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Abstract

To promote the practical application of network coding, Médard et al. proposed the concept of ran-
dom network coding in 2006. In 2008, to address the requirements of error correction and data
recovery, Kschischang et al. put forward the subspace code model, where rank metric codes with
given ranks serve as a class of auxiliary codes for constructing subspace codes. Our research focuses
on the field of network coding, with its primary focus on two core research objects: constant dimen-
sion codes and rank metric codes with given ranks. Based on the fundamental principles of network
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coding, this paper systematically investigates the algebraic properties of rank metric codes with
given ranks, derives the Singleton upper bound for such codes, and proves their asymptotic opti-
mality.
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