − − − −= − − − − + + + + +  

1 3 2 1 2 3( 3 2 3 )A A A A A A A− − − −− + + + + + +  

5.4. 3 个交叉点空间图的 Yamada 多项式 

空间图( )的 Yamada 多项式计算如下： 

R ( ) AR= ( ) 1A R−+ ( ) R+ ( ) 

由性质 6B ， 

R ( ) 2A R= ( ) 

由性质 3B ， 

R ( ) AR= − ( ) 2( )A A R− + ( ) 

由性质 4B ， 

R ( ) 1A R−= − ( ) 

https://doi.org/10.12677/aam.2026.152074


邢琪睿，王欣瑞 
 

 

DOI: 10.12677/aam.2026.152074 344 应用数学进展 
 

R ( ) 4A R= − ( ) 1A R−+ ( ) 1( )A A R−− ⋅ − ( ) 

2 1( ) ( )A A A R− − + − ⋅ − +  ( ) 2( )( )A A A R− + − ( ) 

4 1 3 2( 1 )A A A A R−= − + + + + ( ) 1A R−+ ( ) R+ ( ) 
6 2 2 3 4 5 61A A A A A A A− − − − −= − − − − − − −  

6. 结语 

本文围绕特殊空间图的 Yamada 多项式展开研究，通过对 Yamada 多项式基本性质与计算规则的梳

理，成功推导了一类特定单顶点螺旋图的 Yamada 多项式，并针对 2 个顶点且交叉点数为 0、1、2、3 的

空间图，分析其拓扑结构，计算出对应的 Yamada 多项式具体表达式，为特殊空间图的多项式不变量研

究提供了案例参考。 
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