DACH1在多种肿瘤发生中的作用机制研究进展

汪永钦1, 伍 阅2, 李金昊2, 龚建平2*

1重庆市石柱县中医院,重庆

收稿日期: 2022年2月21日: 录用日期: 2022年3月13日: 发布日期: 2022年3月23日

摘要

肿瘤一直以来都是全世界医学研究的热门课题。近年来,研究发现细胞命运决定因子DACH1在人类多种肿瘤细胞中的表达与肿瘤的发展关系密切。然而DACH1在肿瘤中确切的作用和机制还没有形成统一的认识。本文对DACH1的来源分布、结构特点、生物学功能以及在多种肿瘤细胞中的发生发展机制进行了综述,皆在探索DACH1在肿瘤发生发展中的抑制作用。

关键词

细胞命运决定因子,肿瘤

Research Progress on the Mechanism of Action of DACH1 in Various Tumorigenesis

Yongqin Wang¹, Yue Wu², Jinhao Li², Jianping Gong^{2*}

¹Chongging Shizhu County Hospital of Traditional Chinese Medicine, Chongging

Received: Feb. 21st, 2022; accepted: Mar. 13th, 2022; published: Mar. 23rd, 2022

Abstract

Tumor has always been a hot topic in medical research all over the world. In recent years, it has been found that the expression of cell fate determinant DACH1 in a variety of human tumor cells is closely related to the development of tumor. However, the exact role and mechanism of DACH1 in

*通讯作者。

文章引用: 汪永钦, 伍阅, 李金昊, 龚建平. DACH1 在多种肿瘤发生中的作用机制研究进展[J]. 临床医学进展, 2022, 12(3): 2125-2130. DOI: 10.12677/acm.2022.123305

²重庆医科大学附属第二医院肝胆外科,重庆

²Hepatobiliary Surgery, The Second Affiliated Hospital of Chongging Medical University, Chongging

tumor have not yet formed a unified understanding. In this paper, the origin, distribution, structural characteristics, biological function and the mechanism of occurrence and development of DACH1 in a variety of tumor cells were reviewed, all of which were to explore the inhibitory effect of DACH1 on tumorigenesis and development.

Keywords

DACH1, Tumor

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

DACH1 (Dachshund homolog 1)是果蝇 dachshund 基因的人类同源基因,参与果蝇眼睛、神经系统和四肢的发育[1]。DACH1 基因编码 760 个氨基酸,分子量为 52 kDa。腊肠家族转录因子 1 由 DACH 基因编码,全长 400 kDa,由 12 个外显子编码。该基因位于人类的第 13 号染色体(13q22)。它编码一种染色质相关蛋白,与其他 DNA 结合的转录因子结合,在发育过程中调节基因的表达、mRNA 的翻译、辅活化子的结合和细胞命运的决定。而近几年的研究发现,DACH1 基因在肿瘤的发生发展中同样有着不可小觑的作用。

2. DACH1 基因的结构及蛋白质修饰

DACH1 基因有四种编码不同异构体的剪接转录本,在包括肾脏和心脏在内的多个人类组织中检测到 DACH1 mRNA。Dachshund 结构域 1 (Dachshund domain 1,DD1,又称 Box-N)具有一个预测的螺旋 - 转角 - 螺旋家族结构。人 DACH1Box-N 的 X-射线晶体结构表明,DACH1 蛋白含有一个与原癌基因 SKI/SnO 保守的结构域,该结构类似于 α/β 结合蛋白的翼螺旋/叉头亚组,广泛表达于骨髓、脑、结肠、眼、心、肾、肝、肺、胰腺、松果腺、胎盘、前列腺、视网膜、骨骼肌等部位。

DACH1 被磷酸化、乙酰化和 SUMOlation 修饰,DACH 的乙酰化决定了 DACH1 与 p53 抑癌基因的结合,从而决定了与干细胞抑制和抑制细胞增殖有关的 p53 功能的子集,而 DACH 的乙酰化决定了 HDAC 的结合。Dach1 的磷酸化促进 yb-1 的结合、亚细胞分布和通过翻译 emt 调控基因诱导 EMT 的发生。

3. DACH1 的功能

生物发育: DACH 是 Ski 基因家族中的一员, DACH1 基因编码参与了眼睛和组织的发育, 促进冠状动脉的生长[2] [3], 并对肾功能的正常发挥具有重要作用[4]。Dach1 基因缺失小鼠在出生后早期死亡, 但在所检测的任何器官系统中, 包括肾脏, 都没有发现发育缺陷, 但 Dach1 基因缺失的小鼠在出生后早期就会死亡, 而 Dach1 基因缺失的小鼠在出生后早期就会死亡, 尽管在所检测的任何器官系统中都没有检测到发育缺陷, 包括肾脏。DACH1 在视网膜和垂体细胞增殖的前体中起着重要的作用。

转录: DACHI 通过与包括 c-jun、雌激素受体 α 、雄激素受体和基础转录装置在内的转录因子相互作用,通过与协整蛋白 CA150 的结合来实现转录功能。奇怪的是,DACHI 选择性地与 c-jun 的 δ 结构域结合,该结构域已知与内源性细胞抑制因子相互作用。DACHI 直接与叉头状 DNA 序列结合,抑制 FKHR 蛋白子集的致癌信号。DACHI 控制 EMT 调控的 mRNA 翻译和 Snail1 的转录。

细胞迁移及抑制癌细胞增长: DACH1 能够抑制血管内皮细胞、成纤维细胞和前列腺上皮细胞的迁移, 其中 DACH1 通过异型信号维持迁移的方向性。DACH1 蛋白能够阻止癌细胞(肺、乳腺、前列腺)的增殖 [5] [6],并抑制乳腺癌细胞中雌激素受体的活性。

4. DACH1 在各种肿瘤发生机制中的作用

4.1. DACH1 与乳腺癌

乳腺癌虽然在早期的诊断和治疗策略上取得了显著的成就,但由于其高发病率和死亡率,仍受到世界各国的高度关注[7] [8]。

视网膜决定基因网络(RDGN)包括 DACH1、EYA1 和 SIX1,在多器官发育中起着至关重要的作用。作为 RDGN 的两个重要成员,SIX1 和 EYA1 的高表达是影响乳腺癌患者临床结局的不利因素[9] [10]。相反地,DACH1 却表现出抑癌作用,且 DACH1 表达减少,预示着乳腺癌患者的生存能力较差。近年来,多项证据表明启动子区域的高甲基化导致了 DACH1 的下调,这与包括乳腺癌在内的许多癌症的增殖、侵袭和转移密切相关。DACH1 拮抗乳腺癌癌基因的转录和翻译,诱导,诱导上皮细胞间质化[11],抑制了肿瘤的生长,侵袭和迁徙。近年来的研究表明,肿瘤干细胞(cancer stem cells, CSCs)具有强大的自我更新能力,可导致肿瘤复发和转移,内源性 DACH1 参与了 CSCs 的负调控。

CD44 是一种广泛存在于哺乳动物细胞膜上的糖蛋白,在细胞分裂、黏附和迁徙等多种生物学功能中发挥着重要的作用。CD44 作为 CSCs 的一个众所周知的标志物,促进肿瘤的发生、侵袭、转移和治疗抵抗[12]。它通过调控 Ras-Raf-Mek-Erk-Cyclin D1 通路、phosphoinositide 3-激酶(PI3K)-Akt 信号通路等相关通路促进细胞增殖、抑制细胞凋亡,并刺激 EMT,促进肿瘤侵袭转移。

而最新的研究发现,DACH1 与 CD44 呈负相关,CD44 可能是乳腺癌中 DACH1 的新靶点。与正常乳腺相比,乳腺肿瘤组织中 DACH1 减少,而 CD44 增加。低级别和高级别的癌组织通过 IHC 分析后,显示出 DACH1 与肿瘤级别呈负相关,CD44 与肿瘤级别呈正相关;同时,使用载体将 DACH1 在乳腺癌细胞 Met-1 中转导表达后,通过 mRNA 分析,CSC 标志物 CD44、KLF4、MYC 减少;EMT 标志物 FN1、VIM 也减少。通过 Western bolt 发现,DACH1 异位表达导致 Met-1 细胞中 CD44、纤连蛋白、波形蛋白显著降低,p21、p27 显著上调。采用 Met-1 细胞皮下植入裸鼠,然后将 DACH1 在 Met-1 细胞中表达,与对照组相比,可以显著的观察到肿瘤的体积和重量均降低了接近 90%,其肿瘤生长的速度也明显降低。

最后为了评估 DACH1 在乳腺癌预后中的价值,通过分析已发表的基因数据库(GEO),其中包括 3574 名乳腺癌患者。得出了患者 DACH1 的 mRNA 更高的表达,其死亡时间延后。

4.2. DACH1 与肺腺癌

C-X-Cmotif ligand 8 (CXCL8)是一种促炎趋化因子,通过自分泌或旁分泌的方式对肿瘤细胞的增殖、侵袭和迁移产生多种作用。CXCL8 又称为白介素-8 (IL-8),属于谷氨酸 - 亮氨酸 - 精氨酸(ELR) + CXC 趋化因子。一般由巨噬细胞、上皮细胞、气道平滑肌细胞和内皮细胞产生。由肿瘤坏死因子 α (TNF- α)和白介素-1 β (IL-1 β)诱导快速产生。与 CXCL5、IL-6 等炎症因子类似,CXCL8 负责中性粒细胞和粒细胞向炎症部位的募集和活化[13]。过表达 CXCL8 在肺腺癌(lung adenocarcinoma, ADC)的发生发展中发挥了重要作用。

近年来, ADC 在 mRNA 和蛋白水平上均发现 DACH1 降低[14]。 DACH1 以依赖 p53 的方式阻断 ADC 细胞生长,增强细胞周期阻滞。此外, DACH1 可抑制过氧化物氧还蛋白 3 (PRX3)介导的 ADC 的发生和侵袭[15]。

而最新的研究发现, CXCL8 无论 mRNA 水平抑或其蛋白质水平均与 ADC 的进展有关[16]。

CXCL8mRNA 水平随着肿瘤大小的增加呈上升趋势;而通过 ELISA 法对 ADC 患者的血清 CXCL8 蛋白水平进行分析,显示晚期 ADC 患者血清 CXCL8 水平明显高于正常样本。此外,晚期 ADC 患者比早期 ADC 患者分泌更多的 CXCL8 到外周循环。Liu Q.等人通过在肺癌组织和细胞中进行了 CXCL8 和 DACH1mRNA 水平的相关性分析,其结果显示 CXCL8 和 DACH1 之间呈负相关关系。而 CXCL8 和其他已知的肿瘤抑制基因 p53 和 CDKN1B 等无明显的负相关关系。在后续实验中,Liu Q.等人通过建立能够持续表达 DACI 的 A549 肿瘤细胞模型小鼠,发现持续表达 DACH1 的 A549 细胞具有较低的致癌能力与较慢的肿瘤生长速度。在稳定表达 DACH1 的 ADC 细胞系(A549 和 SKLU)中进行的实验研究表明,CXCL8 在 mRNA 和蛋白水平上均下调。另一方面,DACH1 的缺失可以消除其对 CXCL8 的抑制作用,导致 CXCL8 的过度活化。在功能上,DACH1 明显抑制了 CXCL8 诱导的 A549 和 SKLU 细胞迁移,说明 CXCL8 的促癌作用可通过 DACH1 在 ADC 中的表达而减弱。基于 ADC 异种移植小鼠模型的结果,DACH1 有效抑制 CXCL8 及促增殖因子 cyclin D1、Ki-67 的表达,从而显著抑制肿瘤生长。综上所述,CXCL8 是 DACH1 的潜在靶点,DACH1 可以抑制 CXCL8 在体内外介导 NSCLC 细胞生长和转移的表达和功能[17]。此外,DACH1 也能够明显抑制 CXCL1 的表达,改善 ADC 患者预后[18]。

4.3. DACH1 与结直肠癌

结直肠癌(Colorectal cancer, CRC)是所有恶性肿瘤中治愈率最高的肿瘤之一,但仍是世界第四大癌症相关死亡原因。绝大多数证据表明,异常表达 microRNA (miRNA/miR)通过影响调节癌症进展的基因的表达来促进 CRC 的发展。

最新的研究发现,miRNA-552 与 CRC 有着密不可分的关系。Cao J.等人[19]首先通过 RT-qPCR 检测 20 对 CRC 组织及其邻近正常组织中的表达,结果显示 miRNA-552 在 CRC 组织中的表达水平明显高于正常对照组织。而与正常结肠癌 NCM460 细胞系相比,miRNA-552 在 CRC、LOVO、SW620 和 HCT116 的细胞系中均上调。同时通过菌落形成实验发现 miRNA-552 过表达增加了两种 CRC 细胞系的增殖能力。同时,Cao J.等人进行了伤口愈合和 Transwell 实验,miRNA-552 低表达组与对照组相比较,LOVO 与SW620 细胞伤口愈合速度明显下降。

已知 DACH1 在 CRC 中经常下调,与预后差密切相关。Cao J.等人将 LOVO 与 SW620 细胞中的 miRNA-552 表达下调之后,通过 RT-qPCR 和 western blot 分析显示 DACH1 的 mRNA 和蛋白表达明显上调。

除此之外,已经确认了在乳腺癌与卵巢癌中 DACH1 会抑制生长因子 β 信号通路,在 CRC 中会抑制 Wnt/ β 连环蛋白通路。Wnt/ β -连环蛋白通路是一种进化保守的途径,这是很重要的在启动和调节各种各样的细胞活动,包括细胞增殖、细胞钙稳态和极性。有很多目标蛋白质在 Wnt/ β -连环蛋白信号通路,包括 c-Myc 基因,细胞周期蛋白 D1,MMP3 和 LEF。既往研究表明,DACH1 与 c-Myc 和 cyclin D1 呈负相关。 高表达的 DACH1 常伴有低表达的 c-Myc。将 miRNA-552 下调之后,DACH1 显著上调,同时 c-Myc 表达也有所降低,在其之后通过 western bolt 检测到糖原合成酶激酶 3β (GSK3 β),细胞周期蛋白 D1 和 β 连环蛋白。

4.4. DACH1 与肝癌

肝细胞癌(HCC)是第四常见的癌症,在癌症中死亡率排名第二。近些年来,肝癌的分子基础方面取得了许多进展。然而,确定早期环境线索与疾病表型之间关系的分子机制却知之甚少。主要原因是这些相互作用是复杂的,难以精确量化,而且经常发生在很长一段时间内。

SIX1 是同源结构域转录因子 SIX 家族的一员,对许多器官的发育是必不可少的。事实上,它被认为

是一种癌胎蛋白,因为在动物模型和人类中,由于 SIX1 的失调和不适当的重新表达会导致基因组不稳定、恶性转化和转移。在人类许多的癌症中发现 SIX1 有超表达,它还与肿瘤的进展、转移并降低肿瘤患者生存率有关[20]。SIX1 通过刺激肿瘤干细胞从而促进结直肠癌的生长与转移,通过上调血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)刺激血管生成。此外,SIX1 的升高,与骨肉瘤患者存活率低有关。

Cheng Q.等人[21]检测了 50 例肝癌组织样本和 50 例癌旁组织样本。在所有差异表达基因中,分别选取 5 个高表达基因和 5 个低表达基因绘制热图发现 SIX1 在肝癌组织中高表达,DACH1 在肝癌组织中低表达。其中 SIX1 的 log fold-change 值为正值,表明肿瘤组织的表达较邻近肿瘤组织高。DACH1 的 log fold-change 值为负值,表明肿瘤组织相对于邻近组织表达较低。通过 RT-qPCR 分析 50 例标本同样显示在肝癌组织中,SIX1 高表达,DACH1 低表达。而在三种肝癌细胞系(SK-HEP-1, Huh-7 and HepG2)中,HepG2 细胞表现最明显。

随后,Cheng Q.等人通过分别上调和下调 HepG2 中 SIX1 和 DACH1 之后发现:在细胞凋亡过程中,SIX1 起抑制作用,DACH1 起促进作用。细胞周期实验表明,抑制 SIX1 和过表达 DACH1 后,细胞在 G2/M 期发育迟缓。同时检测细胞周期相关蛋白,当抑制 SIX1 时,P21 表达增加,CDK1 表达减少;而 表达 SIX1 时,P21 表达受到抑制,CDK1 表达升高。而表达和抑制 DACH1 之后,得到的结果完全相反。

用免疫共沉淀法分析蛋白质间的相互作用,Cheng Q.等人发现 DACH1 与 SIX1 和 p53 相互作用,而 SIX1 只能与 DACH1 相互作用。随后通过 western bolt 进一步验证了 DACH1、SIX1、p53 和 MDM2 之间 的相互作用。DACH1 和 p53 蛋白的表达与 SIX1 的表达呈负相关。SIX1 过表达抑制了 DACH1 和 p53 的表达。当 p53 表达被抑制时,MDM2 升高,这与 p53 的稳定性有关。而 DACH1 过表达或沉默对 SIX1 蛋白表达无显著影响。DACH1 过表达升高 p53 表达,抑制 MDM2 表达,对 SIX1 表达无明显影响。过表达 SIX1 和降低 DACH1 的表达进一步降低 p53 的表达,诱导肝癌。通过在小鼠模型上的观察发现,SIX1 过表达的小鼠肿瘤细胞生长得更快,相反 DACH1 过表达的小鼠肿瘤细胞肿瘤生长减缓。前者的肿瘤大小较后者也明显更大。

5. 总结与展望

如今,对于 DACH1 在肿瘤中的发挥作用的研究报告越来越多,除本文涉及肿瘤之外,在胶质瘤中的作用也在最新的研究中被发现[22] [23]。DACH1 作为一个抑癌基因,作用虽然得到了认可,但其确切机制仍尚待探究。在今后的研究中,探讨与之相关的 miRNA 或许是一个新的方向。

参考文献

- [1] Castiglioni, V., Faedo, A., Onorati, M., Bocchi, V.D., Li, Z., Iennaco, R., *et al.* (2019) Dynamic and Cell-Specific DACH1 Expression in Human Neocortical and Striatal Development. *Cerebral Cortex*, **29**, 2115-2124. https://doi.org/10.1093/cercor/bhy092
- [2] Chang, A.H., Raftrey, B.C., D'Amato, G., Surya, V.N., Poduri, A., Chen, H.I., *et al.* (2017) DACH1 stimulates Shear Stress-Guided Endothelial Cell Migration and Coronary Artery Growth through the CXCL12-CXCR4 Signaling Axis. *Genes & Development*, **31**, 1308-1324. https://doi.org/10.1101/gad.301549.117
- [3] Kong, D., Liu, Y., Liu, Q., Han, N., Zhang, C., Pestell, R., *et al.* (2016) The Retinal Determination Gene Network: From Developmental Regulator to Cancer Therapeutic Target. *Oncotarget*, **7**, 50755-50765. https://doi.org/10.18632/oncotarget.9394
- [4] Endlich, N., Kliewe, F., Kindt, F., Schmidt, K., Kotb Ahmed, M., Artelt, N., et al. (2018) The Transcription Factor Dach1 Is Essential for Podocyte Function. Journal of Cellular and Molecular Medicine, 22, 2656-2669. https://doi.org/10.1111/jcmm.13544
- [5] Wang, H., Yuan, Q., Sun, M., Niu, M., Wen, L., Fu, H., et al. (2017) BMP6 Regulates Proliferation and Apoptosis of Human Sertoli Cells Via Smad2/3 and Cyclin D1 Pathway and DACH1 and TFAP2A Activation. Scientific Reports, 7,

- Article No. 45298. https://doi.org/10.1038/srep45298
- [6] Xu, H., Yu, S., Yuan, X., Xiong, J., Kuang, D., Pestell, R.G., et al. (2017) DACH1 Suppresses Breast Cancer as a Negative Regulator of CD44. Scientific Reports, 7, Article No. 4361. https://doi.org/10.1038/s41598-017-04709-2
- [7] Xu, H., Yu, S., Liu, Q., Yuan, X., Mani, S., Pestell, R.G., et al. (2017) Recent Advances of Highly Selective CDK4/6 Inhibitors in Breast Cancer. *Journal of Hematology & Oncology*, 10, Article No. 97. https://doi.org/10.1186/s13045-017-0467-2
- [8] Hu, X., Huang, W. and Fan, M. (2017) Emerging Therapies for Breast Cancer. *Journal of Hematology & Oncology*, 10, Article No. 98. https://doi.org/10.1186/s13045-017-0466-3
- [9] Xu, H.-X., Wu, K.-J., Tian, Y.-J., Liu, Q., Han, N., He, X.-L., et al. (2016) Expression Profile of SIX Family Members Correlates with Clinic-Pathological Features and Prognosis of Breast Cancer. Medicine, 95, Article No. e4085. https://doi.org/10.1097/MD.000000000000004085
- [10] Liu, Q., Li, A., Tian, Y., Liu, Y., Li, T., Zhang, C., et al. (2016) The Expression Profile and Clinic Significance of the SIX Family in Non-Small Cell Lung Cancer. Journal of Hematology & Oncology, 9, Article No. 119. https://doi.org/10.1186/s13045-016-0339-1
- [11] Zhao, F., Wang, M., Li, S., Bai, X., Bi, H., Liu, Y., et al. (2015) DACH1 Inhibits SNAI1-Mediated Epithelial-Mesenchymal Transition and Represses Breast Carcinoma Metastasis. Oncogenesis, 4, Article No. e143. https://doi.org/10.1038/oncsis.2015.3
- [12] Wu, K., Xu, H., Yuan, X., Tian, Y., Liu, Y., Liu, Q., et al. (2016) Enrichment of CD44 in Basal-Type Breast Cancer Correlates with EMT, Cancer Stem Cell Gene Profile, and Prognosis. OncoTargets and Therapy, 9, 431-444. https://doi.org/10.2147/OTT.S97192
- [13] Wu, K., Yu, S., Liu, Q., Bai, X., Zheng, X. and Wu, K. (2017) The Clinical Significance of CXCL5 in Non-Small Cell Lung Cancer. OncoTargets and Therapy, 10, 5561-5573. https://doi.org/10.2147/OTT.S148772
- [14] Chen, S., Peng, M., Zhou, G., Pu, Y., Yi, M., Zhu, Y., et al. (2019) Long Non-Coding RNA HOTAIR Regulates the Development of Non-Small Cell Lung Cancer through miR-217/DACH1 Signaling Pathway. European Review for Medical and Pharmacological Sciences, 23, 670-678. https://doi.org/10.26355/eurrev_201901_16905
- [15] Zhu, J., Wu, C., Li, H., Yuan, Y., Wang, X., Zhao, T., et al. (2016) DACH1 Inhibits the Proliferation and Invasion of Lung Adenocarcinoma through the Downregulation of Peroxiredoxin 3. Tumor Biology, 37, 9781-9788. https://doi.org/10.1007/s13277-016-4811-x
- [16] Liu, Q., Li, A., Yu, S., Qin, S., Han, N., Pestell, R.G., et al. (2018) DACH1 Antagonizes CXCL8 to Repress Tumorigenesis of Lung Adenocarcinoma and Improve Prognosis. Journal of Hematology & Oncology, 11, Article No. 53. https://doi.org/10.1186/s13045-018-0597-1
- [17] Feng, Y., Wang, L. and Wang, M. (2018) Alteration of DACH1methylation Patterns in Lung Cancer Contributes to Cell Proliferation and Migration. *Biochemistry and Cell Biology*, 96, 602-609. https://doi.org/10.1139/bcb-2017-0279
- [18] Yu, S., Yi, M., Xu, L., Qin, S., Li, A. and Wu, K. (2020) CXCL1 as an Unfavorable Prognosis Factor Negatively Regulated by DACH1 in Non-Small Cell Lung Cancer. Frontiers in Oncology, 10, Article No. 1515. https://doi.org/10.3389/fonc.2019.01515
- [19] Cao, J., Yan, X.-R., Liu, T., Han, X.-B., Yu, J.-J., Liu, S.-H., et al. (2017) MicroRNA-552 Promotes Tumor Cell Proliferation and Migration by Directly Targeting DACH1 via the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer. Oncology Letters, 14, 3795-3802. https://doi.org/10.3892/ol.2017.6600
- [20] Xu, H., Zhang, Y., Peña, M.M., Pirisi, L. and Creek, K.E. (2017) Six1 Promotes Colorectal Cancer Growth and Metas tasis by Stimulating Angiogenesis and Recruiting Tumor-Associated Macrophages. *Carcinogenesis*, 38, 281-292. https://doi.org/10.1093/carcin/bgw121
- [21] Cheng, Q., Ning, D., Chen, J., Li, X., Chen, X.-P. and Jiang, L. (2018) *SIX1* and *DACH1* Influence the Proliferation and Apoptosis of Hepatocellular Carcinoma through Regulating p53. *Cancer Biology & Therapy*, **19**, 381-390. https://doi.org/10.1080/15384047.2018.1423920
- [22] Lu, G.-F., Geng, F., Xiao, Z., Chen, Y.-S., Han, Y., You, C.-Y., et al. (2019) MicroRNA-6807-3p Promotes the Tumorigenesis of Glioma by Targeting Downstream DACH1. Brain Research, 1708, 47-57. https://doi.org/10.1016/j.brainres.2018.12.008
- [23] Zhang, J., Ren, X., Wang, B., Cao, J., Tian, L. and Liu, M. (2018) Effect of DACH1 on Proliferation and Invasion of Laryngeal Squamous Cell Carcinoma. *Head & Face Medicine*, 14, Article No. 20. https://doi.org/10.1186/s13005-018-0177-1